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Abstract

Super splines are bivariate splines defined on triangulations, where the smoothness en-
forced at the vertices is larger than the smoothness enforced across the edges. In this pa-
per, the smoothness conditions and conformality conditions for super splines are presented.
Three locally supported super splines on type-1 triangulation are presented. Moreover, the
criteria to select local bases is also given. By using local supported super spline function, a
variation-diminishing operator is built. The approximation properties of the operator are
also presented.
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1. Introduction

Let D be a polygonal domain in R% and A a triangulation of D consisting of finitely straight
lines or line segments defined by I'; : y —a;z — b; =0,i = 1,--- | N. Denote by v;,i =1,--- , V]
all the vertices of A. Denote by D;,i = 1,---,T, all the cells of A. For integers k > p >r >0,
we say that

SPP(A) ={s e Sp(A) :s€ CP(vy),i=1,---,Vi},

is a super spline space of degree k and smoothness r, p (cf.[5,13,12]), where C”(v) denotes the
set of functions defined on D which are p times continuously differentiable at the point v and
Si(A) is an ordinary spline space defined as

SE(A)={s e C"(Q) : s|p, € Py(x,y)Vi}.
Throughout the paper, Py(z,y) and Pg(x) denote the collection of polynomials

k k—:t k
Py(z,y) :={D_ Y ciyaz'y’lcij € R}, Py(x) := {D)_ cia'le; € R},
i=0 j=0 =0

respectively. Moreover, if k < 0, Py(z,y) and Py(z) are both equal to zero. If S;7(A) #
SP(A), the super spline space S;*(A) is called a nontrivial super spline space of degree k and
smoothness r, p. Super splines have strongly applied background in finite elements, vertex spline
and Hermite interpolation. In [13], the relation between super spline theory and finite element
theory was introduced. In [10,2,11], by using super spline, bivariate macro element was built.
In [9], based on super spline spaces, Hermite interpolation was discussed. In [1,4,13,8,12], the
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dimensions of S;”(A) were given. In these papers, super splines were discussed by a B net
method. In this paper, the smooth cofactors method for studying super splines is presented.
The method is more effective for solving some problems about super splines.

By using Bezout’s theorem from algebraic geometry, Wang discovered the following smooth
conditions and the conformality conditions for bivariate splines (cf.[15]).
Theorem 1. The function s(z,y) is a bivariate spline belonging to Si(A) if and only if the
following conditions are satisfied.

(i) For any grid-segment T'; defined by l;(xz,y) = 0, there exists the so-called smoothing
cofactor q;(x,y) such that

pil(x)y) _Pi2(1’:y) = l?+1(m7y)qi(1‘>y)7 (1)
where the polynomials p;1 and pio are determined by the restriction of s(x,y) to the two cells
Djy and Diy with T'; as common edge and ¢; € Py_(,q1)(7,y).

(it) For any interior vertex v; of A, the following conformality conditions are satisfied

S0 @) (@, y) =0, 2)
()

where the summation is taken over all the interior edges I';

of the smoothing cofactors qZ(]) are refized in such a way that when a point crosses Fg]) from
Djy to Dy it goes around v; in a counter-clockwise manner.

Smooth conditions and the conformality conditions are very effective tools for studying bi-
variate splines (cf.[16]). The purpose of this paper is to present the smooth conditions and the
conformality conditions for super splines. Using the smooth conditions and conformality con-
ditions , the locally supported bases of super splines on type-1 triangulation are also discussed.
The local supported bases of super splines have a wide range of applications in approxima-
tion, interpolation, numerical analysis and finite element methods. We shall only discuss some
approximation properties arising from the variation-diminishing super spline series.

passing through v; and the signs

2. The Smooth Conditions and the Conformality Conditions for
Super Spline

To obtain the smooth conditions and the conformality conditions for super splines, we firstly
introduce a lemma. One can find a similar result in [14].
Lemma 1. Denote by l(z,y) the straight line y — ax — b = 0. Let p(z,y) € Pr(z,y) and
(x1,41), (x2,y2) be two distinct points lying on I. Then %kzl,yl) =0, %ﬁ%kzz,yz) =
0,7 <n <, if and only if there exist q(z,y) € Pr_p—1(x,y) and cpm(x) € Pr_y_m—1(x) such
that
p+1 2
ple,y) = (y —ax =) q(z,y) + Y (y — ax = )" ([ (& — @) " em () (3)
m=1 i=1
where ¢y (x) = 0 provided k — p—m — 1 < 0.
Proof. There exist q(z,y) € Pr_1(z,y) and c¢(z) € Py (), such that

p(z,y) = (y — ax = b)q(x, y) + c(x). (4)
When p = 0, then ¢(x1) = 0,¢(x2) = 0, i.e., there exists ¢1(x) such that ¢(z) = (v — x1)(x —
x2)c1(x). So, the theorem holds for 4 = 0. Suppose that the lemma holds for p = g — 1, i.e.
there exist go(z,y) and ) (z) such that

9 2

ple,y) = (y —az = b q(z,y) + Y (y —az — )" (JJ (x —2:)" ) (@) ()

m=1 i=1
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To prove the lemma for u = g. Since ﬂ| (zi,yi) = 0 and 8”Tg’y)|(%yl) = glqo(x;,y;), we
have qo(zi,y;) = 0,7 = 1,2. By qg(mi,y,) = 0,7 = 1,2 and the result for 4 = 0, there exist

q(z,y) and ¢ (z) such that

qo(z,y) = (y — ax —b)q(xz,y) + (v — z1)(z — z2)e1 (x). (6)
Substituting (6) into (5), we have

pl,y) = (y—az—b)""q(z,y) + (y — az = b)’(z — 21)(z — 22)c1 ()
9 2
+ S (- az— by (@ - ) @), (7)
m=1 i=1
Denote by Sp(z,y) the (y — az — b)?~ (Hf (& — )™ (0)( ), 1 < m < g. Obviously,
%tia#kwuyz) #0,0<t<g,i=1,2, if and only if m < t. When t = 1, 8twg ;y)| (ziyi) 7
0,i = 1,2, if and only if m = 1. When ¢ = 1, S228 | = gtfg#kwl) Because

g;péfﬁa(mi,yi) =0, we have ¥ (z;) = 0,i = 1,2, i.c., there exists cy(z) such that c\” (z) =
HZ2 (& — z;)ca(z). Suppose c(o)( i) =0,1<j<h-—1,i=1,2,h € Z. Then when t = h,

aatia#k%yz # 0,5 = 1,2, if and only if m = h, which implies cz)(ml) =0,2 = 1,2, ie.

there exists cp41(z) such that cgo)( ) = H?zl(a: x;)cp+1(x). We now continue this process
and obtain that there exists ¢;,+1(x) such that ) (z) = H?zl(m —x;)emr1(x),1 <m < g.
Substituting go(z,y) and oY) (x) into (6), we have

g+1 2
pey) = = ar =0 aw) + Y= ar =iy ([Je s e, @

Hence, the lemma holds.
Theorem 2. s(z,y) € S (A) if and only if the following conditions are satisfied:
(i) For each interior edge of A, defined by T'; : l(x,y) =y — a;x — b; = 0, there exist q;(z,y)
and cim(z),1 <m < p —r such that
p—r
DPi1 (27, y) — Pi2 (27, y) = lip+1(x7 y)ql(m7 y) + Z lip_m+1(w7 y)((.’l} - wll)(x - .’I}ig))mcim(fl}), (9)
m=1
where (zi1,yi1) and (z:2,yi2) are two vertices lying on T';, the polynomials p;1 and p;> are
determined by the restriction of s(x,y) to the two cells D;; and D;» with T'; as the common
edge and q(z,y) € Pr—p—1(2,y),cim(x) € Pr(z) h =k —p—m—1. ¢cim(z) = 0 provided h < 0.
(ii)For any interior vertex v; : (x,y;) of A,the following conformality conditions are satisfied:

—-r

STy (@, y) + 3 A7) (@ — wa) (@ — 25)) el () =0, (10)

S

3
I

where the summation is taken over all the interior edges I‘( 7 passing through v; and (z;1,y:n)

(4) ()

and (zj,y;) are two vertices lying on F(] and the signs of the q;”’ and c;;,, are refized in such

a way that when a point crosses I‘i]) from Djs to Dy, it goes around v; in a counter-clockwise
manner.
Proof. By using Theorem 1, we have

pil(way) _sz(way) :l;+1($,y)hi($,y), (11)
wilere hi(z,y) € Pk_nr_l(:n,y). According to the definition of a super spline, we have
%&f’%kmhyﬂ) =0, ;;:57%“90&,%2) =0, where 0 < j <n,n < p—r — 1. Using the Lemma
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1, we have
hi(w,y) = (y —az =)' "q(e,y) + 3 (y = az =)' "([[(@ = i) "em(@).

Substituting h;(x,y) into (11), we can prove (7). The proof of (i¢) is similar to the proof of (i%)
in Theorem 1. Hence,we omit it.

In general, (9) and (10) are called smooth conditions and conformality conditions of su-
per spline space S;””(A), respectively. Using the smooth conditions, we obtain the following
theorems.

Theorem 3. When r < p, Sp’(A) = Sp(A) if and only if p > k — 1.

proof. We use the same notations as in Theorem 2. Using the smooth condition (9), we have
Cim(x) € Pr_pm_1(z,y),1 <m < p—r. Obviously, k—p-m—-1<k—-—p—-2.k—p—-2<0
ifandonlyif p >k —1.So,ifandonlyif p>k—1,k—p—m —1<0, where 1l <m < p—r.
Hence, if and only if p > k—1, ¢jm(x) =0, where 1 <m < p—r,ie. Sy7(A) C S;(A). Because
of Sp(A) C SpP(A), we have Sp(A) = S;?(A) if and on if p > k — 1.

Theorem 4. For any triangulation A, if k < 2p + 1, then S; "7 (A) = S2PH'=F2(A), where

Sk_l’p(A) = {s € C*(vj),: s

Proof. We use the same notations with Theorem 2. Let s(z,y) € S,;l’p(A). Using the
smooth conditions
pt1
pir(,y) —pia(,y) = 7 (2, 9) s, y) + D 7" (@, 9) (@ — 20) (2 — 202)) i (),

m=1

we have when m > k — p — 1, ¢;m () = 0. Hence,

k—p—1
pi(@,9) = pio(,y) = U (2, y)ai(e,9) + D U7 (@,y) (2 — 2a) (@ = 22)) " im ().
So,
pil(may) _piZ(may) = l?p+2ik(m7y)(lfipil(mvy)qi(x)y)
k—p—1
Y T M@ y) (@ - ) (@ — i) Meim (7).

By Theorem 1, s(z,y) € S;* """ (A). Hence S, "*(A) C S;* "1 (A). Because of Sp¢~ 7
(A) € S, M (A), we have S;* 1 (A) = S, 7 (A).
Remark.
1. If the grid line [; is defined by = — a;y — b; = 0 then (9) can be replaced by the following
smooth condition :
p—r
pir (z,y) — pia(w,y) = 1 (@, 9)qi(z, ) + D U7 @, ) (Y — vi) (Y — vi2) "eim(y)- - (12)
m=1
The proof is similar to that of Lemma 1.
2. If the degrees of super-smooth at the vertex (x;1,v:1) and (x,y2) are pi and pio
respectively then (9) can be replaced by the following smooth condition:

Di1 (1‘,y) _Pi2(1';y) = lzpl+1(m7y)qz(x)y) (13)
pi—T
+ Y W @ y) (@ — ) PO (3 — ) (MR P g (),

m=1
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where p; = maz{pi1, pi2} and ()4 = maz{-,0}. The proof is also similar as Lemma 1.

3. The Spaces of Super Spline on Type-1 Triangulation

We begin with the necessary notations. Let
Dpn =1[0,m +1]®[0,n+ 1],
where m and n are positive integers. Partition D,,, first by drawing in the vertical lines
z — ¢ = 0 and horizontal lines y — 7 = 0,s = 1,--- ,m and j = 1,--- ,n. Then by drawing
in the diagonals with positive slopes to the rectangles [i,i + 1] x [4,j + 1], we obtain a type-1
triangulation A%% of D By Theorem 3, when r < p, the necessary condition for the super
spline space S,:"’(ASLL) being nontrivial is £ > p + 2. In practice, super spline spaces with the
lowest possible degree k and the highest possible smooth degree r are the most useful. Hence,
the important spaces to study are

S5 (AL, Si (AR, S5 (AL)) -+

mn n

The space Sg I(A%L) is trivial from the mathematical point of view. In this section, we will
discuss various local support bases of the bivariate super spline space Si’2(A£,1L2L). By using the
smooth conditions and conformality conditions, we obtain three locally supported super spline
functions, write as B(® i = 1,2, 3 respectively.

4(1) A;J) 4(5)
A A g as7
AP (4,1,-1,0,-3,0) ) (4,0,-1,-6,3,0)
AP : (4,-1,0,0,3,-6) (% 1,1,0 -3,0)
AW ;(4,0,0,-6,3,-6) AP 2 (4,0,1,-6,3,0) (% 1,0,0,3,—6)
B B® (3)
Fig.1

In Fig.1, the supports of B®),1 < i < 3 are shown. The vertices AW, Agi),Aéi),Agi),i =23
inside the support of B() are labelled and the values of B%), D, B D,B" D2 B D2, B,
DzB(i), respectively, at these vertices are also given. These values completely determine B(?)
with the exception of a translation. To determine B() i = 1,2, 3 uniquely, we place the vertex

AWM Ag2),A§3) in Fig.1 at the origin respectively.

0 0000000 0 00 0,0
. b o o 0 oo b oo D
00 o 00 o 0 0o p 14
o0 114 Wa A2 172 112 2 A4 1/4 O 0 o faAlao
0 1/4 0 234t it 72—+
12 /4 5/4 s/484 [12 0 0 b o 124404 120

14

2 A2 14

0

121 5/4 120 0 0o p 12 5411 1/2
A A 1/2 3/4,8/4 1/2 0 0 0 (1244 5/4 5/4 B/4AI2 O
0 1/4 12 /2 14 0 t 441234+ AR —t4
0 m o /4 114 0 0 /2 1/2 12 A/2 /4 1/4 0
1740 0 oo Do

0

Fig.2

o
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In Fig.2, the B net coordinates of B(®),i =1,2,3 are also presented.

In Fig.3, the graphs of the three locally supported super splines are shown. By using the
conformality conditions of bivariate super splines, it can be shown that the supports of B() are
minimal.

We now translate B(%) i = 1,2, 3 to obtain bases of S1 2( @) n). That is, we consider

B (2,y) = BP(z — i,y - j),p=1,2,3.
To facilitate our presentation, we introduce the index sets
Q, = {(,7) : Bg)does not vanish identically on D, }.
It is clear that the cardinality of U2:1 Q, is 3mn + 8(m + n) + 20. From [4] we also know
that the dimension of S’ (Am%) is
dimS; (A1) ) = 3mn + 8(m + n) + 19.

Hence the collection

B= U{B (2,7) € Qp}

must be linearly dependent on D,,,,. We will give criteria to determine which element can be
deleted from B to give a local basis of Si’Q(A%%).

Theorem 5. For any f € UZZQ{BZ%D) :(i,7) € Qp}, the elements of B\ f are linear indepen-
dent.
Proof. Let Dy = [i1,i1 + 1] Q@[j1,71 + 1] and

Qg ={(i,J) : Bgf) does not vanish identically on D, }.
For any (io, jo) € Q3 U Qg, write
F(Qf,y) = Z cl,] Z dl]B ) Z 617]B£f)($’y),
(1,5) €} (4,5) €95 (.5)€Q3

where d;, j, or e;,,j, is equal to zero. We have to show that if F((z,y) = 0 for all (z,y) € Dy
then all the other ¢; j,d; ; and e; ; are equal to zero. We assume F(z,y) = 0 on D;. Then using
the equations

F(iy +p,j1 +v)=0
D,F(iy + p,j1 +v) =0
DyF(iy + p,j1 +v) =0
DZF(iy + p, 1 +v) =

D2, F(in + p, i +v) =0
D3 F(iy + p, 1 +v) =0

psv € {0, 1},
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and the values in Fig.1, we can arrive at the following linear systems:

101 1 1 111 Cirtpjitu 0

0 0 211 1 210 Do 0

0 1 0 -1 0 1 —1]]|% trmitre 0

-6 -6 0 0 0 0 -6 Divspji—tvo | =[O,

3 3 3 -3 3 -3 3 Cirtujito 0

-6 0 —6 0 -6 0 0 €iy—1+4p,j1+v 0
€iy — 141 —1+v 0

w,v € {0,1}.
Using these linear systems, we can show if d;, j, or e;, j, is equal to zero, all the other c; ;, d; ;
and e; ; are equal to zero. Suppose f= B (i2,72) € Qo. Write

i2,j27
G(.’L’,y) = Z cl,] Z dl ]B ) Z 617]B£]3) (xay)a
(i,j)EQl ( 7])692 ( 7j)€QS

where, d;, ;, = 0. Hence, the coefficients of B(!), B(® and B®) on sub-rectangle [is,is +
1] @lj2,j2 + 1] are also 0. By Fig.1, it is easy to prove the coefficient of local support su-
per spline on adjacent sub-rectangle is also 0. We now continue this process and obtain that all
the ¢; ;,d; ; and e; ; are equal to zero. Similarity if f = B® (i2,72) € Qs, the result also holds.

i2j2

Hence for any f € U 2{B } the elements of B — f are linear independent.

By the above result and the dimension of S’ (A(l) ), the following theorem can be obtained:
Theorem 6. For any f € Up_2{B(p 2 (4,5) € Qp}, the elements of B\ f form a locally
supportedd basis of Si Z(ASLL)

Let ngj.l)(x,y) = Bg) (x,y) — B( )(a: Y), H( )(m y) = Bg) (x,y) — Bl(;)(m,y). Using the values
shown in Fig.1 or B net coordlnates in Fig. 2 we have
Theorem 7. For all (z,y) € R?,

Z H (z,y) =1, Z H (2

The Hi(jl) (z,y) and Hl(f) (z,y) have a partition of unity, but the function values of Hi(jl) (z,y),

1(]2) (z,y) are not nonnegative. To build a ”variation diminishing” operator, we introduce

another local supported super spline function, denote B. In Fig.4, the support of B is shown.
For B we need explicit values of B. In Fig.3, the vertices inside the support of B are labelled
Ay, Az, Az, Ay, and the values of B, D, B, D,B, DB, D3, B, D} B, respectively, at these vertices
are also given as 6-tuples. We also assume that As is located at the origin. It is clear that the
location of Az and the given values in Fig.4 uniquely determine B.

In Fig.5, the B net coordinates of B are presented. In Fig.6, the graph of B is shown.

Let B;j(z,y) = B(x — i,y — j). Using the values shown in Fig.4 or B net coordinates in
Fig.5, we have
Theorem 8.

(1) For any (z,y) € R?,

|||
=

4,

(2) Inside the support of B, the function values of B(x,y) are strictly positive.
Let L be the ”variation-diminishing” operator that map C (D) into S Q(A%%) defined by

(Lf)(z,y) ZfH ,J+1)Bij(m,y)-
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4 Ay

Az Ay
Ai(h1-10,-20)
A (3 2.0)
Ay : (5 0)
Ay (4 2.0)

0 oo 0 0 o
0op o 0 p o 0

0 1/8 [1/8 A/4 1/4 1/8 1/8, 0 0

8 1H14-318—H2-3/0 416

p o o A/4p/8 58 3/4/23/8 1/8 0 o
0 1/4 (1/2 3/4, 3/4 (172 1/4, 0
0 1/8 B/8A/2 3/4 5/8 3/8 /4 0 0O

40 38 14 118

HE A4
0 0 /8 1/8 1/4 /4 [1/8 1/8 0
0o p o
o p
0

Now, we discuss some approximation properties of the variation diminishing operator. We first
introduce a lemma.
Lemma 2. L(f)=f for dall f € Py(z,y).

We remark that the above theorem does not hold for f(z,y) = 22, zy, and 32, and that for
f(z,y) = 1 it was already shown in Theorem 8. Since a polynomial in P;(z,y) on a triangle with
vertices A, B, C vanishes identically if its values at A, B, C' and the values of its two first partial
derivatives, three second partial derivatives at A, B, and C are all equal to zero, the result
follows by verifying that L(f) — f, f € P1(z,y), satisfies these conditions on each triangular cell

of the partition A%% This can be shown by using the values given in Fig.4.

0.7
06
05
0.4
0.3
0.2

0.1

N
AN
TN
AAMRTIY
ST

5%
GBS
S
S5
5505500505058

50

40
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Suppose K is a closed set in R? and f € C(K). Let

wie (f;0) = sup{|f(z,y) — f(u,v)] : (z,y), (u,v) € K,|(z,y) — (u,v)| < 5},
and dy is the radius of a cell in A%% and d;, is the radius of the support of B. Suppose D, C K
and the centers of the support of Bj; lie in the interior of K. Let || - | p,,, denote the maxim
value on D,,,. We have

Theorem 9. If f € C(K), then

If =V(HDm, <wr(f,d)- (14)
If f € CY(K), then

1f = V(DD < domaz(wi (Def,00/2),wk(Dyf,00/2)). (15)
If f € C*(K), then

If =V (H)pn, <5GID*fI], (16)
where, the linear operator D? f(x,y)(-,-) : RZ x R2 — R is defined as

D? f(x,y) (w1, u2), (v1,02))
= D:?cf(may)ulvl + Diyf(may)u“& + Dsz(mvy)’uQUl + DZf(l',y)Ug’lQ.

Proof.
Since the property of partition of unity, (14) obviously holds.
For f € C*(K), suppose F be such a closure of a triangular cell that

1f = LN Dpn = IIf = L(H)lF-

Suppose (2o, o) be equal to (i,j — %) or (i — 3, ). By the mean-value theorem, we have

f(@,y) =pi(z,y) + (Do f(u,v) = Dz f(20,y0))(x — @0) + (Dy f(u,v) — Dy f(w0,90))(y — yo(), :
17

where (U)U) = t(l‘,y) + (]‘ - t)(l’g,yo),o <t<l1,

pi(@,y) = f(z0,90) + Dz f (20, y0)(x — m0) + Dy f(zo,y0)(y — yo)- (18)
By Lemma 2 and ||L]| = 1, we have

1f = LDNr <N = pulle + [1L(F = po)llr < 2(f = pallr.

Hence, by (17), equation (15) can be obtained.
For f € C?(K), by Taylor’s formula

F(,9) = () + 5D F(u,0) @ = 0,y — o) (19)

where (u,v) = £(z,) + (1 - £) (0, 90), ¢ € [0, 1], and (z — 30, — yo)* = ((z — 70, — yo), (& —
Zo,Y — Yo)). By (19), (16) can be proved easily.

Remark.

1. Using the smooth conditions and conformality conditions, similar as the ordinary multivari-
ate spline spaces, the dimensions of bivariate super spline spaces can be constructed. Moreover,
some other problems, such as constructing a bivariate macro-element [10], can also be investi-
gated by the smooth conditions and the conformality conditions.

2. For nonuniform triangulated rectangles, since the grid lines determined by 0 = 29 < --- <
Tme1 =m+1land 0 =y < --+ < ypy1 = n+1 are arbitrary, they can be moved appropriately
to fit the given data. In fact, adaptive schemes can be developed and the problems of approx-
imation by super spline spaces of degree 4 and smoothness 1,2 with variable grid partitions
can be investigated by using the bivariate local supported super spline functions B;j(z,y). The
study of these problems will be delayed to a later date.
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