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Abstract

In this paper, we describe a method to solve large-scale structural optimization prob-
lems by sequential convex programming (SCP). A predictor-corrector interior point method
is applied to solve the strictly convex subproblems. The SCP algorithm and the topology
optimization approach are introduced. Especially, different strategies to solve certain linear

systems of equations are analyzed. Numerical results are presented to show the efficiency of
the proposed method for solving topology optimization problems and to compare different
variants.
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1. Introduction

The method of moving asymptotes (MMA) was introduced by Svanberg [7] in 1987. To prove
global convergence and to stabilize the algorithm, Zillober [8] added a line search procedure
and called it the sequential convex programming (SCP) method. Both methods are proved
to be efficient tools in the context of mechanical structural optimization, see for instance the
comparative study of Schittkowski et al. [3], especially since displacement dependent constraints
are approximated very well. But also optimization problems from other areas can be solved
very efficiently in certain situations [5]. In a recent paper of Zillober et al. [12], it is shown how
very large scale optimal control problems with partial elliptic equations can be solved after a
full discretization.

Zillober [9] extended the approach to a generally applicable mathematical programming
framework, and in [10] the predictor-corrector interior point method for solving the convex
nonlinear subproblems was introduced. Moreover, a Fortran-code with name SCPIP [11] was
developed which is in practical use in many academic and commercial applications.

The main focus of this paper is to show how the SCP method can be applied to solve large-
scale topology optimization problems. These problems can become extremely large and possess
dense Hessians of the objective function. The mathematical structure is easily analyzed and a
large number of scalable test problems is obtained in a straightforward way.

∗ Received February 4, 2004.
1) This work was mainly done while the first author was visiting the University of Bayreuth, and was

supported by the Chinese Scholarship Council, German Academic Exchange Service (DAAD) and the National
Natural Science Foundation of China.



492 Q. NI, CH. ZILLOBER AND K. SCHITTKOWSKI

To describe the SCP method, we consider the general nonlinear programming problem

min f(x), x ∈ IRn,

s.t. hj(x) = 0, j = 1, ..., meq,

hj(x) ≤ 0, j = meq + 1, ..., m, (1.1)

xi ≤ xi ≤ xi, i = 1, ..., n.

The functions f and hj , j = 1, . . . , m, are defined on X := {x |xi ≤ xi ≤ xi, i = 1, . . . , n}, are
assumed to be continuous in X and at least twice continuously differentiable in the interior of
X . The feasible region is assumed to be non-empty.

The objective function of (1.1) is approximated by a uniformly convex function, inequality
constraints by convex functions, and equality constraints by linear functions. Thus, (1.1) is
replaced by a separable, convex, and nonlinear subproblem which is much easier to solve.
Numerical results show the advantages of an interior point method for solving the subproblem.
It is possible to reduce the size of the internally generated linear systems, where the major
part of the computing is spent, to m, which is favorable when m is small compared to n as
is the case for topology optimization problems. Another possibility is to reduce the size of
linear subsystems to n. A small number of variables and a large number of constraints is a
typical situation for many sizing problems in structural optimization. Moreover, there is a third
possibility to formulate linear systems with n + m equations and variables, by which special
sparsity patterns can be exploited. The first two approaches will be compared by numerical
tests.

The outline of the paper is as follows. In Section 2 the SCP method is formulated and the
SCPIP code is briefly introduced. Topology optimization, our main source for generating test
problems, is described in Section 3. Section 4 contains numerical results.

2. The Sequential Convex Programming Method

Similar to most other nonlinear programming algorithms, the SCP method replaces problem
(1.1) in the k-th step by a subproblem

min fk(x), x ∈ IRn,

s.t. hk
j (x) = 0, j = 1, ..., meq,

hk
j (x) ≤ 0, j = meq + 1, ..., m, (2.1)

xi
′ ≤ xi ≤ xi

′, i = 1, ..., n.

If we define

φi(g, z, y, x) =
∂g(y)

∂xi

(

(zi − yi)
2

zi − xi

− (zi − yi)

)

, (2.2)

where g : IRn −→ IR, x, y, z ∈ IRn with x = (x1, . . . , xn)T , y = (y1, . . . , yn)T , and z =
(z1, . . . , zn)T , the approximation of the objective function fk in the k−th step is defined by

fk(x) = f(xk)+
∑

i∈Ik
+

(

φi(f, Uk, xk, x) + τk
i

(xi − xk
i )2

Uk
i − xi

)

+
∑

i∈Ik
−

(

φi(f, Lk, xk, x) + τk
i

(xi − xk
i )2

xi − Lk
i

)

,

where Ik
+ = {i : ∂f(xk)

∂xi
≥ 0}, Ik

−
= {1, . . . , n} \ Ik

+. Inequality constraints are approximated by



Sequential Convex Programming Methods for Solving Large Topology Optimization Problems 493

hk
j (x), j = meq + 1, . . ., m,

hk
j (x) = hj(x

k) +
∑

i∈Jk
j,+

φi(hj , U
k, xk, x) +

∑

i∈Jk
j,−

φi(hj , L
k, xk, x),

where Jk
j,+ = {i :

∂hj(x
k)

∂xi
≥ 0}, Jk

j,− = {1, . . . , n} \ Jk
j,+. Equality constraints are replaced by

linear functions hk
j (x), j = 1, . . . , meq,

hk
j (x) = hj(x

k) +

n
∑

i=1

∂hj(x
k)

∂xi

(xi − xk
i ).

All functions fk and hk
j , j = meq + 1, . . . , m, are defined on

Dk = {x | Lk
i < xi < Uk

i , i = 1, 2, . . . , n}.

Lk
i and Uk

i are so-called moving asymptotes with Lk
i < xk

i < Uk
i , τk

i is a positive parameter,
and

x′

i = max{xi, x
k
i − ω(xk

i − Lk
i )}, x′

i = min{xi, x
k
i + ω(Uk

i − xk
i ), ω ∈ (0, 1), i = 1, 2, . . . , n.

In principle, the solution of (2.1) is the new iteration point. But to ensure a globally
convergent algorithm, an augmented Lagrangian merit function is introduced,

Φr(x, y) = f(x) +

meq
∑

j=1

(yjhj(x) +
rj

2
h2

j (x)) +

m̂
∑

j=meq+1

κj(x, y) (2.3)

where

κj(x, y) =

{

yjhj(x) +
rj

2 h2
j(x), if −

yj

rj
≤ hj(x)

−
y2

j

2rj
, otherwise

,

m̂ := m + 2n, hm+i := xi − xi, hm+n+i := xi − xi, i = 1, . . ., n. After solving subproblem
(2.1), a descent direction is defined by the difference of the solution of (2.1) and the previous
iteration point. Then a line search is performed along this direction with respect to the the
merit function (2.3). For a detailed outline of the individual steps of the SCP method, we refer
to Zillober [9].

In order to use a predictor-corrector interior point method, (2.1) is modified,

min fk(x), x, s, t ∈ IRn, c, r ∈ IRm−meq ,

s.t. hk
j (x) = 0, j = 1, . . . , meq,

hk
j (x) + cj−meq

= 0, j = meq + 1, . . . , m,

−cj + rj = 0, j = 1, . . . , m − meq,

x′

i − xi + si = 0, i = 1, . . . , n,

xi − x′

i + ti = 0, i = 1, . . . , n,

r, s, t ≥ 0.

c, s, and t are introduced as slack variables to transform inequality constraints and bounds to
equality constraints. Another artificial variable r allows, that c becomes exactly 0 also in the
beginning of the iterations which is of some practical advantage.
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The lower-bound constraints are added to the Lagrangian function of the subproblem by
logarithmic barrier terms with a positive barrier parameter µ,

Lµ(x, y, c, r, s, t, dr, ds, dt) = fk(x) − µ

m−meq
∑

j=1

ln ri − µ

n
∑

i=1

ln si − µ

n
∑

i=1

ln ti +

meq
∑

j=1

yjh
k
j (x)

+

m
∑

j=meq+1

yj(h
k
j (x) + cj−meq

) + dT
r (−c + r) + dT

s (x′ − x + s) + dT
t (x − x′ + t),

where y, dr, ds, dt are the dual variable vectors to the corresponding constraints. From the
necessary optimality condition ∇Lµ = 0, we obtain the following linear system to compute a
Newton step,





A11 0 A13

0 A22 A23

A31 A32 0









∆x1

∆x2

∆x3



 = −∇Lµ (2.4)

where

A11 =









∇xxL Jeq Jie

JT
eq

JT
ie I

I









, A13 =









0 −I I

0 0 0
0 0 0
−I 0 0









, A31 =





0 0 0 −I

−I 0 0 0
I 0 0 0



 ,

∆x1 =









∆x

∆yeq

∆yie

∆c









, ∆x2 =





∆r

∆s

∆t



 , ∆x3 =





∆dr

∆ds

∆dt



 ,

A22 = diag(Dr, Ds, Dt), A23 = diag(R, S, T ), A32 = diag(I, I, I). Jeq ∈ Rn×meq and Jie ∈
Rn×(m−meq) are the transposed Jacobian matrices of the constraints. ∇xxL = ∇2fk(x) +
d
dx

(Jeqyeq +Jieyie), yeq = (y1, . . . , ymeq
)T , yie = (ymeq+1, . . . , ym)T . R = diag(r1, . . . , rm−meq

),
S, T, Dr, Ds and Dt, respectively, are diagonal matrices in the appropriate dimensions.

From (2.4), we deduce three different transformations which can be used alternatively de-
pending on the problem structure and size. First, we get a linear system with n + m equations
and variables by





∇xxL + S−1Ds + T−1Dt Jeq Jie

JT
eq

JT
ie −D−1

r R









∆x

∆yeq

∆yie



 =





a1

−hk
eq(x)
a2



 (2.5)

where

a1 = −∇fk(x) − Jeqyeq − Jieyie + ds − dt − S−1Ds(x − x′) + T−1Dt(x
′ − x),

a2 = −hk
ie − D−1

r R(−yie + dr),

hk
eq(x) = (hk

1(x), . . . , hk
meq

(x))T ,

hk
ie(x) = (hk

meq+1(x), . . . , hk
m(x))T .

Alternatively, it is possible to get a linear system of size m of the form

(

JT
eqQ

−1Jeq JT
eqQ

−1Jie

JT
ieQ

−1Jeq JT
ieQ

−1Jie + D−1
r R

) (

∆yeq

∆yie

)

=

(

JT
eqQ

−1a1 + hk
eq(x)

JT
ieQ

−1a1 − a2

)

(2.6)
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where

Q = ∇xxL + S−1Ds + T−1Dt.

If meq = 0 as in case for all our examples of Section 4, (2.6) reduces to

(JT
ieQ

−1Jie + D−1
r R)∆yie = JT

ieQ
−1a1 − a2 (2.7)

If meq = 0 it is possible to reduce (2.6) to the n by n system

(Q + JieR
−1DrJ

T
ie)∆x = a1 + JieR

−1Dra2. (2.8)

In the corrector step, these three systems are similar, only the right-hand sides change.
Hence, the linear system (2.4) can be solved by using any of the three different approaches,
i.e., a Newton step is obtained by solving (2.5), (2.6), or (2.8), as implemented in a code called
SCPIP. For a detailed description we refer to Zillober [10, 11]. In this paper, subroutine SCPIP
is used to solve large-scale topology optimization problems which are described in the following
section.

3. Topology Optimization

Topology optimization generates the optimal shape of a mechanical structure. Given a pre-
defined domain in the 2D/3D space with boundary conditions and external loads, the intention
is to distribute a percentage of the initial mass on the given domain such that a global measure
takes a minimum, see Bendsøe and Sigmund [2] for a broader introduction. Without any further
decisions and guidance of the user, the method will form the structural shape thus providing a
first idea of an efficient geometry.

To represent the mass distribution respectively the form of the structure and at the same
time the structural behavior, the design space is discretized by the finite element method.
Assuming isotropic material, the so-called power law approach, see Bendsøe [1] or Mlejnek [4],
leads to a frequently used formulation

min c(x) = uT K(x)u =

n
∑

i=1

x
p
i u

T
i Ki(x)ui,

s.t. V (x) ≤ aV0, (3.1)

K(x)u = f,

0 < xmin ≤ x ≤ 1.

Here x ∈ IRn is the vector of variables called the relative densities of material in the finite
elements. u and f are the global displacement and force vectors, respectively, and K is the
global stiffness matrix which is defined by the element stiffness matrices Ki and displacement
vectors ui, respectively, i = 1, . . . , n. xmin > 0 is a vector of lower bounds for the relative
densities to avoid singularities, n is the number of elements used to discretize the design domain,
p is a penalization power, V (x) and V0 are the material volume and the design domain volume,
respectively, and a is the prescribed volume fraction to be used for the final design.

In problem (3.1), vector u depends on vector x by the condition of mechanical equilibrium,

K(x)u = f. (3.2)
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Figure 1: TOP1, ground structure Figure 2: TOP2, ground structure

This condition is usually solved in an outer loop. Hence, problem (3.1) becomes

min c(x) = u(x)T K(x)u(x) =

n
∑

i=1

x
p
i ui(x)T Ki(x)ui(x),

s.t. V (x) ≤ aV0, (3.3)

0 < xmin ≤ x ≤ 1,

where u(x) is implicitly obtained from (3.2), and V (x) depends linearly on the relative densities
xi, i = 1, . . ., n. (3.1) describes how an optimal material distribution of a given ground structure
can be computed such that its compliance is minimized. Here, only one load case is considered.
For the more general situation of l load cases, there are l force and l displacement vectors.
Hence, the objective function is now the sum of l compliances

c(x) =

l
∑

j=1

uj(x)T K(x)uj(x), (3.4)

where u1(x), . . ., ul(x) are obtained by solving the linear systems of equations

K(x)uj = fj , j = 1, . . . , l. (3.5)

Note that for large design structures (3.1) and a sufficiently fine grid, the stiffness matrix
K(x) is a large sparse matrix.

4. Numerical Test Results

4.1 Topology Optimization Problems

In this section, we use the same test problems that were derived by Sigmund [6]. The first
one, TOP1, is the so-called MBB-halfbeam, see Figure 1 for the ground structure. TOP2 is
a cantilever beam, see Figure 2, TOP3 a cantilever beam with two load cases, i.e., l = 2, see
also (3.4,3.5) and Figure 3, and TOP4 is a cantilever beam with a fixed circular hole, i.e., with
passive elements fixed at the lower bound, see Figure 4.
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Figure 3: TOP3, ground structure Figure 4: TOP4, ground structure

The direct solution of the optimization problem as outlined above leads to unsatisfactory
results. The so-called checkerboard phenomenon, a certain type of mesh-dependency, would
very likely appear, see Bendsøe and Sigmund [2] for an overview on these difficulties and some
remedies. Typically, a filter technique is added, i.e., a certain manipulation of the gradient
of the objective function to avoid black and white patterns of neighbored elements. Thus, we
will always work with perturbed gradients. The first consequence is that we will never fulfill a
strong convergence criterion based on the norm of the gradient of the Lagrangian. Moreover, the
application of the line-search technique (2.3) becomes too erroneous and destroys fast numerical
convergence speed. The perturbed gradients are passed to the subproblem formulation, cf. (2.2),
leading to perturbed iterates.

The filter technique works as follows, see Sigmund [6] or Bendsøe and Sigmund [2]. Instead
of the original gradient ∇f(xk) of the objective function at a given iteration point xk we use a
weighted sum of the original components in a certain neighborhood for a particular component.
We apply the formula

∂f̂

∂xi

=
1

xi

n
∑

j=1

wij

n
∑

j=1

wijxj

∂f

∂xj

,

for approximating the gradient, where the weight factors are defined as wij = rfilter −dist(i, j),
i = 1, . . . , n and j is chosen so that dist(i, j) ≤ rfilter. The weight factors are set to 0 outside a
circle with radius rfilter around the current element. The function dist measures the distance
of the centers between two elements.

Numerical tests were performed on a PC running under Windows XP and a Pentium 4
processor with 2.6 GHz and 512 MB RAM. We used the Compaq Visual Fortran 6.6 Com-
piler. All computations are performed in double precision Fortran77. For our numerical tests,
the linear systems (3.2) are solved by a minimum degree ordering algorithm and a Cholesky
decomposition.

The initial point to start the SCP code, is always set to x0
i = a for all i = 1, . . ., n, leading

to an active volume constraint. The termination criterion for SCPIP is

‖f(xk) − f(xk−1)‖ ≤ 10−4

and feasibility subject to the given tolerance. There are alternative stopping criteria imple-
mented in SCPIP, but under the test conditions outlined above, this criterion seems to be the
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Table 1: Results for SCPIP, small-scale problems

(2.7) (2.8)
Problem rfilter nx × ny n IT CPU IT CPU

TOP1 1.5 60 × 20 1200 52 3.3 54 1,155.0
TOP2 1.2 32 × 20 640 46 1.4 92 316.3
TOP3 1.2 30 × 30 900 65 3.6 35 292.1
TOP4 1.5 45 × 30 1350 30 2.2 26 623.8

Table 2: Results for SCPIP, large-scale problems

Problem rfilter nx × ny n IT CPU

TOP1 10.5 420 × 140 58,800 47 773.0
TOP2 12.0 320 × 200 64,000 48 1,033.4
TOP3 9.6 240 × 240 57,600 49 1,819.2
TOP4 10.5 315 × 210 66,150 33 805.4

most reliable one. To give an example, a criterion based on the change of design variables as
used by Sigmund [6] leads to too many iterations near the solution because some cycling of a
few variables at the border of the structure.

Table 1 contains some performance results for TOP1 to TOP4 obtained by SCPIP. We used
the same data as Sigmund [6]. We report the number of main iterations (IT) and the CPU-time
in seconds (CPU) for two different versions differing by the way the linear subproblems of the
Newton step are solved, i.e., formulation (2.7) and formulation (2.8). nx and ny denote the
number of used finite elements in x−direction and y−direction, respectively.

Although the linear systems (2.7) and (2.8) are algebraically equivalent, we observe differ-
ences in the number of iterations caused by round-off errors. As expected, SCPIP with (2.7)
performs much better than the version with (2.8), since there is only one constraint. The re-
ported figures show the impact of choosing an adequate subproblem. It is emphasized that
SCPIP can choose the most adequate variant automatically, a somewhat tricky procedure in
case of balanced n and m.

We do not report any comparisons with the Matlab code of Sigmund [6] because of obvious
differences in CPU times. We also tested SCPIP for larger instances of the same problems. For
that purpose we applied a scaling factor of 7 to TOP1 and TOP4, of 8 to TOP3 and of 10 to
TOP2, respectively, to the discretization parameters nx and ny. The filter size had also been
multiplied by the scaling factors. Numerical results are shown in Table 2, where we omitted
version (2.8) because of too excessive calculation times. Final designs are shown in Figures 5
and 6 for TOP1, Figures 7 and 8 for TOP2, Figures 9 and 10 for TOP3, and Figures 11 and
12 for TOP4.

4.2 Comparison Between SCP and MMA

Figure 5: TOP1, 60 × 20 Figure 6: TOP1, 420 × 140
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Figure 7: TOP2, 32 × 20 Figure 8: TOP2, 320 × 200

Figure 9: TOP3, 30 × 30 Figure 10: TOP3, 240 × 240

Figure 11: TOP4, 45 × 30 Figure 12: TOP4, 315 × 210
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Figure 13: Arc structure

As outlined in Section 2, SCP is considered as an extension of MMA obtained by adding a
linea search procedure subject to an augmented Lagrangian merit function. In general, we do
not observe great differences of the performance between SCP and MMA in practice. Usually,
structural design problems are provided with good starting points, such that the steplength one
is preferred in most iterations. In other words, both methods coincide in most iterations.

However, there are exceptions by which the impact of the globalizing strategy can be shown.
The example under consideration is the arc structure of Figure 13, which is fixed in two nodes
at the border of the top. The bottom nodes are restricted through the ground. Loads, indicated
by arrows, are applied at four nodes at the edges of the bottom part. Objective function to
be minimized is the total volume. Design variables are the thicknesses of elements and stresses
of elements are to be constrained. We get an optimization problem with 50 variables. i.e., 50
finite elements, and 100 constraints, i.e. two stress bounds in each element. The finite element
structure is set up by ANSYS.

The subsequent table uses the following abbreviations:

k - iteration number,
‖h(xk)+‖∞ - maximum constraint violation,
f(xk) - objective function value,
αk - steplength,
‖∇L(xk, uk)‖∞ - gradient norm of Lagrangian function.

For this example we used the stopping criterion

‖∇L(xk, uk)‖∞ ≤ 10−5 and ‖h(xk)+‖∞ ≤ 10−5.

All computations have been performed in double precision Fortran 77.

SCP terminates after iteration 29 with a total of 38 function and 30 gradient evaluations.
MMA does not converge within the given maximum number of iterations (100). It is evident
that a line search handles large initial infeasibility much better. During the first forty iterations,
MMA cycles forth and back, and shows slow monotone convergence afterwards.

ANSYS is a product of ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, USA
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Table 3: Iteration history of the arc example

SCP MMA

k ‖h(xk)+‖∞ f(xk) αk ‖∇L(xk, uk)‖∞ ‖h(xk)+‖∞ f(xk) ‖∇L(xk, uk)‖∞

0 81.08 4.693D-2 – 6.6D-2 81.08 4.693D-2 6.6D-2

1 67.24 5.768D-2 1 6.4D-2 67.24 5.768D-2 6.4D-2

2 17.16 9.964D-2 1 0.50 17.16 9.964D-2 0.50

3 7.76 0.1935 1 0.89 7.76 0.1935 0.89

4 5.26 0.3120 1 232.1 5.26 0.3120 232.1

5 2.90 0.4380 1 230.2 2.90 0.4380 230.2

6 2.55 0.4716 0.42 249.3 1.85 0.5188 752.6

7 0.42 0.6187 1 18.3 0.45 0.6082 510.8

8 0.16 0.5190 0.36 145.2 35.5 0.3907 2902.3

... ... ...

28 1.5D-7 0.3477 1 2.4D-5 1982.2 0.4936 2.17D+4

29 2.5D-9 0.3477 1 6.1D-6 388.1 0.5126 663.8

... ... ...

100 – – – – 1.3D-6 0.3587 4.8D-5

5. Conclusion

In this paper, we describe the usage of sequential convex programming methods to solve
topology optimization problems arising in structural mechanical engineering. The numerical
results show that SCPIP is an efficient and robust tool for solving these problems, in particular
in case of higher dimensions. At least for solving standard topology optimization problems, a
specific version based on the internal formulation of linear systems of m equations, see (2.7), is
recommended.
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