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Abstract

Some characterizations for symmetric multistep Runge-Kutta(RK) methods are ob-
tained. Symmetric two-step RK methods with one and two-stages are presented. Numer-
ical examples show that symmetry of multistep RK methods alone is not sufficient for
long time integration for reversible Hamiltonian systems. This is an important difference
between one-step and multistep symmetric RK methods.
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1. Introduction

It is well known that symmetric one-step methods have similar good long-time behaviours
to symplectic methods for reversible Hamiltonian systems. Many researches into symmetric
Runge-Kutta methods and symmetric multistep methods have been given (cf.[3-5,7,8,10-14]).
More generally, the definition and some properties of symmetric general linear methods (GLMs)
are also presented by Hairer, Leone[6], Hairer, Lubich, Wanner[7] and Leone[9] who show that
symmetry of linear multistep methods and one-leg methods alone are not sufficient by means
of some numerical experiments. In fact, they define the symmetry of a GLM via its underlying
one-step method.
Definition 1.1[6,9]. A GLM Gh is symmetric, if there exists a finishing procedure Fh, such
that the underlying one-step method Φh is symmetric.

They also give some sufficient conditions under which a GLM(cf.[2,6,9])[
C11 C12

C21 C22

]
(1.1)

is symmetric.
Theorem 1.2[6,9]. If C22 is invertible, and there exist the invertible matrix Q satisfying QS0 =
S0 and a permutation matrix P such that

P−1C11P = C12C
−1
22 C21 − C11, (1.2a)

Q−1C21P = C−1
22 C21, (1.2b)

P−1C12Q = C12C
−1
22 , (1.2c)
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Q−1C22Q = C−1
22 , (1.2d)

then the GLM (1.1) is symmetric, where S0 is the matrix made up of the eigenvectors of C22

with eigenvalue 1, i.e. C22S0 = S0.
As a special case, a multistep Runge-Kutta method(MRKM) can be written as a GLM (cf.

[1,2]) by
C11 = B = [bij ]∈Rs×s, C12 = A = [aij ]∈Rs×r, (1.3a)

C21 =

⎛
⎜⎜⎝

0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0
γ1 γ2 . . . γs

⎞
⎟⎟⎠∈Rr×s, C22 =

⎛
⎜⎜⎝

0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1
α1 α2 . . . αr

⎞
⎟⎟⎠∈Rr×r, (1.3b)

where bij , aij , γi, αi are real constants. Let’s set

γ = (γ1, γ2, . . . , γs)T∈Rs, α = (α1, α2, . . . , αr)T∈Rr.

Furthermore, throughout this paper we always assume that
r∑

j=1

αi = 1,

r∑
j=1

aij = 1, i = 1, 2, . . . , s, (1.4a)

ci �=cj for i �=j, γi �=0, i, j = 1, 2, . . . , s, (1.4b)

where the relation (1.4a) is the preconsistency condition.
In this paper, some characterizations for symmetric MRKMs are obtained. Symmetric

two-step RK methods with one and two-stages are presented. Numerical examples show that
symmetry of MRKMs alone is not sufficient for long time integration for reversible Hamilto-
nian systems. This is an important difference between one-step and multistep symmetric RK
methods.

2. Some Characterizations

Theorem 2.1. If C22 is invertible and the method (1.3) satisfies

α1 = 1, αj = −αr+2−j, j = 2, 3, · · · , r, (2.1a)

γj = γs+1−j , j = 1, 2, · · · , s, (2.1b)

bi,s+1−j + bs+1−i,j = ai1γj , i, j = 1, 2, · · · , s, (2.1c)

aij = ai,r+2−j + ai1αj , ai,r+1 = 0, i = 1, 2, · · · , s, j = 1, 2, · · · , r, (2.1d)

then this method is symmetric.
Proof. Let

P =

⎡
⎢⎢⎣

0 · · · 0 1
0 · · · 1 0
· · · · · · · · · · · ·
1 · · · 0 0

⎤
⎥⎥⎦∈Rs×s, Q =

⎡
⎢⎢⎣

0 · · · 0 1
0 · · · 1 0
· · · · · · · · · · · ·
1 · · · 0 0

⎤
⎥⎥⎦∈Rr×r.

The conclusion follows from Theorem 1.2.
Introduce the following simplifying conditions(cf.[1,9])

B(η) : αT χk = rk − kγT ck−1, k = 1, 2, · · · , η,
C(η) : Aχk = ck − kBck−1, k = 1, 2, · · · , η,
D(η) : kγT Ck−1B = rkγT − γT Ck, k = 1, 2, · · · , η,
E(η) : kAT diag(γ)ck−1 = diag(α)(rke − χk), k = 1, 2, · · · , η,

where C = diag(c),
c = (c1, c2, · · · , cs)T , χ = (0, 1, · · · , r − 1)T ,
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e = (1, 1, · · · , 1)T∈Rr, ē = (1, 1, · · · , 1)T∈Rs

and multiplication of vectors is done componentwise.
Theorem 2.2. Assume that the method (1.3) is symmetric. Let a1 = (a11, a21, · · · , as1)T .

(1) If only E(1) holds, then γT a1 = r;
(2) If E(η)(η≥2) holds, then

αj = 0, aij = ai,r+2−j, i = 1, 2, · · · , s, j = 2, 3, · · · , r,

rk/k = γT Ck−1a1, k = 1, 2, · · · , η;

(3) If D(1) holds, then

2r − γT a1 = cj + cs+1−j , j = 1, 2, · · · , s;

(4) If D(1) and E(1) hold, then

cj + cs+1−j = r, j = 1, 2, · · · , s.

Proof. (2.1d) yields
A(I − P̄ ) = a1α

T , (2.2)

where

P̄ =

⎡
⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 1
· · · · · · · · · · · · · · ·
0 1 · · · 0 0

⎤
⎥⎥⎦∈Rr×r.

Hence
γT A(I − P̄ ) = γT a1α

T . (2.3)

The conclusion (1) easily follows from (2.3) and E(1). (2.2) yields

γT Ck−1A(I − P̄ ) = γT Ck−1a1α
T , k = 1, 2, · · · , η. (2.4)

(2.4) and E(η) yield
rk/k = γT Ck−1a1, k = 1, 2, · · · , η, (2.5a)

αj(rk − (j − 1)k − (r − j + 1)k) = 0, j = 1, 2, · · · , r, 1≤k≤η, η≥2. (2.5b)

The conclusion (2) follows from (2.4). (2.1c) yields

BP + PB = a1γ
T , (2.6a)

γT (BP + PB) = (γT a1)γT . (2.6b)

(2.1b) and (2.6b) yields

γT P = γT , γT B(I + P ) = (γT a1)γT . (2.7)

The conclusion (3) follows from D(1) and (2.7). The conclusion (4) follows from the conclusion
(1) and (3).

3. Some Examples

In this section, we construct two classes of symmetric MRKMs by using Theorems 2.1 and
2.2.
Example 3.1. Two-step one-stage RK methods (1.3) satisfying B(2) and C(1) are symmetric
and of order 2 if

b11 = a11, a12 = 1 − a11, α = (1, 0)T , γ1 = 2, c1 = 1.

when a11 = 0, it is the leap-frog scheme.
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Example 3.2. Two-step two-stage RK methods (1.3) satisfying B(2) and C(2) are symmetric
and of order 2 if

α = (1, 0)T , γT = (1, 1), c1 + c2 = 2,

a21 = a11, a22 = a12 = 1 − a11,

b21 = a11 − b12, b22 = a11 − b11,

b11 = (c2
1/2 − c1c2 + (c2 − 1/2)(1 − a11))/(c1 − c2),

b12 = (c2
1/2 + (1/2 − c1)(1 − a11))/(c1 − c2),

where c1 �=c2. When b11 = b22 = a11/2, a11 = 3(1 − c1)2, this class of symmetric MRKMs
becomes

α = (1, 0)T , γT = (1, 1), 2λ = 3(1 − c1)2, c2 = 2 − c1, (3.1a)

A =
(

3(1 − c1)2 1 − 3(1 − c1)2

3(1 − c1)2 1 − 3(1 − c1)2

)
, (3.1b)

B =
(

3(1 − c1)2/2 (c1 − 1)(3c1 − 1)/2
(1 − c1)(5 − 3c1)/2 3(1 − c1)2/2

)
, (3.1c)

where c1 �=1 is one parameter. When c1c2 = 2/3 (i.e. 3(1 − c1)2 = 1 or B(3) holds), these
symmetric MRKMs is of order 3, but they actually degenerate into two-stage Gauss RK methods
with the step-size 2h.

4. Numerical Experiments

We use the two-step two-stage two-order RK methods (3.1) to solve the following two re-
versible Hamiltonian equations, and choose c1 = 3/2, 1 +

√
3/6, 1 +

√
6/6, i.e. 3(1 − c1)2 =

3/4, 1/4, 1/2, respectively.
(1) The mathematical pendulum with a massless rod of length l = 1 and mass m = 1

q′(t) = p, p′(t) = −sin(q), t∈[tb, te]. (4.1)
Its Hamiltonian(energy) is H(p, q) = p2/2 − cos(q) = Const.

(2) The Kepler problem
q′(t) = Hp(p, q), p′(t) = −Hq(p, q), t∈[tb, te], (4.2)

where q = (q1, q2)T , p = (p1, p2)T , and the Hamiltonian

H(p, q) = H(p1, p2, q1, q2) =
1
2
(p2

1 + p2
2) −

1√
q2
1 + q2

2

= Const.

For the problem (4.1), we consider that tb = 0, te = 5000, the step size h = 0.1 and the
initial conditions (p(0), q(0)) = (0, 0.5). The following figures exhibit the correct qualitative
behaviors for long-time integration of the problem (4.1).
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For the problem (4.2), we consider that tb = 0, te = 30 or 500, the step size h = 0.01 and
the initial conditions

q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e

1 − e
.

Here e is the eccentricity and we choose e = 0.6. The following figures exhibit some undesired
qualitative behaviors for long-time integration of the problem (4.2).
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Therefore, the above numerical examples show that symmetry of multistep RK methods
alone is not sufficient for long time integration for reversible Hamiltonian systems.
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