
Journal of Computational Mathematics, Vol.23, No.6, 2005, 619–634.

A FEASIBLE DIRECTION ALGORITHM WITHOUT LINE

SEARCH FOR SOLVING MAX-BISECTION PROBLEMS ∗1)

Feng-min Xu Cheng-xian Xu Hong-gang Xue
(Department of Mathematics of Faculty of Science, Xi’an Jiaotong University,

Xi’an, 710049, China)

Abstract

This paper concerns the solution of the NP-hard max-bisection problems. NCP func-
tions are employed to convert max-bisection problems into continuous nonlinear program-
ming problems. Solving the resulting continuous nonlinear programming problem generates
a solution that gives an upper bound on the optimal value of the max-bisection problem.
From the solution, the greedy strategy is used to generate a satisfactory approximate so-
lution of the max-bisection problem. A feasible direction method without line searches is
proposed to solve the resulting continuous nonlinear programming, and the convergence
of the algorithm to KKT point of the resulting problem is proved. Numerical experiments
and comparisons on well-known test problems, and on randomly generated test problems
show that the proposed method is robust, and very efficient.

Mathematics subject classification: 90C27
Key words: Max-Bisection problem, Feasible direction algorithm, NCP function, Conver-
gence.

1. Introduction

This paper concerns the solution of the max-bisection problem for a given undirected graph
G = (V, E) with V = {1, 2, · · · , n} the node set, E the edge set, and n is even. Let W =
(wij)n×n be the symmetric weight matrix with wij > 0 if (i, j) ∈ E and wij = 0 if (i, j) 6∈ E. The
max-bisection problem is to partition the node set V into two subsets S and V \S having equal
cardinality such that the sum

∑

i∈S, j∈V \S wij is maximized. The problem can be formulated
by assigning each node a binary variable xj

(MB) :











MB(S) = Max 1
4

∑

i,j

wij(1 − xixj)

s.t. eT x = 0,
x2

j = 1, j = 1, · · · , n,

where e ∈ Rn is the column vector of all ones. The constraint x2
j = 1 implies that xj takes

either 1 or −1, so that we will have either S = {j|xj = 1} or S = {j|xj = −1}. The constraint
eT x = 0 ensures |S| = |V \ S|.

The max-bisection problem is NP-hard [1], and has wide applications in real world. Ap-
proximation algorithms are available, and polynomial time approximation schemes exist for
the problem over dense graphs [3] and over planar graphs [4]. Frieze and Jerrum[6] extended
Goemans-Willamson approach [5] to max-bisection problems, giving a randomized 0.651 ap-
proximation algorithm for the maximum weight bisection problem. Ye [7] improved the per-
formance ratio of the algorithm to 0.6993 by combining the Frieze-Jerrum approach with some

∗ Received September 21, 2004; Final revised May 6, 2005
1) This work is supported by National Key Laboratory of Mechanical Systems and National Natural Key

Product Foundations of China 10231060.

620 F.M. XU, C.X. XU AND H.G. XUE

rotation argument that is applied to the optimal solution of the semi-definite relaxation of
the problem. Halperin and Zwith [8] further improved the approximation ratio to 0.7016 by
strengthening to SDP relaxation with the triangle inequalities. All these algorithms are based
on the semi-definite relaxation of problem MB

(SDP) :















SDP (S) = Max L · X,
s.t. Diag(X) = e,

eeT · X = 0,
X � 0,

here L = 1
4 (Diag(We)−W), X ∈ Rn×n is a symmetric matrix, L ·X = trace(LX) is the matrix

inner product, and X � 0 means X positive semi-definite. It is clear that (SDP) is a relaxation
of (MB), and since X = xxT is feasible for (SDP) for any feasible solution x of (MB), we have
SDP (S) ≥ MB(S).

In this paper, we will propose a continuous model for the solution of max-bisection prob-
lems, and a feasible direction algorithm without line search to solve the resulting continuous
model. Unlike the available relaxation methods for max-bisection problems, NCP functions
are employed to convert the max-bisection problem to a continuous nonlinear programming,
and then the resulting nonlinear programming problem is solved using the feasible direction
method without line search. The convergence property of the proposed algorithm is studied,
and numerical experiments and comparisons on some well-known test problems and on some
randomly generated problems are made to show the efficiency of the proposed algorithm on
both the CPU times and solutions.

The rest of paper is organized as follows. In section 2 we convert the max-bisection into a
continuous nonlinear programming problem by using NCP functions. The relationship between
the solutions of the max-bisection problem and the resulting nonlinear programming problem
is analyzed. The feasible direction method without line searches are presented in section 3.
The convergence of the algorithm to KKT point of the resulting nonlinear programming is
proved. Numerical results and comparisons are reported in section 4, and it is observed that
the algorithm is effective and efficient on both the CPU times and the solutions. Section 5 gives
the conclusions.

2. The Continuous Model of Max-Bisection Problem

In this section we formulate the max-bisection problem into a continuous nonlinear pro-
gramming by using NCP functions, and analyze the relationship between the solutions of the
max-bisection and the resulting continuous nonlinear programming.

The max-bisection problem can be rearranged as

(MB) :







MB(S) = Max xT LX
s.t. eT x = 0,
x2

j = 1, j = 1, · · · , n,

where L = 1
4 (Diag(We) − W). If wij ≥ 0 for all i, j, then L is a Laplace matrix, and hence,

positive semi-definite (L � 0) [9]. Without loss of generality, we will assume, in the rest of the
paper, that L is positive definite and Lii > 0, i = 1, · · · , n. because of no any effects on optimal
solutions.

Adding constraints −1 ≤ xj ≤ 1, j = 1, · · · , n to problem (MB) gives no effects on its

A Feasible Direction Algorithm Without Line Search for Solving Max-Bisection Problems 621

solutions. The constraints x2
j = 1 and −1 ≤ xj ≤ 1, j = 1, · · · , n can be expressed as







(1 + xj)(1 − xj) = 0,
(1 + xj) ≥ 0, 1 ≤ j ≤ n,
(1 − xj) ≥ 0,

(2.1)

The complementary conditions (2.1) can be replaced by an equality constraint using NCP
functions to get a continuous nonlinear optimization problem with feasible points restricted in
[−1, 1]n. Two commonly used NCP functions are (see [10])

ΦF (a, b) =
√

a2 + b2 − a − b = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0,

ΦM (a, b) = Min{a, b} = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.

With these two NCP functions, then problem (MB) can equivalently be described by the
following two nonlinear programming problems

(NP1) :







V ∗ = Max xT Lx
s.t. φF (1 − xj , 1 + xj) = 0, j = 1, · · · , n,

eT x = 0,

or

(NP2) :







Max xT Lx
s.t. φM (1 − xj , 1 + xj) = 0, j = 1, · · · , n,

eT x = 0,

Since these two nonlinear programming are equivalent to problem (MB), the solution of the
max-bisection problem can be obtained by finding the global solution of one of these two
problems (if solvable). Since the problem is to maximize a convex function over a compact
feasible region, the optimal solution exists, but may not be unique.

The rest of the paper focus on the solution of problem (NP1)(We will discuss the solution
of problem (NP2) in another paper, since the properties of function ΦM (a, b) is quite different
from the properties of function ΦF (a, b)). At first, let us consider the following nonlinear
programming

(NP3) :







V ∗∗ = Max xT Lx
s.t. φF (1 − xj , 1 + xj) ≤ 0, j = 1, · · · , n,

eT x = 0,

Let
F1 = {x | eT x = 0, φF (1 − xj , 1 + xj) = 0, j = 1, · · · , n.}
F3 = {x | eT x = 0, φF (1 − xj , 1 + xj) ≤ 0, j = 1, · · · , n.}

be feasible regions of problem (NP1) and (NP3), respectively. The following theorem gives
the relationship between the solutions of problems (NP1) and (NP3).
Theorem 2.1. Let x be an optimal solution of (NP3), then x is an optimal solution of problem

(NP1).
Proof. At first, we prove that the optimal solution of (NP3) is a feasible point of problem

(NP1). Suppose x is the optimal solution of (NP3), but not feasible to problem (NP1). Since
eT x = 0, without loss of generality, it is assumed that there exists indices s, t such that

xs + xt = 0, |xs| < 1, |xt| < 1.

622 F.M. XU, C.X. XU AND H.G. XUE

Define

yi =

{

xi i 6= s, t,
sign(xi) i = s, t,

from the definition of y, y ∈ F3 holds, and we have

yT Ly − xT Lx = 2(
n
∑

j=1

ysLsjyj +
n
∑

j=1

ytLtjyj

−
n
∑

j=1

xsLsjxj −
n
∑

j=1

xtLtjxj)

−y2
sLss − y2

t Ltt + x2
sLss + x2

t Ltt − 2ysLstyt + 2xsLstxt.

(2.2)

Since x is the optimal solution of (NP3), from the KKT condition to the optimal solution of

problem (NP3) and |xs| < 1, |xt| < 1 we obtain
n
∑

j=1

Ltjxj = 0 and
n
∑

j=1

Lsjxj = 0. Using these

two equalities and the definition of vector y, we can have

2(
n
∑

j=1

ysLsjyj +
n
∑

j=1

ytLtjyj −
n
∑

j=1

xsLsjxj −
n
∑

j=1

xtLtjxj)

= 2(
n
∑

j=1

ysLsjxj +
n
∑

j=1

ytLtjxj) + ysLss(ys − xs)

+ ysLst(yt − xt) + ytLtt(yt − xt) + ytLst(ys − xs)
= 2(ysLss(ys − xs) + ysLst(yt − xt)

+ ytLtt(yt − xt) + ytLst(ys − xs)),

(2.3)

Combining inequalities (2.2) and (2.3) generates

yT Ly − xT Lx = 2(ysLss(ys − xs) + ytLtt(yt − xt))
−y2

sLss − y2
t Ltt + x2

sLss + x2
t Ltt

+2(ysLst(yt − xt) + ytLst(ys − xs))
−2ysLstyt + 2xsLstxt.

(2.4)

Rearranging the first part on the right of (2.4) gives

2(ysLss(ys − xs) + ytLtt(yt − xt)) − y2
sLss − y2

t Ltt + x2
sLss + x2

t Ltt

= y2
sLss − 2ysLssxs + x2

sLss + y2
t Ltt − 2ytLttxt + x2

t Ltt

= (ys − xs)
2Lss + (yt − xt)

2Ltt > 0,
(2.5)

since Lii > 0 for all i = 1, 2, · · · , n. For the remaining part on the right of (2.4) we have

2(ysLst(yt − xt) + ytLst(ys − xs)) − 2ysLstyt + 2xsLstxt

= 2(ys(yt − xt))Lst + 2(xs(xt − yt))Lst > 0,
(2.6)

since Lij ≤ 0 when i 6= j.

Inequalities (2.5) and (2.6) give the result yT Ly > xT Lx which contradicts the fact that x
is the optimal solution of (NP3). The contradiction proves that x is feasible to problem (NP1)
.

The optimality of x to problem (NP1) comes from the fact that x ∈ F1, and F1 ⊂ F3. This
completes the proof.]

The algorithm for the solution of max-bisection problems, presented in the next section,

A Feasible Direction Algorithm Without Line Search for Solving Max-Bisection Problems 623

solves the following problem

(NP4) :















Max xT Lx
s.t. φF (1 − xj , 1 + xj) ≤ 0, j = 1, · · · , n,

eT x = 0,
‖x‖2 = 1,

and generates a solution of problem (NP1) from the solution of problem (NP4). In order to
understand the relationship between the solutions of problems (NP3) and (NP4), we consider
the following auxiliary problem

(NP5) :















Max xT Lx
s.t. φF (

√
n − xj ,

√
n + xj) ≤ 0, j = 1, · · · , n,

eT x = 0,
‖x‖2 ≤ √

n,

Define the feasible sets for both the problems

F4 = {x | eT x = 0, ‖x‖2 = 1, φF (1 − xj , 1 + xj) ≤ 0, j = 1, · · · , n.}

F5 = {x | eT x = 0, ‖x‖2 ≤
√

n, φF (
√

n − xj ,
√

n + xj) ≤ 0, j = 1, · · · , n.}.
The next theorem gives the relationship between the optimal solutions of problems (NP4) and
(NP5).
Theorem 2.2. Suppose x∗ is the optimal solution of (NP4), then

√
nx∗ is the optimal solution

of (NP5).
Proof. For any x ∈ F5, we have x√

n
∈ F4. Then

f(
√

nx∗) = nf(x∗) ≥ nf(
x√
n

) = f(x).

That is,
√

nx∗ is the optimal solution of (NP5).
Theorem 2.2 implies that the optimal solution of (NP5) can directly be achieved from the

optimal solution of (NP4). Let x∗ be the optimal solution of problem (NP5). Since F3 ⊂ F5,
f(x∗) ≥ f(x) holds for any x ∈ F3, that is, x∗T Lx∗ provides an upper bound on the optimal
value of (NP3). An approximate solution of (NP3), and hence of the max-bisection problem is
then generated from the solution of problem (NP4) using the following way. Let y = sign(x∗),
and define S = {i|yi = 1}. If |S| = n

2 , then y is the desired approximate solution of problem
(NP3). If |S| 6= n

2 , a greedy algorithm is used to update y such that |S| = n
2 (see Frieze and

Jerrum [6]). Even though this feasible solution can not be guaranteed to be optimal to problem
(NP3), hence the max-bisection problem, it is feasible to problem (NP3) with satisfactory
objective function value. Numerical results given in section 4 show the conclusion.

Finally, it needs to point out that the two NCP functions are not differentiable at points
a = 0, b = 0 and a = b. However, these points are not contained in the feasible region F4 of
problem (NP4). When the feasible direction method presented in next section is used to get
a solution of problem (NP4), all the iterates are feasible and the gradients for all functions
including objective and constraints can be evaluated at all iterates. In fact, only the gradients
of the objective function are evaluated at all iterates in the proposed algorithm.

3. The Feasible Direction Algorithm Without Linear Search

In this section, the feasible direction algorithm without line search is presented for the solu-
tion of problem (NP4). The algorithm employs no line search and no calculation on matrices,

624 F.M. XU, C.X. XU AND H.G. XUE

and thus greatly reduces the calculation expenses. It is shown that the algorithm is convergent
to KKT points of problem (NP4). Before we derive the algorithm, some basic properties of
problem (NP4) are discussed based on following lemma.

Lemma 3.1 The NCP function φF (1− xj , 1 + xj) for j = 1, 2, · · · , n is strictly convex for all

xj ∈ R.

Proof. Since

φF (1 − xj , 1 + xj) =
√

2x2
j + 2 − 2,

the first-order derivative and the second-order derivative of the function φF (1−xj , 1+xj), j =
1, 2, · · · , n are given by

φ
′

F (1 − xj , 1 + xj) =
2xj

√

2x2
j + 2

,

φ
′′

F (1 − xj , 1 + xj) =
4

(2x2
j + 2)

√

2x2
j + 2

> 0.

Since the second-order derivative of φF (1−xj, 1+xj), (j = 1, 2, · · · , n) is positive for all xj ∈ R,
φF (1 − xj , 1 + xj) is strictly convex for j = 1, 2, · · · , n.

The conclusion of the lemma implies that the feasible region F4 of problem (NP4) is convex.

Let xk be a feasible point of problem (NP4), the algorithm simply generates the next
iterative point xk+1 using the iteration

xk+1 =
gk

‖gk‖2
, (3.1)

where gk = 2Lxk is the gradient of objective function f(x) at point xk. The next lemma shows
that xk+1 ∈ F4.

Lemma 3.2 Let xk be a feasible point of problem (NP4), then xk+1 ∈ F4.

Proof. The definition of xk+1 gives ‖xk+1‖ ≤ 1, and hence

φF (1 − xk+1
j , 1 + xk+1

j) ≤ 0, j = 1, · · · , n

are satisfied. On the other hand, using the fact Le = 0 we have

eT xk+1 =
eT gk

‖gk‖2
=

2eT Lxk

‖gk‖2
=

2xkLe

‖gk‖2
= 0.

Thus, xk+1 ∈ F4 holds.

The following lemma provides the first-order necessary condition for optimal solutions of
problem (NP4).

Lemma 3.3. Suppose x∗ is an optimal solution of problem (NP4), then x∗ is an eigenvector of

the matrix L that satisfies the constraints of problem (NP4), that is, there exists an eigenvalue

λ2, such Lx∗ = λ2x
∗.

Proof. Suppose x∗ is an optimal solution of problem (NP4). It follows from the last two
constraints in problem (NP4) that the first constraint of the problem is inactive at the solution
x∗ for all j = 1, 2, · · · , n. Then applying the KKT condition to problem (NP4), there exist
Lagrange multipliers λ1, λ2 such that

g∗ − λ1e − 2λ2x
∗ = 0

A Feasible Direction Algorithm Without Line Search for Solving Max-Bisection Problems 625

holds at x∗. Pre-multiplying the equation using vector e, and using the fact g∗ = 2Lx∗,
Le = 0, eT x∗ = 0, we obtain λ1 = 0. Then

g∗ − 2λ2x
∗ = 0 ⇔ Lx∗ − λ2x

∗ = 0.

This indicates x∗ is an eigenvector of the matrix L. The proof is completed.
Lemma 3.3 shows that optimal solutions of problem (NP4) can be found from the eigenvec-

tors of the matrix L that satisfy the constraints of problem (NP4). The algorithm proposed in
this section converges to an eigenvector of the matrix L satisfying constraints in (NP4).

Define dk = xk+1 − xk as a search direction, the next two lemmas show that if dk = 0, then
xk is a KKT point of problem (NP4), and if dk 6= 0 , then dk is a feasible ascent direction of
problem (NP4) at point xk.
Lemma 3.4. If dk = 0, then xk is an eigenvector of the matrix L that satisfies the constraints

of problem (NP4), that is, xk is a KKT point of problem (NP4).
Proof. From the definition of dk, we have

dk =
gk

‖gk‖2
− xk = 0,

that is

Lxk − ‖gk‖2

2
xk = 0.

This shows that xk is an eigenvector of the matrix L satisfying constraints of problem (NP4).
This completes the proof of the lemma.
Lemma 3.5. Suppose dk 6= 0, then dk is a feasible ascent direction of problem (NP4) at xk.

Proof. The feasibility of the direction dk comes from the feasibility of points xk+1, xk and
the convexity of the feasible region F4.

Since ‖xk‖2 = 1, we have

(∇f(xk))T dk = (gk)T (xk+1 − xk)
= ‖gk‖2 − (gk)T xk ≥ ‖gk‖2(1 − ‖xk‖2) ≥ 0,

If (∇f(xk))T dk > 0, then dk is an ascent direction. If (∇f(xk))T dk = 0, then

f(xk + αdk) = f(xk) + α(∇f(xk))T dk + α2(dk)T Ldk,

and the positive definiteness of the matrix L also shows that dk is ascent. The proof is completed.
Lemma 3.5 implies that α = 1 is the best choice for the step length in the direction dk. It

is the reason why we adopt the above iterative format without line searches. No line search in
iterations greatly reduces the computational cost, and increase the speed of the algorithm to
achieve the solution.

The following theorem gives the convergence of the algorithm to KKT points of problem
(NP4).
Theorem 3.6. Suppose dk → 0. Then any accumulation point x∗ of the sequence {xk} is

an eigenvector of the matrix L that satisfies the constraints of problem (NP4), that is, x∗ is a

KKT point of (NP4).
Proof. Let x∗ be an accumulation point of the sequence {xk}. Without loss of generality,

assume that xk → x∗. It follows from the definition of dk, and the continuity of g(x), we have

lim
k→∞

dk = lim
k→∞

(
gk

‖gk‖2
− xk) =

g∗

‖g∗‖2
− x∗ = 0.

626 F.M. XU, C.X. XU AND H.G. XUE

That is,

Lx∗ − ‖g∗‖2

2
x∗ = 0.

This shows that x∗ is an eigenvector of the matrix L satisfying constraints of (NP4), and the
proof is completed.

The rest of this section is devoted to the proof of the convergence of the infinite sequence
{dk}, generated by the proposed algorithm, to zero vector.
Lemma 3.7[11]. Suppose A � 0 and B � 0, then

λmin(A)λmax(B) ≤ A · B ≤ nλmax(A)λmax(B)

.
Lemma 3.8. Let dk 6= 0, then the following inequalities hold

λmin(L)‖dk‖2
2 ≤ f(xk+1) − f(xk) ≤ ‖gk‖2‖dk‖2 + λmax(L)‖dk‖2

2.

Proof. Since

f(xk+1) − f(xk) = (gk)T dk + (dk)T Ldk. (3.2)

(gk)T dk ≤ ‖gk‖2‖dk‖2, (3.3)

From Lemma 3.7 and inequality (3.3), we have

f(xk+1) − f(xk) ≤ ‖gk‖2‖dk‖2 + λmax(L)‖dk‖2
2. (3.4)

Furthermore,

(gk)T dk ≥ 0. (3.5)

and Lemma 3.7 gives

f(xk+1) − f(xk) ≥ λmin(L)‖dk‖2
2. (3.6)

Inequalities (3.4) and (3.6) give the conclusion of the Lemma.
Theorem 3.9. If dk 6= 0 for any k > 0, then ‖dk‖2 → 0.

Proof. From Lemma 3.8, for any m > 0 we have

m
∑

i=0

‖dk‖2
2 ≤ 1

λmin(L)

m
∑

i=0

(f(xk+1) − f(xk))

= 1
λmin(L) [f(xm) − f(x0)]

≤ 1
λmin(L) (x

∗)T Lx∗

≤ λmax(L)
λmin(L)‖x∗‖2

2

≤ λmax(L)
λmin(L) .

That is,
+∞
∑

i=0

‖dk‖2
2 is convergent, and hence ‖dk‖2 → 0 holds.

When the algorithm is implemented to solve problem (NP4), the condition ‖dk‖ ≤ ε or
f(xk+1) − f(xk) ≤ ε is used to terminate the iteration.

4. Numerical Experiments

In this section we report numerical results and comparisons to show effectiveness and ef-
ficiency of the proposed feasible direction method without line searches. The algorithm is

A Feasible Direction Algorithm Without Line Search for Solving Max-Bisection Problems 627

programmed in Matlab 6.0. All the constraints φF (1 − xj , 1 + xj) ≤ 0, j = 1, · · · , n in prob-
lem (NP4) are inactive at all iterates, but they are necessary to restrict the feasible region.
The value ε = 0.001 is used in the termination conditions ‖dk‖ ≤ ε or f(xk+1) − f(xk) ≤ ε.
Observations on experiments found that if ε is too small, more iterations are required without
any improvement on the final solution and it will cost some computational time. If ε is too
large, iterations will be terminated when far away from a satisfactory solution, and further
improvement on the final solution can be obtained by increasing the value of ε. It is found that
the value ε = 0.001 is worth recommending.

Let x be the optimal solution of (NP4), achieved by the proposed algorithm. Define y =
sign(x) and S = {i|yi = 1}. If |S| = n

2 , then accept y as an approximate solution of problem
(NP3). If |S| 6= n

2 , a greedy strategy is used to update y. Assume |S| ≥ n
2 . Let ξ(i) =

∑

j∈V \S wij for each i ∈ S, and rearrange the set S = {i1, i2, · · · , i|S|}, such that ξ(i1) ≥
ξ(i2) ≥ · · · , ξ(i|S|). Then assign S = {i1, i2, · · · , i|n

2
|}, that is, |S| = n

2 . Then set the solution y
as yi = 1, i ∈ S and yi = −1, i 6∈ S.

The numerical experiments and comparisons are made on some test max-bisections prob-
lems available in literatures, and on some randomly generated test problems. The results of the
proposed algorithm are presented and compared with those generated using Y. Ye’s approx-
imation method that also generates an approximate solution to max-bisection problems with
performance ratio 0.699. The software package SDPPack[15] is also employed to solve the SDP
relaxation of max-bisection problems, and offers an upper bound for the the optimal value of
the problem.

The first set of experiments are made on 6 max-bisection problems existing in literatures.
The details of these test problems are given in appendix A. Initial points x0 for these problems
are randomly generated such that constraints eT x0 = 0, and φF (1−x0

j , 1+x0
j) ≤ 0  = 1, · · · , n

are satisfied. Then normalizing x0 = x0/‖x0‖2, gives an initial feasible point ‖x0‖2 = 1.
The first experiments that we made on these test problems check the effects of different

initial points on the algorithm. 10 different initial points are generated for each test problem
to have the experiments. It is observed that effects on the solution procedure given by different
initial points are not obvious, that is, the same solution is obtained by the algorithm from
different initial points, and the difference between CPU times are very small. It seems that the
main reason to have such a small effect on different initial points is that the algorithm employs
no any line searches and no any computations on matrices in determining search directions.
Table 1 gives the results for Problem 5 with 4 different initial points where x0, f∗, Iter and
CPU denote the initial point, the optimal value of the max-bisection, the number of iterations
to reach the solution, and the CPU time.

Table 1: Numerical Results for Problem 5
x0 f∗ Iter CPU

(0.1;0.1;-0.2;-0.2;-0.2;0.4) 7 33 0.2
(0.3;-0.4;0.1;0.6;-0.2;-0.4) 7 41 0.22
(-0.2;-0.2;0.3;0.3;0.1;-0.3) 7 36 0.21
(-0.3;0.3;0.4;0.5;-0.5;-0.4) 7 41 0.22

Table 2 presents the comparison of the results obtained by the algorithm proposed in this
paper, Y. Ye’s approximate algorithm and the SDPPack, where UB means the upper bound
given by (SDP) relaxation in SDPPack, f∗ and CPU mean the function value and CPU time of
the proposed algorithm (Continue) and the 0.699 approximation algorithm. 4 = | |S|−|V \S| |,
calculated at the solution x∗ of problem (NP4), and ρ in column 8 is the ratio of the function

628 F.M. XU, C.X. XU AND H.G. XUE

values of (NP3) at y and of (NP5) at
√

nx∗, that is, ρ = f∗

f(
√

nx∗)
with f∗ = f(y). It can

be observed from the table that both the algorithms generate the same solutions for these 6
test problems, optimal for problems 2-6 and an approximate solution for problem 1, but the
algorithm proposed in this paper uses less CPU times than those used by 0.699 approximation
algorithm. For problems 3-6, we have 4 = 0. This indicates that the algorithm directly
generates the optimal solutions for these problem and the greedy strategy is not used. 4 = 2
for Problem 1 to 4 = 1 for Problem 2 indicates the greedy strategy is used for Problem 1
and Problem 2 to change either two or one node to get the desired bisection.

Table 2: Numerical Results
Problem UB Continue 0.699 4 ρ

f∗ CPU f∗ CPU
Problem1 38.7 37 0.5 37 2.6 2 0.657
Problem2 37.9 37 0.63 37 2.9 1 0.738
Problem3 19 19 2 19 3.6 0 0.957
problem4 51 51 0.6 51 2.2 0 0.862
Problem5 7.36 7 0.2 7 2.1 0 0.802
Problem6 41 38 0.7 38 2.2 0 0.82

The next set of experiments are made to observe the iteration progress of the proposed
algorithm on Problem 2 and Problem 3. This is because the algorithm uses more CPU time
to find the solution of problem 3. It was observed that the algorithm mad 80 iterations to get
the optimal solution x∗ of problem (NP4). The converted solution y is optimal to problem 3,
and hence the original max-section problem. Table 3 presents part of function values f(xk) and
values of ‖dk‖ in iterations. From the table it can be found that the objective function values
are monotonically increased, and ‖dk‖ converges to zero. The detailed information about the
progress of the algorithm on these two problems are given in Figures 1, 2, 3 and 4, respectively.

Table 3: Numerical Results for Problem 3
The ith iteration dk f(xk)

1 0.1732 0.8515
5 0.0241 0.9033
10 0.0189 0.9071
15 0.0205 0.9113
20 0.0241 0.9161
30 0.0335 0.9324
40 0.0367 0.9573
50 0.0284 0.9780
60 0.0181 0.9873
70 0.0109 0.9915
80 0.0069 0.9930

Another set of experiments are made on a group of randomly generated test problems. The
dimension of these test problems is from 10 to 200. Since the memory restrictions in PC, and
CPU time for 0.699 approximation algorithm, we didn’t carry out experiments on problems

A Feasible Direction Algorithm Without Line Search for Solving Max-Bisection Problems 629

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 1 The convergence curve of

‖dk‖ in Problem 3

0 10 20 30 40 50 60 70 80
0.85

0.9

0.95

1

Figure 2 The convergence curve of

f(xk) in Problem 3

with dimension larger than 300. The procedure to generate a random graph is as follows. Let
p ∈ (0, 1) be any given number that is used to control the density of edges in a graph, and n be
given. For each pair (i, j), i 6= j, a random number in (0, 1) was generated. If the number is
less than or equal to p, then there is an edge between nodes i and j, and set wij = 1; Otherwise,
there is no edge between nodes i and j, and wij = 0. All of the test problems and numerical
results are listed in Table 4, where n is the dimension of problems, the notations have the same
meaning as those in Table 3.

630 F.M. XU, C.X. XU AND H.G. XUE

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3 The convergence curve of

‖dk‖ in Problem 2

0 5 10 15 20 25 30 35 40
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Figure 4 The convergence curve of

f(xk) in Problem 2

The test problems in final group are randomly generated using a similar way as the problem
in previous group. The difference is the value of weight wij on an edge. If an edge exists, its
weight is set to a random integer number in [1, 100]. All of the test problems and numerical
results are listed in Table 5.

It can be observed from these two tables that the proposed algorithm provides better solu-
tions with much less CPU times than 0.699 approximation algorithm does. The experiments
and comparisons on either the existing test problems or the randomly generated test problems

A Feasible Direction Algorithm Without Line Search for Solving Max-Bisection Problems 631

Table 4: Numerical Results for p = 0.3 and p = 0.6

Continue 0.699
p n UB f∗ CPU 4 f∗ CPU

0.3 10 2 2 0.01 1 2 0.08
0.6 10 13.5 13 0.01 0 13 0.09
0.3 60 122 115 0.04 2 114 3.59
0.6 60 395 378 0.2 1 374 2.9
0.3 100 331 310 0.21 3 307 15.62
0.6 100 1078 1043 0.8 3 1039 18.8
0.3 200 1237 1145 1.2 2 1048 262
0.6 200 4151 3996 1.5 1 3938 262

Table 5: Numerical Results for p = 0.3 and p = 0.6

Continue 0.699
p n UB f∗ CPU 4 f∗ CPU

0.3 10 505 505 0.08 1 505 0.2
0.6 20 3502 3442 0.06 0 3442 0.28
0.3 60 16988 16370 1.4 3 16242 3.17
0.6 60 30460 29744 1.2 2 29612 6.8
0.3 100 44582 42957 2.1 2 42689 24.966
0.6 100 83992 81910 2.4 1 81779 35.5
0.3 200 17106 16910 3 3 158030 311.8
0.6 200 325349 317592 3.5 2 303764 299

show the effectiveness and efficiency of the proposed algorithm for the solution of max-bisection
problems. Further researches will be made on the algorithm to reveal more theoretical proper-
ties and characters of the algorithm.

5. Conclusion

A feasible direction algorithm without line searches are proposed for the solution of the NP-
hard max-bisection problems. NCP functions are employed to convert max-bisection problems
into continuous nonlinear programming problems. Solving the resulting continuous nonlinear
programming problem generates a solution that gives an upper bound on the optimal value
of the max-bisection problem. From the solution, the greedy strategy is used to generate a
satisfactory approximate solution (generally optimal) of the max-bisection problem. A feasible
direction method without line searches is proposed to solve the resulting continuous nonlinear
programming, and the convergence of the algorithm to KKT point of the resulting problem is
proved. Since no line searches and no computations on matrices are required in the iteration
of the algorithm, the CPU time of the algorithm to reach the termination is less. Numeri-
cal experiments and comparisons on well-known test problems existing in literatures, and on
randomly generated test problems show that the proposed method is robust, and very efficient.

632 F.M. XU, C.X. XU AND H.G. XUE

Appendix A: Test problems in the first group
• Problem 1 A graph from Rendle and Wolkowicz[12].

Table 6: Edge set from Rendle and Wolkowicz[12]

node Connections to

1 7,12,13,14,15,16,17

2 12,17,18,20

3 5,11,13,14,18,19,20

4 6,9

5 7,9,10,12,16,19

6 16,18,20

7 8,9,11,16

8 15,18

9 11,15,19

11 14,17,18,20

12 14

13 18,20

14 16,18,20

16 18

17 18

18 20

• Problem 2 A graph from Cullum et al.[13].

Table 7: Edge set from Cullum et al.[13]

node Connections to

1 4,5,6,7,20

2 4,10,12,15,17

3 4,5,10,13,16,19

4 7,8,11,12

5 10,11,12

6 13,14,18

8 9,16,17

9 11,12,14

10 19,20

11 14,15,19,20

12 15,18,19

13 15,19

15 18

16 17

18 20

• Problem 3 A path containing 20 nodes and 19 edges.
• Problem 4 Two complement graphs of 10 nodes each connected one edge.
• Problem 5 A six-star graph.
• Problem 6 A graph from Barnes and Hoffman[14]

A Feasible Direction Algorithm Without Line Search for Solving Max-Bisection Problems 633

Table 8: A six-star graph
node Connections to

1 2,5,6

2 3,6

3 4,6

4 5,6

5 6

Table 9: Edge set from Barnes and Hoffman[14]
node Connections to

1 2,3,4,7,8,17

2 3,10,14,15,16

3 8,12,16

4 7,9,11,17

5 6,9,11,15,16,20

6 7

7 9,15,16

8 10,12,14,16,18

9 12,20

10 12,14,16,19

11 18,19,20

12 13,15

13 14,16,18,19

14 16,18,19

15 16,17,19

17 18

References

[1] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and nonlinear program-

ming, Mathematics programming, 39 (1987), 117-129 .

[2] J. Hastad, Some optimal inapproachability results. In proceedings of the 29th Annual ACM sym-

posium on the theory of computing, ACM, New York, (1997), 1-10.

[3] S. Arora, D. Karger and M. Karpinski, Polynomial time approximation schemes for dense in-

stance of NP-hard problems. In proceedings of the 27th Annual ACM symposium on the theory

of computing, ACM, New York, (1995), 284-293.

[4] K. Jansen,M. Karpinski and A. Lingas, A polynomial time approximation scheme for Max-

Bisection on planer graphs. Electronic Colloquium on Computational Complexity, Report TR00-

064, 2000.

[5] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming, Journal of ACM, 42 (1995), 1115-1145.

[6] A. Frieze and M. Jerrum, Improved Approximation Algorithms for Max k-cut and Max Bisection,

Proc.4th IPCO Conference(1995), 1-13.

[7] Y. Ye, A 0.699-approximation algorithms for Max-bisection, mathematical programming,

90(2001), 101-111.

[8] E. Halperin and U. Zwick, A unified framework for obtaining improved approximation algorithms

for maximum graph bisection problems, Random Struct Algor, 20 (2002), 382-402.

634 F.M. XU, C.X. XU AND H.G. XUE

[9] S. Poljak and F. Rendle, Solving the Max-cut Problem using Eigenvalues. Discrete Applied Math-

ematics, 62 (1994), 249-278.

[10] A. Fischer, A special Newton-type Optimization Method. Optimization, 24 (1992), 269-284.

[11] H. Liu, X. Wang, S. Liu, Feasible direction algorithm for solving SDP realxation of the quadratic

-1,1 programming, Optimization Methods and Software, 19 (2004), 125-136.

[12] F. Rendle and H. Wolkowicz, A projection technique for partitioning the nodes of a graph, Tech-

nical Report 20, University of Waterloo, 1990.

[13] J. Cullum, W. E. Donath and P. Wolfe, The minimization of certain nondifferentiable sums of

eigenvalues of symmetric matrices, Mathematical Programming Study, 3 (1975), 35-55.

[14] E. R. Barnes and A. J. Hoffman, Partitioning, Spectra and linear programming, Academic Press,

U.S.A, 1984.

[15] F. Alizadeh, J. -P. Haeberly, M. V. Nayakkankuppam, M. L. Overton and S. Schmieta, user s

guide -version 0.9Beta, Technical Report TR1997-737, Courant Institute of Mathematical Science,

NYU, New York, NY, June 1997.

