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Abstract

Multiresolution representations of data are a powerful tool in data compression. For
a proper adaptation to the singularities, it is crucial to develop nonlinear methods which
are not based on tensor product. The hat average framework permets develop adapted
schemes for all types of singularities. In contrast with the wavelet framework these rep-
resentations cannot be considered as a change of basis, and the stability theory requires
different considerations. In this paper, non separable two-dimensional hat average multires-
olution processing algorithms that ensure stability are introduced. Explicit error bounds
are presented.

Mathematics subject classification: 41A05, 41A15.
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1. Introduction

Multiresolution representations are one of the most efficient tools for data compression. The
multi-scale representation of a signal is well adapted to quantization or simple thresholding.

A discrete sequence f is encoded to produce a multi-scale representation of its information
contents, (f°,e',e2,...,e"); this representation is then processed and the end result of this
step is a modified multi-scale representation (fo,él, é2,...,el) which is close to the original
one, i.e. such that (in some norm)

12— fll<eo JleF—é¥<en 1<k<IL,

where the truncation parameters €y, €y, ... ,€r are chosen according to some criteria specified
by the user. After decoding the processed representation, we obtain a discrete set fL which is
expected to be close to the original discrete set f. Thus, some form of stability is needed, i.e.
we must require that

||fL_fL|| 30(60)61)"' 76L)

where o(, ... ,-) satisfies
li e =0.
el%[),uglglgLU(GO’ €1, ,er) =0
The stability analysis for linear prediction processes can be carried out using tools coming
from wavelet theory, subdivision schemes and functional analysis (see [11]), however none of
these techniques is applicable in general when the prediction process is nonlinear.
The discrete multiresolution framework of Harten [11] was developed to use nonlinear re-
construction processes. In signal and image examples [6], [4], [7], [9], we can see the nonlinear
process allows a better adapted treatment of singularities. In these cases, stability can be
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ensured by modifying the encoding algorithm. The idea of a modified-encoding to deal with
nonlinear multiresolution schemes is due to Harten. One dimensional algorithms in several set-
tings can be found in [10], [7]. The goal of a modified-encoding procedure is to keep track of the
accumulation error in processing the values in the multi-scale representation. A synchronization
of the encoding and decoding algorithms is obtained [5].

In this paper, we consider the hat average multiresolution setting [8]. In this framework, we
can develop nonlinear schemes adapted to the presence of different types of discontinuities as
d’s, jumps and corners [9]. The space of such functions is used, for instance, in vortex methods
for the numerical solution of fluid dynamics problems.

In the framework of point values and cell averages we developed the stability for tensor
product in [3]-[1] and in the non separable case in [2]. For a good adaptation to the singularities
we have to consider the non separable approach.

The aim of this paper is to present non separable two-dimensional hat average multiresolu-
tion algorithms that ensure stability in the case of nonlinear prediction processes. We introduce
a modified encoding for any reconstruction type. The multivariate context of tensor product
emerges only as a particular case.

The paper is organized as follows: We recall the basic ingredients of the Harten’s multires-
olution framework in next section, focussing in the hat average setting 2.1. The error-control
algorithms are discussed in 3. Finally, we give stability results in 4.

2. Harten’s Framework

Harten’s framework is based on two fundamental tools: discretization D;, and reconstruction
Ryi- The discretization operator obtains discrete information from a (non-discrete) signal (f €
F) at a particular resolution level k. The reconstruction operator, on the other hand, produces
an approximation to a signal from its discrete values. This reconstruction can be nonlinear,
and then better adapted to the considered problem.

Using these two operators we can connect linear vectors spaces (see figure 1), V¥, that
represent in some way the different resolution levels (k increasing implies more resolution), i.e.,

D,’j_l : VRS vEL D decimation,

Pﬂl s VLS vE L prediction.

We focus on the specific case corresponding to the hat average discretization.
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2.1. Hat average multiresolution analysis

Let us consider the unit interval [0, 1] and the sequence of nested dyadic grids X* = {z¥},
.Tf =ihg, hy = 2_kh0, Jp = QkJO.

The discretization operator is based on integrating scaled translates of the hat function:

l+z —-1<z<0

wx)=¢ 11—z 0<z<1 (1)

0 otherwise

that is:
k k R SR A
(Drf)i = fif =< f,wi >, w; = —w(— —1i). (2)
hy “hi

{ F —Vk )
Dk : 3

e fr=hist

where V* is the space of real sequences of length Jj, — 1 (these averages contain information of
f over the whole interval [0, 1]) and F is the space of piecewise smooth functions in [0, 1] with
a finite number of J-type singularities in (0,1) (because the hat function is continuous).

The hat function satisfies the following dilation equation:

1
w(z) = 5[11)(2:1: —1) + 2w(z) + w(2z + 1)]. (4)
This implies that
- 1 1 1
fit= fofiq + ifzki + ZfzkiJrlv (5)

and that the prediction errors satisfy

1 1
_k _k _k
€2; = _5621'71 - §€2i+1- (6)
In particular, we only need to keep df = élgi_l, fori=1,...,Jp1.

To complete the construction we need to define the prediction operators.
Let f = fp+ >, Mmdé(z —ar), 0 < a; <1, be represented as the sum of a piecewise smooth
function in [0, 1], f,, with a finite number of -jumps in (0,1). Define the “second primitive” as

z ry
H(z) = / / fol2)dzdy +> " hi(x —ar)y — gz, (7)

o Jo ;
where

( ) z—a if xT>a ®

T —a

v 0 otherwise,

and

q:/01 /Oyfp(z)dzderXl:hl. (9)
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H(z) is a continuous piecewise function with satisfies the following relation:

(3

1 ) ; .
ff =y (Hiy = 2Hf + HE,), 1<i<Jp—1, (10)
k

where HF = H (zF).

(2
We can interpolate the point values of the ”second primitive” by any interpolation procedure

(note that it is not required linear) Zy(z; H*) and define

(R f*)(@) 1= o Toa; HY). ()

The prediction operator is now computed from Ry, and this leads to

. _ 1 - - _
k—1 i = 75 Lk—1(Ti-15 — 2Lp—1(Ty; k—1(Ti+1; .
(PE_ 1) 7 (Zr—1( H" 1) = 2T (@ H* ') + Tia H* 1) (12)
k

Thus, following [8] one can define the so called direct (13) and inverse (14) multiresolution
transforms as

Do k=L,...,1

fL_>MfL fzk_l:i(f2k7,71+2f2kz+f2kz+l) ISlSJk—l_la (13)
d¥ = = (PE i 1< < T,

(3

and

Do k=1,...,L
[y =P )i + db 1<i < Jpa,

=2t = A ) 1<i< i -1

Ml — M—tymfr (14)

For more details in this reconstruction we refer [8] and for nonlinear adapted reconstructions
we refer [9].

3. Multiresolution Schemes with Error-control

In this section, we describe a modification of the encoding technique within the hat-average
framework. It is designed to monitor the cumulative compression error and compress accord-
ingly. The simplest data compression procedure is truncation. This type of data compression
is used primarily to reduce the “dimensionality” of the data. A different strategy, which is used
to reduce the digital representation of the data is “quantization”. Observe that in both cases

3], denoting by pr(e’ ., ex) the processed value of ¥ ., we obtain
g 1, 2]
|éf’j — éf’j| < €. (15)

The algorithmic description of the modified encoding is as follows:
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for k=0L,... 1
for i=1,... Jy_1—1

for j=1,...  Jp_1 —1

_zk]_l = %ﬁ(féci—l,%—l + 2f§i—l,2j + f_égi—l,2j+1
+2]‘T§i,2j—1 + 4]@3‘,2]‘ + 2f§i,2j+1
+.f§i+1,2j—l + 2f§i+1,2j + f§i+1,2j+1)

end
end
end
Set fO = f°

for k=1,...,L
for i=1,... Jk_1—1
f2P7;71,J,c,171 = (Plf—lfkil)Qi_laJk_l—l
égi—l,Jk,l—l = pr([fgifl,‘]k,lfl - fz}z—l,Jk,l—l]:fk)

3 _ ¢P ~k
foici,0n -1 = foici,0 -1 T €310 1

end
for j=1... Jp1—1

Fri—toj—r = (B ) —12i1
él}k,l—lﬁj—l = pr([f";k,l—lﬂj—l - ffk,l—lﬂjfl]:Ek) (16)

fk _ 4P Lk
I i=1,2-1 = fre_i—1,2j—1 T €5 1,251

end
for i,7=1,... Jg-1—1

Firoio1 = (PE f im0
éIQCi—l,Qj—l = Pr([ﬂci—l,zj—l - f2]:i.—1,2j—1] - [f;kjl - flkfl],fk)
fégi—l,Qj—l = fQF;—l,Qj—l + égi—l,Qj—l
Firor = (e f* aimr2
5105 = Pr([f3io107 — foi-1,25] — [Zkfl - fzkfl]: €k)
f}i—l,2j = lez—l,zj + él2ci—1,2j
f2P1;,2j—1 = (Pg—lfk71)2i,2j—l
él2ci,2j—1 = Pr([f_éci,wq - f2fz?,2j71] - [_zkj_l - Aik,j_llv €k)
f}iﬂj—l = f2€,2j71 + él2ci,2j—1
fgi,Qj = %(16]?,;1 - f%ci—l,Qj—l - 2]‘261‘—1,2]‘ - fgi—1,2j+l
—2f§i,2j—1 - 2]%,2]‘4-1
_f§i+1,2j—1 - 2f§i+l,2j - f§i+1,2j+1)

end
end
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4. Stability Analysis

We use the following matrix norms:

| Alli=maz ., || Az |1, (17)
| A lloo= maz|y). || AT [|oo, (18)
| Allo= maz,, || Az || . (19)

The proofs are similar with norm 1 and co. Moreover, to derive the {2 bound, we simply
note that for a vector, x, one has || z |[2<|| « ||1. Thus we are proving the propositions with
P = 00.

Proposition 1. Given a discrete sequence f and a tolerance level €, if the truncation param-
eters €y, in the modified encoding algorithm (16) are chosen so that

ekzg_quk, 0<g<l,
then the sequence f& = M=1{f0 e',... &L} satisfies
175 = < (—g) e (20)

for p=o00,1 and 2.

Proof. Let us define the cumulative compression error at the k-th level by Sllfj,

k. _ rk £k
Eig =1 = fisy

and the modified prediction error at the k-th level by eﬁ >

k 7k ko fk—1
€ij = fi,j — (P )i
With this notation we get that
Tk

e
) 1 3 .
| €% [loo= miax(max(Jk — 1( Z (|5§i71,2j71| + |5§i71,2j|) + |5§i71,‘]k71|):
i=1

J,

k1

1 2

Tr = 1( Z (|g§i,2j—1| + |E§i,2j|) + |g§i,Jk—1|)v
i—1

Jj=

i

1
1 2
ﬁ( Z (|5§k—1,2j—1| + |5§k—1,2j|) + |55k—1,Jk—1|)))'

Jj=1

We start with the first factor of the maximum. We have that

k : k k—1
gk ) 21251 if |€2i71,2j71 - gi,j | < ex
21251 5{”;1 otherwise
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k . k k—1
ek [ e if (e = &I < ex)
2i—1,2j 5{“;1 otherwise

Let us now examine the possibilities:

1)
k—
542’-1,2]'—1 = 5&-1,2;’ = gi,j !
then
k7
|g§i—1,2j—1| + |g§i—1,2j| <2187 ' (21)
2)
551’—1,2]'—1 = 6’51’—1,2;’—1
ggi—mj = 61261'—1,2]'
then
kf
|g§i—1,2j—1| + |g§i—1,2j| < 2(|5i,j 1| +€k) - (22)
3)
k—
542’-1,2]'—1 = gi,j !
ggi—mj = 61261'—1,2]'
then
kf
|E§i—1,2j| + |5§i—1,2j| < 2(|5i,j 1| +€x) - (23)
4)
551’—1,2]'—1 = e,2€i—1,2j—1
k k—
Eyi1j = i !
then
o k—
|g§i—1,2j| + |g§i—1,2j| < 2(&; Yt ex) (24)

So, for the first factor, we have:

Ik

e g
1 3 . .
Tr = 1( Z (|g§i—1,2j—1| + |g§i—1,2j|) + |€§i—1,Jk—1|)
i=1
ey
1 _
< 7 D @ex +IEF)) + ex)

[

Jj=
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Jk—l Z QIEST) + (Jk — ex)

SH gt ||oo +€k-

On the other hand, for the last factor we have directly:

I
1 3 ) " .
7 =1 Z (|55k—1,2j—1| + |51}k—1,2j|) + |55k—1,Jk—1|)
i=1
1 Jk
<3 1((7’” —1)2¢;, + €x) = €.

Finally, from (26) - (62) (see appendix 4.1) we obtain for the second factor:

Ir

2
Jk 1 Z |5§i,2j—1| + |g§i,2j|) + |5§i,Jk—1|)

15 oo +26s.

Then:

L
1E oo € floo +2e1 < ... <2 @, (25)

taking ey = Sq"* where 0 < ¢ < 1 we obtain Y, ¢ < er— and hence (20) for p = co.

If the reconstruction operators Ry, are linear functlonals the error-control technique we have
described allows us to control the quality of the decoded data instead of the compression rate.
If the reconstruction operators are non linear (data dependent) this algorithm guarantees the
stability of the data compression procedure.

The advantages of linear models are obvious. Not only can they be analyzed in a mathe-
matically tractable manner, as it is the case of stability; but they also yield relatively efficient
and fast algorithms. However, these advantages are bought at a price: the visual quality of
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the resulting images are quite often unsatisfactory. In general, the adaptive algorithms yield
perceptually more pleasing results than linear ones.

Throughout this paper we have introduced some error-control theorems for nonlinear hat
average multiresolutions in 2-d. Nonlinearity is stressed in the sense that they are not invariant
by translations and dilations, though these classes of multiresolution keep some nice properties
that other well known multiresolution do not have. Our algorithms are general, and not only
for the tensor product case.

Some question, however, remain to be studied. The choice of the particular nonlinear
multiresolution, the compression strategies, the norms, ... , among some others, important
aspects of this topic, which are still under discussion.

4.1. Appendix: Proof for the second factor
We had to consider the second factor of

1
1
| €% [loo= miax(max(Jk — 1( Z (|5§i71,2j71| + |5§i71,2j|) + |5§i71,‘]k71|):
Jj=1

Jre
2

—_
)

Tr = 1( Z (|g§i,2j—1| + |E§i,2j|) + |g§i,Jk—1|)v
i=1
Ie
1 S k k k
T = 1( Z (€T —1,2j—11 + €T —1,2;1) +1ET —1,50—11))-
i=1

We have:
|E§i,2j71| + |5‘§i,2j| = maX(|5’§i,2j71 + 55¢,2j|a |5‘§i,2j71 - 5§i,2j|) . (26)
Note that:
- 1 1
55;’,2;'71 + 55;’,23‘ = 45?,]' t— 15’51'71,23'71 - 555’71,2]' (27)
1 1 1
- Zg§i71,2j+1 + 15‘51',2]'71 - 15‘51',2]'“
1 1 1
- 15§i+1,2j—1 - §g§i+1,2j - 15§i+1,2j+1a
- 1 1
55;’,23‘ - 5’5;’,2]'71 = 45?,]' t— 15’51'71,23'71 - 555’71,2]' (28)
1 3 1
- Z£§i-1,2j+1 - 5551',2]'—1 - §g§i,2j+1
1 .. 1 .. 1
- 15§i+1,2j—1 - §5§i+1,2j - 15§i+1,2j+1a
and

k : k k—1
F €24,25—1 if |e2i,2j71 - gi,j | < ex
20,21 Eik;l otherwise
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_ 1 1 1
55;’,2]' = 451'k,j t— Z£§i-1,2j—1 - 5551'—1,2]' - 1551'—1,21'4-1
1 1
55;’,2]’—1 - 555@2]'4-1
1 1 1 .
ZE§i+1,2j—1 - §E§i+1,2j - Zg§i+1,2j+1'

Let us now examine the possibilities in (27) - (28):
1)
k _ ok _ ok
Edic1gj1 = Eni19j =& 19541
k _ ok
Eainj1 = Eaipjn
_ ok _ ck
= Eyi19j1 7= &1

k _ ck—1
= 52i—1,2j+1 _Ei,j

then
k k 5| ck—1
€311 2511 +1E551 25l < 3I1E; | - (29)
2)
k _ ck—1
E3i12j1 =&
or
k _ ok—1
Eri12j41 = €0
or
k _ ok—1
Erit1,2j-1 = €0
or
k _ k-1
Erit1,2j41 = Eij
and the others ef’j
then
k k k=1) , 7, 15
€551 051 + €551 251 < maz(2|E7; 7| + Fer, Pek). (30)
3)
k _ ok—1
Eyi125 = &5
or
k _ k-1
Eipja1 = &
or
k _ k-1
Erir1,25 = €5
and the others ef’j
then

k—
|g§i—1,2j—1| + |5§i—1,2j| <mazx(2|E;; Y+ Sen, Ter). (31)
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4)

k _ ck—1
52i,2j—1 = gi,j

and the others ef’j

then

€55 105 1|+ 1E5: 1051 < maX(2|gik,j_1| + Ser, Ser) - (32)

5) One element with factor —1 and one with factor  equals to Ez.’fj_l and the others e

1 2
then

k
(]

3 A k—
€55 1,5 1| €51 2] < max(2|E;; Y+ Sen, Pen). (33)

(2

6) One element with factor —+ and 551»72]-_1 equals to 85]71 and the others eﬁj then

|g§i—1,2j—1| + |g§i—1,2j| < maX(2|5ik,;1| + Jer, fer). (34)

k

7) One clement with factor —3 and 5, ,; , equals to £/ and the others ef ; then

|g§i—1,2j—1| + |g§i—1,2j| < 2¢. (35)

8) Each element equal to its ef’j then

|E§i71,2j71| + |E§i71,2j| < 4dep. (36)

9) Three with factor —% equals to £;" and the others ef ; then

|g§i—1,2j—1| + |g§i—1,2j| < maX(2|gik,j_1| + %ek, %ek)- (37)

10) Three with factor —4 equals to £/7" and the others ef ; then

|g§i71,2j71| + |g§i71,2j| < max(2|5£j_1| + %Ek’ %ek)- (38)

11) Two with factor —1 and one with factor 1 equals to Ez.’fj_l and the others ef’j then

|g§i71,2j71| + |g§i71,2j| < max(2|5£j_1| + %Ek’ %ek)- (39)

12) Two with factor —3 and 542)2]-71 equals to 85]-_1 and the others ef’j then

o k—
|£§i71,2j71| + |g§i71,2j| < max(2|5i,j 1| + %ﬁka %Gk)- (40)

13) Two with factor —1 and 542)2]-71 equals to 85]71 and the others ef’j then
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|5§i71,2j71| + |5‘§i71,2j| < maX(2(|5ik,j_1| + €k), 2€x)- (41)

14) Two with factor —1 and one with factor —% equals to 85]-_1 and the others ef’j then

|5§i71,2j71| + |5§i71,2j| < max(2|5f,j_1| + €k, €. (42)

15) One with factor —1, one with factor —§ and 55;’,23‘71 equals to Ei’f;l and the others ef’j
then

|g§i—1,2j—1| + |g§i—1,2j| < maX(2|5ik,;1| + Tk, Tex). (43)

16) One with factor —3 and three with factor —; equals to £} and the others ef ; then

|g§i—1,2j—1| + |E§i—1,2j| < max(2|5£]fl| + %ek, 14_1€k)- (44)

17) Three with factor —3 and £§;,; ; equals to ;" and the others ef ; then

|g§i—1,2j—1| + |g§i—1,2j| < maX(2|gik,j_1| + %ek, Eek)- (45)

18) Two with factor —% and two with factor —% equals to 85]-_1 and the others ef’j then

|E§i71,2j71| + |g§i71,2j| < maX(2|gik,j_1| — €k 3€R)- (46)

19) Two with factor —1, one with factor —1 and 542)2]-71 equals to 85]-_1 and the others ef’j
then

: k-1
|g§i—1,2j—1| + |g§i—1,2j| < max(2|87; | + Ser, Ser). (47)
20) One with factor —; and three with factor —3 equals to £ and the others ef ; then

|g§i—1,2j—1| + |g§i—1,2j| < maX(2|5ik,;1| + 1€k, Jek). (48)

21) Two with factor —§, one with factor — and €5, ,;_, equals to £} and the others e ;
then

€5 105 1|+ 1E5 1 051 < maX(2|gik,j_1| + Fer, Fer)- (49)

22) Three with factor —% and 55;’,23‘71 equals to 85]-_1 and the others ef’j then

o f—
|g§i71,2j71| + |€§i71,2j| < max(2|gi,j 1| + €k, €x). (50)

23) Four with factor —1 equals to 85]71 and the others ef’j then
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|g§i—1,2j—1| + |E§i—1,2j| < max(2(|€£;1| + €k), %ek)- (51)

24) Two with factor —3 and three with factor —% equals to £ and the others e ; then
. k—

€55 105 1|+ 1E5: 1051 < max (2|} |+ Lens Jer)- (52)

25) Two with factor —1 and three with factor —% equals to 85]-_1 and the others ef’j then

A k—

|£§i71,2j71| + |g§i71,2j| < max(%|gi,j 1| + %ﬁlm 2¢). (53)

26) Two with factor —, two with factor —3 and &5, ,; , equals to &' and the others
ef’j then

€5 105 1| +1E8 1 051 < maX(2|5£j_1| + €k, €k)- (54)

27) Three with factor —1, one with factor —1 and 542)2]-71 equals to Ez.’fj_l and the others

eﬁj then
|g§i—1,2j—1| + |g§i—1,2j| < max(2|gik,;1| + %ek, %ek)- (55)

28) Three with factor —; and three with factor —3 equals to ;" and the others e ; then

|E§i71,2j71| + |E§i71,2j| < max(%|5£j_1| + %61@, %ek)- (56)

29) Three with factor —1, two with factor —% and 542)2]-71 equals to Ez.’fj_l and the others

k
e; ; then

|g§i—1,2j—1| + |g§i—1,2j| < max(2|gik,;1| + %ek, %ek)- (57)

30) Three with factor —%, two with factor — and &£§; ,; | equals to &7 and the others

k
e; ; then

o k—
|£§i71,2j71| + |g§i71,2j| < max(2|5i,j 1| + %ﬁka %Gk)- (58)

31) Four with factor —%, one with factor —} and &5, ,; , equals to &' and the others

k
e; ; then

€55 105 1| +1E5 1051 < maX(2|5£j_1| + €k, €k)- (59)

32) Four with factor —1 and three with factor —3 equals to 85]71 and the others ef’j then
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|E§i71,2j71| + |E§i71,2j| < maX(2|5ik,j_1| + Sk, €r)- (60)

33) Four with factor —1, two with factor —1 and 55;’,23‘71 equals to Eikyj_l and the others
ei{j then

o k—
|5§i71,2j71| + |g‘§i71,2j| < maX(2|5i,j o+ %eka %Gk)- (61)

34) Three with factor —, three with factor —3 and 54272]-_1 equals to 85]71 and the others
ef’j then

|g§i—1,2j—1| + |g§i—1,2j| < max(2|gik,;1| + %ek, iek)- (62)
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