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Abstract

The mortar element method is a new domain decomposition method(DDM) with nonover-
lapping subdomains. It can handle the situation where the mesh on different subdomains
need not align across interfaces, and the matching of discretizations on adjacent subdo-
mains is only enforced weakly. But until now there has been very little work for nonlinear
PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear
biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal
energy and H'-norm estimates are obtained under a reasonable elliptic regularity assump-
tion.
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1. Introduction

In recent years, the mortar finite element method as a special domain decomposition method-
ology appears very attractive because it can handle the situation where meshes on different
subdomains need not align across interfaces, and the matching of the solutions on adjacent sub-
domains is only enforced weakly. We refer to[3],[5],[6]for the general presentation of the mortar
element method. Recently, there have been many works in constructing efficient iterative solvers
for the discrete system resulting from the mortar element method (cf. In [1],[2],[20],[17],[21],
[22]). So far, many mortar element methods were presented for solving linear elliptic problems.
Very little work has been done for the nonlinear problems. In this direction, a mortar finite ele-
ment for quasilinear elliptic problems was considered in [14], while the mortar element methods
for some variational inequalities were developed in [4], [12].

The mortar element method for biharmonic problems also attracted many authors’ atten-
tions. For instance, the mortar finite element method for some plate elements, like the con-
forming Hsieh-Clough-Tocher, the reduced Hsieh-Clough-Tocher and a nonconforming Morley
element, was studied by Marcinkowski in [15]. But his error estimate requires that the solution
is very smooth (in H*(Q)N HZ()) which is generally not valid, even for some convex polygonal
domains. Recently, Huang, Li and Chen [13] extended this work and obtained an optimal error
estimate with a weaker elliptic regularity assumption (H3(Q2) N HZ(£2)). An efficient multigrid
for such kind of mortar element method was proposed in [23]. But till now there have been
no results for the nonlinear counterparts. In this paper, we shall design an effective mortar
element method for a nonlinear biharmonic equation which is related to the well known Navier-
Stokes equation. Optimal energy and H'-norm estimates are obtained under the weaker elliptic
regularity assumption(H?(Q) N H3(Q)).
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This paper is organized as follows. Section 2 introduces the model problem. In section 3,

we shall present the mortar-type Morley element method, some prelimilary shall be given in
this section. Optimal energy amd H; norm error estimates shall be studied in section 4.

2. Model Problem

We consider the following nonlinear biharmonic equation:

{ R%Agu:Bu—i—f in Q,

u=0,u=0 on 01, (2.1)

where ) is a convex polygonal domain in R?, n = (n1,n2) denotes the unit outward normal
vector along the boundary 052, and

Bu = 0, (0yulu) — 0y (0puliu) = Oyuldyu — Ozuldyu.

Let H™(€2) denote the standard Sobolev space of order r > 0 with respect to domain 2,
equipped with the standard norm || - || .. Define the subspace

H3(Q) = {ve H*Q):v=0,v=0o0ndQ}.

Let | - | be the seminorm over the Sobolev space H" (). It is known that | - |2 is a norm over
the space H3(2) and (cf. [8] for details)

[v]a = | Av|lo, Vv € Hg(Q)

The variational form of (2.1) is to find u € HZ(Q2) such that

Ria(u,v) = (Opulu, Oyv) — (O uliu, 9,v) + (f,v), Vv € HF(Q), (2.2)

€

where f is a function in L?(Q), and

a(u,v):/AuAvdxdy,
Q

(0) = [ Fodady.
Q
By the Sobolev embedding Theorem, we know that
IVv||zs < Colvle, and |jv]jo < Cilv|e, Yv € HE(Q). (2.3)
Here || - ||+ is the norm over the space L*(Q). In this paper C with or without subscript and
supscript denotes a positive constant.

It is known ([7],[10]) that (2.2) has a unique solution u € HZ({2) which satisfies

[Aullo < CrR|[f]lo

1
R. < | —=————. 2.4
\/ CRCiliflo (2:4)

under the assumption
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3. The Mortar-type Morley Nonconforming Element

We now introduce a mortar finite element method for solving (2.2). First, we partition
into nonoverlapping polygonal subdomains such that

N
Q=JO and NQ; =0, i#j.
1=1

They are arranged so that the intersection of Q; N Q; for i # j is either an empty set, an edge
or a vertex, i.e., the partition is geometrically conforming. The interface

N
r=[Jo2\o0

i=1

is broken into a set of disjoint open straight segments v,,(1 < m < M) (that are the edges of
subdomains) called mortars, i.e.

M
m=1

We denote the common open edge to 2; and ; by ¥, By 7,,(;) We emphasize that the edge vy,
associated with subdomain §2; is a mortar, while the other edge, which geometrically occupies
the same place, is denoted by & We refer to it as a nonmortar and the subdomain to which
it belongs is €2;.

Let T be the triangulation of ; with the mesh size h;. The triangulation generally does
not align at the subdomain interface. Denote the global mesh U;T" }L by I';, with the mesh size
h = max; h;. Moreover let h = min; h;.

We first define the following Morley element space locally:

m(5)-

Vii = {vv|g € Py(K), VK €T, v is continuous

s

at each vertex p of K, and J,v is continuous
at midpoint m of each edge of K . Moreover
v(p) = Opv(m) =0, if p, m also belong to IN}.

Let
_ N B -
Vi = HVM = {vnlvnla; = vhi € Vhi}-

i=1

For any interface vm = V(i) = Om(j), 1 < m < N, there are two different and independent
1D triangulations I', (Y (s)) and 'y (0 (j)). Meanwhile, there are two sets of vertices belonging
to vm: the vertices of the elements belonging to I'n (Vi) and to I'n(d,,(;)) are denoted by

’y}}:’ m() and 5,};’ m) respectively. Similarly, there are two sets of midpoints belonging to ~,,,: the

midpoints of the elements belonging to I's,(7y,(;)) and to I's(d,,(;)) are denoted by *y,ll‘ffm(i) and
5%71( i) respectively. Moreover, we need an auxiliary test space Sy, (0,,,(;)) which is a subspace of
the space L2(5m(j)) such that every function in this space is piecewise constant on each element
of the nonmortar triangulation I'y (0, (;)). The dimension of Sy (0 () is equal to the number
of midpoints on d,,(;), i.e., to the number of elements on d,,(;)-
For each nonmortar d,,(;), define an L?-projection operator Qp.s,,,, : L*(Ym) — Sh(dm(j))
by
(Qnbpiyvsw) = (V,w),  Yw € Sp(Gm(s)), (3.1)
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where (-,-) denotes the L? inner product over the space L?(8,,(;))-
We now define the mortar-type Morley finite element space as follows:

Vi = {v]v€ Vi, and Yy = Yin(i) = Om(s),
thénz(j) (8"5U|’Ym(i)) = Qh,5m(j) (8n5v|5m(j))
and U|7m(i) (p) =vls,.;, (), VP € 5,};’m(j)}, (3.2)
where ns means the unit outward normal along the interface 7, with the direction from 4,
0 Ym(i)-
Define
N
Elr= Z Ele |U|?,h£Z ol oo t=0,1,2,
Keri i=1
and
N
lolE o= D2 ol 0022 ol n e, t=0,1,2,
Keri i=1
where | - |; x and || - ||s, xk are the usual semi-norm and norm in the Sobolev space H!(K),
respectively, |- lo=|-lo.n = [I- llo,n and || - [lo.;=[ - lo,n.0: = || - [lo,n0;- From [13], we know that

| - |2, is @ norm over the space Vj,.

Next, we give some prelimilary lemmas which will be used later.

We can construct an operator 7, from Vj, to H} () which holds the following approximate
property (cf. [23] for details).
Lemma 3.1.(cf. [23]) There exists an operator m, from Vi, to H} () such that

_ 1
|U - 7Thv|t,h,9i < Othz t(|v|g7h,ﬂi + Z |/U|%7h,ﬂj)2’ Vo€V, t=0,1,
Q;

where the sum is taken over all ; such that meas(0€2; N 0Q;) # 0, j # .
Based on Lemma 3.1, we can easy to check that

|v = TRl n < CthZ_t|v|2,h, (3.3)

where M is
M = max M;, M, = card{Q;|meas(02; N IQ;) # 0}.

Lemma 3.2. For any v € V},, it holds that
[ollo + [vlLn < Cslv]2,n-

Proof: See the proof in the appendix of this paper.
Condition A. There exists a positive constant C, independent of the mesh size h such that

h < Cuhi.

In the following of this paper, we always assume that the condition A is valid.
Lemma 3.3. For any v € V},, it holds that

IVhollLs < Calvla,n,

1
where || V4ol s = (Zger, VUllLa0k)) %
Proof. See the proof in the appendix of this paper.
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The finite element problem corresponding to (2.2) is to find uy, € V}, such that

1
R—ah(uh, ’Uh) = (6wuhAuh, 3yvh)h - (ayuhﬁuh, (%’Uh)h + (f, ’Uh), Yup € Vy, (3.4)

where

ah(uh, ’Uh) = Z / {AuhAvh + (1 — U)(2awyuh5$yvh
K

Kel'y,
_awwuhayyvh - ayyuhawwvh)}dxdya
(awuhﬁuh, 8yvh)h — (GyuhAuh, &th)h

= Z [(OpunAup, Oyvn)k — (OyunAup, Oxvn) i),

Kel'y,

here 0 < 0 < 0.5 . It is known that (cf. [8])

ap(v,v) > (1 —0)[vl|2n,
ap(v,w) < (14 0)|v|zn|w|zn.

Theorem 3.1. Problem (3.4) has a unique solution if condition

(1-0)?
V2C3CE flo

€

is valid.
Proof. We use the Schauder fixed point theorem ([9]) to prove Theorem 3.1. It is easy to
check that there exists an operator Ay, : Vj, — V}, such that

(Apv,w) = ap(v,w) Yo,w € V.
So for any f € L?(Q2), there exists an fo 5 € V}, such that
fon = A Qnf,
where Q, is the L?-projection from L?(Q) to V}, such that
(Quv,w) = (v,w), Yo € L*(Q), we V.
On the other hand,

|(8ruhAuh, ay'U)h — (ayuhAuh, az’U)h|
> IVunll e | Aunll L2 ) I VOl o)
K

IN

< V2/Vhup| palunlan [ Vavl e
< V20 |unl3 plvlzn, Vo € Vi

So we know that there exists an operator T}y, : V, — V}, such that
ah(Thuh,vh) = (aruhAuh, 8y’Uh)h — (ayuhAuh, 8r’Uh)h.

Furthermore, T}, is compact since V}, is finite-dimensional, and it is easy to check that T} is
continuous.
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Problem (3.4) can be expressed as:

1
R—ah(uh,vh) = ah(Thuh,Uh) + ah(f07h,vh), Yoy € Vj,. (3.5)

Then equation (3.5) can be written as:

1
R—uh = Thup + fO,h~ (3.6)

According to the Schauder fixed point theorem, (3.6) holds if we can show that the solutions
of the following equation with parameter ¢t (0 <t < 1)

1
R—uh = tThun + tfon (3.7)

are bounded in Vj,.
In fact, based on (3.7), we have

1

R_ah(uhauh) = tap(Thun, un) + tan(fo,n, un).

It is easy to check that
ah(Thuh, uh) = (aruhAuh, 8yuh)h — (ayuhAuh, 8ruh)h = 0.

So by Lemma 3.2, we have

1— 1
ol < el w) = 1(f,un)
< | fllollunllo < Cs|| fllolun|2,n-
Finally, we get
R.Cs
< 3.8
lunlzn < 37—l fllo, (3.8)

which ensures that equation (3.4) has at least one solution.
We now prove that the solution of equation (3.4) is unique. Let up, u}, be two solutions of
(3.4), that is,

1

R—ah(uh,vh) = (aruhAuh, ayvh)h — (ayuhAuh, 6zvh)h + (f, 'Uh), Vvh S Vh, (3.9)
1

R—ah(u%,vh) = (Opup, Auy, Oyvp)n — (Oyup Auy, Opvn)n + (f,vn), Yo, € Vi (3.10)

Subtracting (3.10) from (3.9), we have

1
R—ah(uh —up,vp) = (OyupAuy,, 0pvn)n — (Oyunlup, pvn)p

+(8$uhAuh, Gyvh)h — (ngu;LAu;L, Gyvh)h.
It is not difficult to check that

(%u%&u%, 6zvh)h — (8yuhAuh, 6zvh)h
= (Oyun(up, — up), Opvn)n + (Oy(up — up)Duy,, Oxvp)n.
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Similarly,

((%ﬂt%ﬂu;l, ayvh)h — ((%uhAuh, ayvh)h
= (Opun(uy, — up), Oyvn)n + (9x(up, — un)Duy,, Oyvp ).

Finally, we have

1—0 1
R [(un —up)l3, < R—eah(uh — Up,, up — up,)
= (Oyun0u(uj, — un) — Opundy(up, — up)n, Nuy, —up))
V2C?R.C
< V2C3|unlanlul, — unld ), < #IUIIOM — unl3 s

which implies uniqueness of the solution if condition

(1-0)2
V2C3CE fllo

€

is valid.

4. Error Estimates

543

In order to obtain the error estimates of the mortar element solution uy, we first introduce
an interpolant in the mortar element space Vj,. Let Ej : H3(€;) — Vj,; be the local Morley
element interpolation operator. Based on the local operator E}, we define a global interpolation

operator Ej, : H3(Q) N HZ(Q) — Vj, as follows: For any v € H3(Q) N HZ(Q),

Ewv = (Elv, ..., ENvy) € V.

where v; = vlq,.

For any v € H3(Q) N HZ(£)), we now give an approximation function over the mortar space

V}, as follows:
M

II,v = EhU + Z Eh’(;

m=1

(Eh’l}) < Vh,

m(5)

where the operator Zj s : Vh — Vh which is defined by

m(5)

—_ _ (’U|7m(i) - v|5m(j))(p) pe 6flljm(j)’
(uhﬁmu) (v)(p) = { 0 other vertices,
and
- _ (Qlaérn(j) (8"5U|’Ym(i) - 8715U|5m(j) ))(m) m < 5ljzwm(j)7
(anwl,sm(j) (v))(m) = { 0 other midpoints.
Lemma 4.1. For the operator Il;, defined by (4.1), we have
N
_ 1
|v = Ipvlen < 05(2 h? Qt”?f”%,m)za Yo e H*(Q)N Hg(Q)
i=1

(4.1)

(4.2)

Proof. Please refer to [23], [13] for the detailed proof. The basic idea of the proof is to use

the approximation properties of the operators Ep, Qn.s,,;,

and the mortar condition (3.2).
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Similarly, we also have

N
V(o = Mpo)lls < Co(Y_ hillvl3a,)?

=1

N
< GO h2|l3 ). ve H3(Q)NHE(Q), (4.3)
=1

where we have used the fact h; < 1.
Next, we shall prove the following energy estimate.
Theorem 4.1. Let u and uy, be the solutions of the equations (2.2), (3.4), respectively. Then
if
(1-0)?
2v2C3C3 | fllo”

€

we have
N
w—uplan < (Ca Y hI([ullfq, + R0,
i=1
N
1
+C2 > ([ Osulsull§ o, + [Oyudull§o,)?,
i
where C,1 = 2C1(1-0)® and C,o = 205(1—-0)° C; and Cy are two positive

(1—0)2—2v2C3R2C3’
constants which will be defined later.

Proof. Using Green’s formula, we get (cf. [8],[16],[18])

(1—0)2—2V2C2R2C3’

ap(u,vp) = (=V(Auw), Vop)n + En(u,vp),

where

Ep(u,vp) = Z(/ [A0 — (1 — 0)0% u]Oyonds + (1 — o) /8K 02 ud,vpds),

. Jok

here n = (ny,n2), 7 = (—ng2,n1) denote the unit normal and tangent vector on 0K, respectively.
By [13],[16], we know

N
B (u,vn)| < Cr (3~ B2 [Jull30,) % on |- (4.4)
=1

Moreover, it is easy to check that for any vy, € Vi, mpon € HE(Q), we have (cf. [8])

1
R—(—V(Au), Vrpon) = (Opgulu, Oympop) — (Oyulu, Opmpvn) + (f, mhon).
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Then

Rieah(u —up,vp) = Rieah(u,vh) — Rieah(uh’vh)

- Rie(—V(Au), Vo -+ g Ealu )

—[(OzunDup, Oyvn)n — (OyunDup, Oxvn)n + (f,vn)]

- Rie(—V(Au), V(0n — Ton))n + (f mhon — vn) +
+[(Opuliu, Oympvp) — (Oyuldu, Oympup))
—[(OzunDup, Oyvn)n — (OyunDun, Ozvn)s)

- Rie(—V(Au), V(un = T + (Fymtn = vn) + 2 En(u, 0n)(45)
+[(Opulu, Oy(mpvn — vp))n — (Oyuldu, Oy (ThvR — v1))n]
+[(Opulu, Oyvp)n — (Oyuliu, Oyvp)p]

(

—[ aruhAuh, 8yvh)h — (ayuhAuh, 89511}1)}1]
1
= (=V(Au), V(vp = mhop))n + (f, Thvn — vp) + R—Eh(u,vh)

€ €

[(5$uAu, ay(ﬂ'hvh - 'Uh))h - (8yuAu, 800(71'}11)}1 - Uh))h]
[0z (v — up) Au, Oyvp)p + (OzunA(u — up), Oyvn)n
—(0y(u — up)Au, Oyvp)n — (OyunA(u — up), Oz vn )]

5

= Y I

i=1

1
R_eEh(uv Uh)

+ 3=

+

For the terms I, I, I3, we have (cf. [16])

3 N
1

| ZM S = Z(ﬁ||u||3,ﬂi

=1

€ i=1

TR — Unllo.o.)

vh — Thonl1n,0: + Rell fllo,0:

c N

7 1

T+ O mEull 0.} fonla.n
€ =1

V2C, M + Cp &~ .
< 2T TRl g, + R2RZFIR 0.)) % lon 2.
R
€ =1
For 14,
N
1Ll < > (10wubulloglmavn — valing, + [0yudulloo,|mhvn — valine,)
=1
<

N
1
CoM (Y i (|0udul§ o, + 10,ulsull§ o)) % [vnl2,
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Finally, we get

N
1 OQM + 07 1
an(u—un,n) < =m0 Wi (lula, + RZRIF15.00) % vnl2n
¢ ¢ i=1
N

+CoaM (Y B (|0sulsullf o, + [8yulsuls o,))% onla,n

+[0z(u — up)Au, Oyvp)p + (OzunN(u — up), Oyvn)n
—(0y(u — up)Au, Opvpn)n — (OyunAS(u — up), Oxvn)n].

Let e;, = u — up, and vy, = ¢ — up, in the above inequality, we have

1 1 CoM + C'
—ah(eh,eh) R_ah(eh)u_th)_k%

IN

N
1
(O pEluli o, + RIPZIF1.0.0)2 60 — unlzn
i=1

N
+CoM (Y~ h2(|0subsull3 o, + 10,ulsull? 0,))2 |6 — unl2n

+[(0zenlu, 0y (o — un))n + (Ozunlien, Oy(dn — un))n
—(GyehAu, 8w(¢h — uh)) — (GyuhAeh, 8w(¢h — uh)h]

N
1 CoM + Cy 1
< R—ah(eh, u— ¢n) + T(Z hi(llull3q, + RZBZ 1 F115.0,)) % lenl2.n
€ € 'L:1
CoM + C7 &
2 7 1
+T(Z he([lull3 o, + REBZ 11 £115.0.)) 2 [ — énlon
€ i=1

N
1
+C2M (Y B (|10:ubsullf o, + [8yulsullg o,)) % lenlzn

N
+CaM (Y (|0subsullf o, + 10yulsullf o,))% lu = Snlzn

+
+

OgenAu + OgupNey, 6yeh)h
OzenAu + dgupep, Oy(dn, — u))n
OyenAu + OyupDep, Ogen)n
8yehAu + 8yuhAeh, Oy (¢h — u))h

o~ o~~~
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For the last four terms in the above inequality, we have

Then

(Ozenlu + Ozunlen, Oyen)n
+(0zenAu + Ozunlen, Oy(dn — u))n
—(OyenDu + OyupNep, Ozen)n
—(OyenDu + OyupDep, Oz (P — u))n
= (OgunOyen — OyunOzen, Nep)p
+(0zen0y(pn — u) — Oyendu(Pn — u), Au)p
+(0pun0y(dn — u) — Oyun0y(dn — u), Nep)n
V2| Viun| 2l Vienl £slen]2,n
+V2[Vaen| s | Va(dn — w)l|aluls
V2| Viunll L[ Va(on — w)l|Lslenlo,n-

IN

1 1
R_eah(ehaeh) < R—eah(eh,u — on)
N
CoM + Cy 1
+T(Z he(llull3.q, + REBINFIG.0.)) 2 [dn — unl2n

1=1

N 1
+CM (> 2 ([[0sudsulf o, + 10yulull§ o)) 7 |n — unl2n
+V2||Vhun| sl Vien| zalenl2n

+V2||Vaenllzal| Va(dn — w)l| pa]ulz
V2 Vaunll s | Va(n — w)llpalenlz,n-

By (4.2), (4.3) and Lemma 3.3, we have

Vienlls < [[Vi(u—Tpu)|ps + |Va(Ilpw — up)| g
N
< Co(d_R2ul}g,)? + Calllhu — unlon
=1
N 1
< G h2ull30,)? + Cal|pu — ulzn + lenl2n)
=1
N
1
< (Co+ CuCs) (D hillull30,)% + Calenla.n,

=1

547
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Taking ¢, = IIpu in (4.6) and combining above inequality, we get

N
1 1 202 M
Eanener) < pean(ensu— ) + LGSl + BRI ) enle
V20, M + Cy al 1
LS W ulB o, + BRI 1R )~ Tl

N
1
+CoM (Y B (|10subsullf o, + 8yulsullg o,)) % lenlzn

N
+CoM (Y ([cubsullf g, + 18yubsullf o,)) 2 [u = Myulzp

N
+V2C4|unl2,n[(Co + CaCs)(D_ h2|[ull3 ,)% + Calenlz.nllenlzn

=1

N
+V2[(Co + CaC5) (Y W2 [ull3 0,) % + Calenl2nllIVh(u — Iyw)|| galul

1=1
+V2C4 un|2n || Vi (u — Thu)|| palen]2,n-

Then by (3.8) and (4.2), (4.3), we get

N
l-0 1 1 1
D, < R—eameh,eh)gR—g(l+a>c5<;h%nun§,gi>z|eh|2,h
\/—C M+ C 1
— Z (lulli g, + RERZ(£18.0,))* enl2n
V20, M + C
+277c5zh2 (lul g, + R2A21 13 0,)

R

N
+CoM (> 12 (| 0pulull} o, + 10,ulsulld o)) % lenl2n

N
+Co0s M (D" W2 (|0eusuld o, + |0,ulul? o)) Zfﬂnunm 3

%

V2R.C5C al s
+ V2T (4 ) oY Rl ) lenlen
i=1
V2R.C3C3
+ = [ fllolenl3

N
+V2C5(Co + CuCs)[ul2 (Y b lull30,)

=1
N
1
+\/§CGC4(Z R l[ull30,) % [ulzlen|2n

R.Cs

+\/—O4Ce Sl llo ZhZIIUIIm Zlenl2n-
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So we have
1+ V20, M + C7; /2C4CsR.
lenldn < [T Cs+ T T uly
—0 1—0 1—0
V2R2C5C, V20304 Cs R?
V2RO g+ 04C) |l + L22EAC ey gy )
(1—0)? (1—0)?
N 1
O n 3, + RZBNFI3.0,)) % lenlan
=1
Cy MR, 1
- fo |0cutsul} g, +19,ubul o) Henlan

H(ﬁC?M +01)Cs | V20o(Co + CaCs) R e,

Z B (lull3 o, + RZRIF1 0.)

1—0 1—0 ~
CyCs MR, 1 2 1
+1— ) ;h el o)
V2R2C5C3
+(173)4||f|| |€h|2h

By a simple caculation, we get

1 V2R2C3C% 5
(53— W|\f|\0)|€h|2,h

l1+o \/§CQM + Cr \/§C4CGR

< €
S BTGt 1=, [k
V2R2C5C. V2C3C,Cs R?
(17“<06+0405>||f||0+ N A
—0)? (1-0)?
CyCsMR. | (V202 M + Cr)C5 | V2Cs(Co + CaCs) Reul2
+2 + + ]
1—0 1—0 1—0
N
h3 N flIf.e.)
i=1
CoMR, 2C,C MR
HAE = Zh? |Owutsulld o, + 10, utulF 0,))

>

Clzh2 [ull3,q, + RERZIFIG.0.)

i=1

N
+Ca(Y i ([0zudulf o, + 10,ubsullf o)),

i

which implies Theorem 4.1.
In the following, using a Aubin-Nitsche trick, we shall present an optimal H'-norm estimate.
First, we construct the following auxiliary equation

{ AN =GYtg inQ “n

Y =0,=0 on 01,
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where

Gip

ADpudyth) — A(Byudath) + Oy (Au)dyt) — By (A1) Dyt
DN (Dy1h) — DyulN(Dy1)) + 2V/(Dptt) - V(D)) — 2V(Dyu) - V(D).

For the above auxiliary problem, we have the following result.
Lemma 4.2. Equation (4.7) has a unique solution 1. Moreover the solution satisfies the
following a prior estimate

[lls < C"llgll -1,

where || - [[-1= supye 1 () % is the norm of the space H=(Q) = HZ(Q)'.
Proof. Please see the proof in the appendix of this paper.
Theorem 4.2. Let v and uy, be solutions of equations (2.2) and (3.4), respectively. Then

lu —upl1,n < Th(h, hyi),

where Ti (h, h;) will be defined later.
Proof. Let e, = u — up, then m,(Ilpen) = mp(Hpu — up) € HY (). Consider the following
problem

e

RLA%/J = G’QZJ - Aﬂh(nheh) in Q,

By Lemma 4.2, we know that
[z < C'|| = Amp(Hpen)|| -1 < C'|ma(Ilnen)ls. (4.8)

On the other hand, by Green’s formula, we obtain

M)l = (A% m(Men) = (G m(en)
= 2 (V(A9), Vi Men) — (G m(Tren)
= RLE(V(Aw), V(IInen — 7 (pep))
—(G, mp(pen) — en)
SENCOVIR LI TN i)

i=1

For the term 14,

1
L] < R—||¢||3||V(Hh6)—Wh(Hheh)Ho
< ZlvlaMenky
C N
2 1
< S G+ C*l)h(z R (lull3.q, + R21FlIG.0.))2

R
€ i=1

N
+Cah(Y B3 ([0sulsulf g, + 19, ulsullf o)) 2]1¥ s
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For 11,
L] < [|GYlollmn(Ilnen) — enllo
= [|A0:udy) — A(Byudpt)) + 8y (Au)0ptp — 0z (Auw)dytplof|mn (MTnen) — enllo
< 4V2(Jlullsl[¢ll,00 + lullt,ooll®l3)(llmn (Maen) = Mrenllo + [lu = Miullo)
N
< 8V2CSCoMA*((Cs + Cua + )Y B (llul3 o, + REZ 117 0,)) 2
1=1

N
+Cx2 (Y (10sudsullf o, + 19y udsull§ o)) 2 ullsllv s,

where we have used the following inequality
[vll1,00 < Csllulls, Vo€ H*(Q).

For the term 13, we have

1 1
II; = R—eah(w,ﬂheh) - R—eEh(¢,Hh€h)
1 1
= R—eahw, Mpu —u) + R—eahw — e, en)
1 1
+R—eah(Hh1/)7 en) — R—eEhW),Hheh)
5

>

> i
i=1

For Jy (cf. [13], [16]),

] = —Rie(V(M),V(Hhu—u)m+RieEh(w,Hhu—u)
< LSttt
%”Zﬁwm%-zmwm%
=1
< GW2ren mem gl

By the interpolate estimate and Theorem 4.1, we know

1
|Jo| <

+ 0o
Csh|€h|27h||¢||3'

951



552 7.C. SHI AND X.J. XU

For the term J3, using a similar argument as in (4.5), we have

Js = (=), VI — ) (0~ i) + B T — )
+(Ozulu, 0y (Y — Mpthp))n — (Oyulu, Op (1 — Hp1))p]
+[8zehAu, 8th1/))h + (axuhAeh, 8th1/))h

—(0yenDu, 0, 11p0), — (Oyunen, 0:1151)) 5]
5
= Z Hia
i=1

here we have used the fact

Eh(u’a ¢) = 0.

It is easy to check that

4 \/— 07 N .
> Hil < SN )Csh(Y_ hE (lullf o, + RERZISIG 0) 2 1413
i=1 =1

N
+Csh (Y b (|8zudsullf g, + 10,ubdullf 0,))% 1413

Then
V2 C L
N e . (3 W2l 0, + 2110 )
€ i=1
N 1
+C5h(Y_ hi(|0zutsul§ o, + [Oyutsull§ o)) (1913
+[0zenAu, OyIlp ) + (Ozunlen, OyIln1),
—(8yehAu, 6thw)h - (8yuhAeh, 6thw)h].
For Jy,

h
J, < C7

So, for the term 13, we get
2(V2+C al 1
il < G2 (3 Rl 0, + RS Z 0 1l
¢ i=1

N
+csh<§j 2 (|0zulsu))3 g, + |8yutsull? o)) % 6]

1—|—U Cy
Cshlen|2,nll?]ls + —h|Hh6h|2 rllYls

[3xehAU, oI Y)n + (8ruhAeh; Oy p)n
—(OyenDu, 0. 11,0), — (Oyunlen, 0, 11x1) 4]
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For the term Il4, using Green’s formula, we get

I, = (A(0zuly) — A(Oyudzh) + Oy(Au)0z9 — 0 (Au)0ytb, en)n
4

= (A, 0x(9yhen))n — (Du, 0y (Dutben))n + (Opudyth, Den)n — (Oyudath, Nep)n + Y E;
i=1
4
= (A, 0pendyt) — Oyendath)n + (Den, Dpudytp — Dyudet)n + Y B,

i=1

where

)aeh

Ey Z / (O udyt) + Oyudyt)

E,

—Z a (Oaudy + Oyudytb)ends
oK

Es

Z Audzvepnads

0K

Z/ Audypepnids.
~ Jok

E,

So

2(vV2+ Cr)

I +1L < (=7

N
+1)Csh (Y h2([[ull3 o, + B2 FIIR o)) % [4]ls

=1
N 1
+Csh(Y_ hE ([0zulsullg g, + 10,ubsullf o)) 113

140 C
Cshlenla,nl[¢lls + 2 hinenl2n]¢]s

+(=0yen0z(Ipy) — h)p + Opendy(lpyp — 1), Au)p

4
+(Len, Opundy TInt) — Opudy ) + (Aen, Dyudath — dyunduXln))n + > E;

i=1

By[13],[23], we know that
4
> Bl < Cohllullslen|a.nl]s-
i=1
For the term K35, we have

| K| V203 |ull3|t — TThtd|o,nlenla.n

V2CiCshlena,n|ulls]|v]s-

[VARVAN
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For K¢, we can derive

Kol = [(Den, Oyund,Tnts — Oyudyih)al
= |(Qep, Opun0ylpy) — O udyptp + 0, udyIlpy — Ozudyy)s|
= |(Aen, Ozendyllp)p + (Aep, Opudy (v — Upthn))nl
V2CH en 3 pTnt|o.n + V207 ez n|ull2|t — Tnt)|2,n
V203 (14 Csh)lenl3 ulllls + V2CTCs Mhlul|2len|2,n][¢]|s-

IN

IN

Similarly,
|K7| < V2CF(1+ Csh)lenl3 nll¥lls + V2C3 Cshllullalen]2n ¢ ]ls.
Then
2(v2+ Cr) Y 2 2 2721 £12 1
I3+ 11y < (T +1)Ch (Y B3 (lull3 o, + RZBZIFIIS 0.)) % 1]l
€ i=1
N

+C5h(> ([ 0sudsulf o, + 8y ulull? o,)) %[l
1+o C
7 Cshlen|2,nll¥lls + R—7h|Hheh|2,h||¢||3

+Cohl|ullslen]2,nlllls + V2CiCshlenanlullslle]ls
+2V2CF (1 + Csh)lenl3 19113 + 2v2CFCshlullalen 2 nll 5.

+

Finally, by Theorem 4.1 and a simple manipulation, we obtain

4
1
mn(Mhen) i < Y 1L < Clb(lull3 o, + RIBZNFIIE.0,))2 19113
i=1
N 1
+CLh(Y - hE (10subsulls g, + 10yubiul§ o,))? []3

N
+CL > i (ull3a, + RE1FIG 0

i=1

Vs

Vs

N
+Cy Z hf(||8muAu||3Q + ||5yUAU||3Q)

>

T(h7 hi)”'@bn&
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Z2(Cs 4 Cu1) + 8V2C5Co(Cs + Ciy + 1) Mh?
140 C
+1)Cs + ——C5Ca + R—7(05 +Ch)

where

>

, C
*1 Re
2(v2 + C7)
L
+CoCh ||ul|3 + V2C2C5Con ||ul|s 4+ 2v2C2 C5 Con ||u|2:
+ 8\/§CSCQC*Q||UH3Mh2
w2 + CoClallul|3

CQC*Q
C
05 C*Q + R_Z O

R,
140
+Cs5 + .
+V2C2C5C o |ul|3 + 2V2C2C5Co;
2.

>

/
*2

= 4V2C3(1 4 Csh)(Ca)?;
AV2C2(1 + C5h)(Cla)?.
[mn(pen) |y < C'T(h, hy).

So, by (4.8), we get
Based on the above inequality and Lemma 3.1, we get
Mren — mn(pen)|1n + |7 (Ihen)|1,n
CoMh|penl|a,n + C/T(h, h;).

!

*3
! -~
*4

Mhenlin <
<
lu — pulr,n + [Mhenlin

Finally
u—uplip <
< Ti(h, hs),
where
Ti(hhi) = Ca(Cua +2C5)MA(Y_ W (lullf o, + RZRI1 15 0,)?
N
1
+CoCoaMh(Y B} ([0eudsullf g, + 0yulsul|§ )% + C'T(h, hi).
Appendix
In this appendix, we shall give the proofs of Lemmas 3.2, 3.3 and 4.2.
The proof of Lemma 3.2. For any g € H 1(Q), we consider the following auxiliary
problem
—Aw=g in Q,
w=0 on 01,
It is easy to check that the above equation has a unique solution w € H}(Q) satisfies
Jwlly < Cillgll-1,
/(an — Opw)vds =0, Yo € HH(Q), VT C Q,
r

and
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where I is a broken line in 2, n and n’ are two opposite normal direction of I".
By (2) and Green’s formula, let 7, denote the operator from Vj, to H}(Q) given in the
section 3 of this paper, we have

(mhv,g) = (v, —Aw)
= — Z / Opwmpvds + (Vw, Vi)
K

Kely
= (Vw,Vmpv) = (Vw, Vo), + (Vw, V(mpo — v))n

= Z /aK wopvds — (w, Av)p, + (Vw, V(v — 0))4.

Kel'y,

It follows from [19], [13]that

wo,vds
'S [ wdsvas

Kel'y,

IN

1
Cy(D_ hillwllf q,) % vlo,n
A

Cyhllwlli]vl2,n-

IN

y (3.3) and the fact h < 1, we have

| — (w, Av)p, + (Vw, V(mpv — v))s]
< (V2|wllo + CaMhlwl)[v]2,n
< max{Vv2, CoM}||w|[1]v]2,5-

Combining above inequalities, and using the fact

|7Thv|1 _ sup (ﬂ-hvag),
geH-1(Q) gl -1

we get
|Thol1 < C1(Ch + max{v/2, CoM})|v|a.p.

Note that
|mnvllo < C4lmnv]y < CLCH(CY + max{v/2, CoM})|v|2.p.

Finally, we can derive
lmrvllo + |7Thvl1 + ||lv — mRvllo + v — TRY|1LR

<
< lmwvllo + [7av|s + CaMA?vla p + CoMhlv|a
< Cslv|an,

[0llo + [v]1.n

where Cy3 = (C} + 1)C}(Ch + max{\/2,CoM}) + 2Co M.

The proof of Lemma 3.3. We introduce an auxiliary mortar element space Sy. First, on
each subdomains €Q;, define

S‘M = {vv|g € Pi(K), VK € T}, v is continuous
at midpoint m of each edge of K . Moreover
v(m) =0, if m also belong to 9Q}.
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Let
N
Sn =] .-
=1
Next, define

Sh = {vnlvn € Sh. Qn.siyy Whls,y) = @hibrsy Vnlrmes ) 10T YYm(i) = 6y € T},

where the operator Qps,,,, is defined in (3.1).
Because 0,v, 0;v are continuous at the midpoints of each edge of the element K € I'y, 0,v,
Oyv € Sp,;. On the other hand, by the mortar condition, we have

cos(ns, ) + Qn.s,,; (OrsVnls,, ;) )cos(Ts, T)

COS(TL(;, :E) + th6m(j) (8T5Uh|’7m(i) )005(7—57 :E)

Qh75m(j) (8$vh|5m(j)) = Qh76m(j) (ana vh|5m(j))
= Qh76m(j) (anévh|’7m(i))
= Qh,tsm(j) (azvh|7m(i))’

where ng is deifined in section 3, and 75 denotes the unit tangent vector along ~,,,. So d vy € Sh.
Similarly Oyvi, € Sh.
Based on the above observation, we only need to prove that for any w € S;, we have

JwllLs < CTlw]1p-

Then Lemma 3.3 is valid.
First we introduce the following auxiliary problem

—NA¢E=60 in Q,
£E=0 on 012,

It is known that
€ < Co10]=1, [I€ll2 < C5116]|o-

Using Green’s formula, we get
(97 w) = (_Aé-v U})

S (VEVu)k — Y /8 duguds,

Kel'y Kel'y

By [21], we know

B / On€wds| < Cihl|Ello[vfin < CIC3R(0]o]v]1n-
0K

Kel'y,

So
(0, w) < (C3]10]| -1 + C;C3h[|0]0)|w]1,h-

Taking @ = w? in the above inequality, then
lwlzs < (C3llw?ll-1 + CiC3h]|w?||o) wl n-

Using the inverse inequality, it is easy to check that

ol = ([ wdn)t =l < O3 ful..
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On the other hand, for any & € H} (),
we) = ([ wni(f ¢
Q Q

lwllZallgllzs < CgllwlLaléls,

where we have used the following Sobolev inequality

€]l s < C5lla-

Then
[v°]l-1 < CgllvllZa.
Finally, by condition (A), we have
_1
Jwlls < (C3CG + CIC3C5A"Th)|[wly,n
< Cﬂwh,hv

where Cf = C5C§ + C{C5CEC,.
The proof of Lemma 4.2. First we consider the following biharmonic equation

RLeAQw:GU—i—g in €, (3)
=00 =0 on Jf).

It is known that the above equation has a unique solution for any v € H3(2). Thus, there
exists a linear operator T : H3(Q2) — H3(Q) N HZ () such that

Y =To. (4)

Equation (3) can be written as

Y =TY. (5)
We now prove that T is a compact operator. In fact, based on the regularity result in [7], we
know that

[Tolls = [[¥lls < Cal|Gv + gll-1 < Co([|Go]| -1 + llgll-1)-
Now

|Gv|| -1 |0z uN(0yv) — OyulN(Ozv) + 2V (Opu) - V(9yv) — 2V (0yu) - V(9,v)|| -1

1020 (By0)[| -1 + [[0yus(0z0) ]| -1
+2[[V(8zu) - V(9yv)[|-1 + 2V (yu) - V(0zv)[| -1

4
=1

We estimate each term separately.

A

>

K =  sup 1Gul(00).8)|
EEHL(Q) €]1
_ sup [(Av, Ozyul + 0,60, u)|
EEHL(Q) 1€l
sup Cillvllz|lullsl€ly + llvll21€]1llull1,00
EEHL (D) 1€l
(CF + Cs)|ulls]|v]|2- (6)

IN

IN
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Similarly,
Ky < (CF + Cs)lulls]|v]]2,

and for i = 3,4,
K; <203 |[ulls]|v]]2.

Finally, we obtain -
[Tw]ls < Co[(6CF + 2Cs)||ullaflvll2 + llgl-1]- (7)

Since H3(Q2) embeds into H?(Q2) compactly, the operator T is compact. In the following, we
only need to prove that the solution of the following equation is bounded in H3 () :

Y=tTy, 0<t<l,

that is, .
R—A% =t(GY + g). (8)

Using Green’s formula, we get

t(0pudytp — Oyudytp, Atp) + t(g,v)

< VUl pa@) IVl s 1A% ][0 + gl -1l ]
< CFC1R| flloll Av|I§ + Callgll-1ll A% |0,

1
1ol

where C3 satisfies the following Sobolev inequality

[l < Cs|| Ao, 1 € HF(RQ).

Since 1 — CSClREHfHO >0, B
[1A¢]lo < Callgll -1, 9)

where Cy = 1_03%’1%. By the Schauder fixed point theorem, we know that (3) has a unique

solution.
Finally, we prove that the prior estimate is true.

A

[lls < CollOaulr(@y) — 0yul(0x¢) +2V(0ru) - V(9y1))
—2V(9yu) - V(9:4)|[-1) + Callgll -1
Co([|0:u 0y )| -1 + 10y uls (8:4)) || -1
+2[[V(0su) - V(9y )|l -1 + 2V (9yu) - V(0:)[|-1) + Callg]

IN

4
= O ZKi + Callg|| -1

i=1
Using the same argument as in (6), we can derive
K; < (CF + Cs)llulls| &9 llo, i=1,2, (10)

and
Ki <2C3|ullsl|Avllo, i =3,4. (11)
Then
Ca(6CF 4 2Cs) [[ulls]| Allo + Callgl -1
Ca(6C3 + 2Cs) [[ulls(nll¥lls + 0~ vh) + Callgll-1-

(I

IAIA
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So if n is sufficiently small, we get
1215 < C'llgll-1,

1 C2(6C2+2Cs)n" ' C3Callulls+Ca
where C' = 1-1C2(6C2+2Cs)|lulls
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