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Abstract

An iterative algorithm is proposed and analyzed based on a hybridized mixed finite ele-
ment method for numerically solving two-phase generalized Stefan interface problems with
strongly discontinuous solutions, conormal derivatives, and coefficients. This algorithm
iteratively solves small problems for each single phase with good accuracy and exchange
information at the interface to advance the iteration until convergence, following the idea
of Schwarz Alternating Methods. Error estimates are derived to show that this algorithm
always converges provided that relaxation parameters are suitably chosen. Numeric exper-
iments with matching and non-matching grids at the interface from different phases are
performed to show the accuracy of the method for capturing discontinuities in the solutions
and coefficients. In contrast to standard numerical methods, the accuracy of our method
does not seem to deteriorate as the coefficient discontinuity increases.
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1. Introduction

Interface problems occur in many physical applications. Below is a description of alloy
solidification [10, 11, 12, 9] that shows the importance and characteristics of interface problems.

In alloy solidification problems, the melting temperature is not known in advance, which is
different from classical Stefan problems such as ice-melting in water. The melting temperature
depends on the composition of the alloy. Typically, an alloy is considered to comprise a pure
substance containing a small concentration of one or more secondary substances, called impu-
rities. The solidification of an alloy calls for a simultaneous study of the processes of heat flow
and the diffusion of impurities. We now describe the mathematical model of a simple two-phase
alloy solidification process in one, two or three space dimensions, with = denoting the space
coordinate vector [10, 12, 11, 9]. Let €4 (¢) denote the solid (alloy) region and Q2(t) the liquid
(impurity) region, which are separated by the interface denoted by I'(t), where ¢ represents
time. Note the solid and liquid regions and the interface change with time ¢t. Let uy, ¢y, Ky,
and D; be the temperature, concentration of impurity, heat conductivity, and mass diffusion
coefficient, respectively, in the solid region Q4 (¢), and us, c2, K2, and D» be the corresponding
quantities in the liquid region Q2(t); see Figure 1.1. Then the partial differential equations

modeling the process can be expressed as:
6C1

gy = V- EaVu)ta, Fe =V (DiVa), in(), @
) 0 i
02% =V - (K2Vus) + g, % =V - (DyVez), inQs(t), (2)
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0 0
ui = us, KQ% - KI% = —Lv,, onD(t), (3)
0 0
c1 = cs(ur), c2 = cr(us), Dg% — D1£ = (¢1 —e2)v,, on (i), (4)

together with appropriate boundary and initial conditions, where v, denotes the speed at which
the interface is moving along its normal direction v, g1, g2 and p;, p2 are sources or sinks and
specific heat in Qq, s, respectively, L is the latent heat. Equations (3) and (4) are the so-called
generalized Stefan conditions.

Figure 1.1: Two-phase alloy solidification with a moving interface I'(t) between the solid re-
gion Q4 (¢) and the liquid region .(t). Concentration of impurity is discontinuous across the
interface.

Another example is multiphase immiscible flow of incompressible fluids with different den-
sities and viscosities and surface tension. The governing equations in each fluid are the Navier-
Stokes equations. The effect of surface tension is to balance the jump of the normal stress
along the fluid interface, which gives rise to a free boundary condition for the discontinuity
of the normal stress across the interface of the fluids. In the case of inviscid flows, the above
jump condition is reduced to a discontinuity in pressure across the interface proportional to the
curvature.

Interface problems such as the two mentioned above are difficult to solve by using conven-
tional numerical methods since the the coefficients in different phases can be strongly discon-
tinuous across the interface. Standard numerical methods such as finite element and mixed
finite element algorithms are mainly designed to deal with problems with continuous or mod-
erately discontinuous coefficients. For problems with strongly discontinuous coefficients, their
accuracy can become arbitrarily inaccurate; see [31, 24] for some explanations and numerical
examples. In particular, Nielsen [24] gave an example using standard finite element method
whose accuracy deteriorates from 0.0044 to 0.0290 (or the error increased 559 percent) when
the coefficient jump increases from 2 to 16. Vavasis [31] gave examples on which standard finite
element methods fail on current computers. Note that modern preconditioners based on do-
main decomposition and multigrid cannot expect to improve the accuracy, although they may
dramatically improve the efficiency of the solution process.

On the other hand, discontinuities in the solution or its normal derivatives can also present
another difficulty; see [19, 20, 18, 32]. Note that the standard finite element theory [7] requires
the solution be continuous (in H'(Q2)) and the mixed finite element theory [4] requires the
normal derivative of the solution be continuous. Here we face a class of problems whose solution
and its normal derivative can be discontinuous in the physical domain. Thus standard finite
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element and mixed finite element theories do not apply directly to these interface problems.

We herein present an iterative hybridized mixed finite element method for linear second order
elliptic interface problems in general domains, to which time-dependent interface problems can
be reduced after a finite-differencing in time. The idea is to employ the Schwarz alternating
method for the mixed formulation of the problem by introducing Lagrange multipliers on the
interface so that the original problem can be approximated iteratively through solving each
individual phase problem.

The organization of this paper is as follows. In §, the algorithm is described for general
elliptic interface problems. In §, a convergence analysis of the method is carried out. Finally
in §, numerical examples are provided to check the performance of the method, and in §, some
concluding remarks are given.

2. An Iterative Hybridized Mixed Finite Element Method

Let Q be a smooth bounded domain or a convex polygon or polyhedron in R? or R?
with boundary 0f). Suppose that one phase of a steady state two-phase generalized Stefan
problem occupies ; and the other phase occupies (22, where Q; and 25 are two nonoverlapping
subregions of Q such that Q; UQy = Q, and Q;NQs = 0. Let T' = 9Q; NN, denote the interface
between the two phases or subregions, and denote T'; = 9Q; N 9N, i = 1,2. Consider the linear
boundary value interface problem of finding u = {u1,u2} : @1 X Q2 — R such that

—div (a;Vu;) + ciu; =f;inQ;, i=1,2, (5)

u; =gionly i=1,2 (6)

UL — Us =ponl, (7)
—(a1Vuy) - v — (a2Vug) v =nonl, (8)

where a; and ¢; are the diffusion tensor and reaction coefficient, defined on Q;, i = 1,2, re-
spectively, 4 and n are given regular functions on the interface I', and v; and vy are the unit
outward normals at the interface of {2y and s, respectively. V and div denote the gradient
and divergence operators respectively.

The problem (5)-(8) is a slight generalization from normal interface problems in which
uw=mn=0; see [6, 14, 40]. Our main concern in this paper is how to solve it accurately when
the coefficient jumps are large. In many applications, the coefficient jump functions on the
interface:

a1(z) [oer — a2(2) [zer  and ¢ (2) lzer — c2(2) [zer

are very large. For example, in fluid flow in heterogeneous and anisotropic porous media, the
permeability jump can be 10! or larger (permeability in shale is in the order of 1076 to 10~!*
and in sandstone is in the order of 1 to 10~*). In computational electromagnetics [5, 29], large
discontinuity in material properties can occur; the jump in magnetic permeability can be in
the range of 10°> and jump in electrical conductivity can be in the range of 10*® or more (for
example, the conductivity of pure copper is 6.4 x 10° while conductivity of pure water is only
4.0 x 1078 at temperature of 291K). In fluid dynamics, the viscosities of fluids can be in the
order of 10° or more (viscosities in Pa - s of glycerine and hydrogen are 1.49 and 8.7 x 1076
respectively at temperature of 20C"). In dealing with micro (at atom or molecule levels) and
celestial objects, discontinuities in larger scales can also occur. With such large coefficient
jumps, standard numerical methods can be arbitrarily inaccurate; see [31, 24, 13] for numerical
examples. A clear deterioration in accuracy can be observed for standard finite element and
volume methods even for very small discontinuities in the coefficients [24, 13]. Vavasis and
Nielsen [31, 24] are able to improve the accuracy of standard numerical methods for special
interface problems under the assumption that, for example, the source term is zero in the
region where the coefficient is small.
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Recently, in [19, 18], the immersed interface method based on finite differences was consid-
ered for the problem (5)-(8) with a scalar diffusion coefficient. Applications to time-dependent
interface problems were presented in [20] and [32]. In this approach, interface conditions are
combined into finite difference equations in each subregion to form a global system of algebraic
equations. The resulting system is can be singular in general. The design of efficient algorithms
for solving such a system is not easy; see Li [18] for a special case. Due to the ill-conditioning
of the global system, such methods are not expected to improve the accuracy of the numerical
solutions for strongly discontinuous coefficients.

Denote ¢; = —a;Vu;, i = 1,2. Throughout this paper, we will call w the pressure variable
and ¢ the flux variable. Then, under reasonable assumptions, the interface problem (5)-(8) is
equivalent to the mixed formulation given by

13

a;'qi+Vu; =0, in Q;, i=1,2, (9)
divg; +cu; = fiinQ, i=1,2, (10)
u; =g;on I';, 1 =1,2, (11)
Uy — Us =ponl, (12)

(

~—

@ -vi+q-v2 =nonl.
Define V; = H(div,Q;) = {v : v € L*(Q;) and div v € L?(Q;)} and W; = L?(;), i
1,2. Denote (¢,¥)q = [ ¢ - ¥dx and (p,¥)r = [ ¢ - hds. When the integrals do not exist,
corresponding duality should be used to interpret them. Then the weak form of (9)-(13) is
given by seeking {q;,u;} € V; x W; such that

(a;lqi,v)gi — (us,div v)q, + (ui,v - viyr = —(gi,v-vi)r,, Yv €V, (14)
(div ¢;, w)q, + (ciug, w)a, = (fi,w)o,, Yw € W, (15)
up —uz =, on I} (16)
g1 V1 +¢q-vy=n,on I. (17)

Note the global system (14)-(17) can be solved by eliminating the pressure and flux unknowns
from one side on the interface. However, this global system is neither symmetric nor positive
definite (when p # 0 and n # 0), and in general is hard to solve. A popular method is the
GMRES method, that requires large memory storage and a vector orthogonalization process.
It can be very slow in execution time and exceed one’s computer memory for large size com-
putations. Even if the global system can be solved efficiently with a good preconditioner, its
accuracy will deteriorate very rapidly when the coefficient jumps are getting large.

Now we sketch the idea of our algorithm that iteratively solves problems defined for each
phase and exchange pressure and flux data at the interface to advance the iterative process.
The single-phase problems are smaller and thus are much easier to solve than the global system
(14)-(17). The approximations to flux and pressure variables will be of the same order as in
standard mixed finite element methods. The algorithm could be written as follows. Select an
initial guess {¢?,u?} € V; x W;, i = 1,2, and compute {g"**,u?*'} € V; x W; such that

1 9

(aflq?ﬂﬂ,v)l — (U?H/Q,div v)1 + (U?H/Q,v -vi)r = —{g1,v - v1)r,, Yv eV,
(div q{H_l/Q,w)l + (clu?+1/2,w)1 = (f1,w);, Yw e Wi, (18)
q?+1/2-1/1 =aq? 1 —(1—a)gd-va+(1—a)p on T;

(a;lng/Q,v)g - (ug+1/2,div V)2 + (ugﬂﬂ,v -vo)r = —{g2,v - a)r,, Yv € Vs,
(div q;+1/2,w)2 + (CQU;+1/2,W)2 = (fo,w)2, Yw € Wa, (19)
qg+1/2 vy =—aqt v+ (1—a)gy -va+an on I

and
(a7 gt o)1 — (uith div o), =
—@Bup 4 (1= B+ (L= B v - vidr — (91,0 - v)r,, Yo € Vi, (20)
(div g7 w)1 + (cuf ™, w)1 = (fi,w)1, VYw € Wi;



An Iterative Hybridized Mixed Finite Element Method for Elliptic Interface Problems with ... 261
(a3 gyt v)y — (ui ™, div v), =
~(Bu T 4 (1= Bus T — B, v vo)r — (g2, v o)r,, Yo € Va, (21)
(div an W)y + (c2ub ™ w)y = (f2,w)2,  Vw € Wa;
where a, 3 € [0, 1] are relaxation parameters that will be determined to ensure and to accelerate
the convergence of the iterative procedure. Note when this algorithm converges, the iterates
will converge to the solution to the system (14)-(17).
However, there is a technical difficulty with this formulation of the algorithm, since the
restriction of an L? function on the interface I' is not clear. For this reason, we introduce
Lagrange multiplier A; [1, 16, 17] in place of u; on I' to obtain:

(a TIQ?H/Q V)1 — (uy nt1/2 ,div v); + (/\?+1/2,U -v)r = —(g1,v-v1)r,, YvEV,

(div g /%, w), + (C1u1+ 2 W)y = (frow), Y € W, (22)
qnﬂ/2 n=aq v —(1- a)qg vy +(l—a)p on T

(a71q3+1/2 V) — (ugﬂ/2 div v)2 + ()\ZH/Z v-v)r = —(g2,v - V2)r,, Vv E V3,
(div g2 w)s + (cauy TP W)y = (forw)a, Y € W, (23)
qg+1/2 vy = —aqi vy + (1 - a)qg ‘va+an on I}

and
(al q1 V)1 — (u1+ divv); =
<m"“/2 + (1= BT 4 (1= B)p,v - mi)r — (91,0 - v)ry, Vo € VA, (24)
(div ¢! w)y + (crul™™ w) = (fi,w):, Yw € Wy

(a3 g5t v)2 — (uth, div o), =

<6An+1/2 ( _ﬁ)A;H_l/Q _ﬁuav"/2>r - <92)U'V2>F2) Vv € ‘/2, (25)
(div g8 w)s + (couh™ ,w)s = (f2,w)2, Yw € Wo;

This algorithm can be discretized in a standard way. Let 7, be a union of triangulations in
subregions {2; and Q- that matches at the interface I', and let Vih X Wih C V; x W; be a mixed
finite element space [4, 2, 3, 25], defined on ;, i = 1,2. In each of the mixed finite element
spaces cited, the functions in Wih are allowed to be discontinuous across element boundaries.
We now need to introduce a space for the Lagrange multipliers [1, 16, 17]. For ¢* € V/,
assume that its normal component ¢? - v; € P, on each edge in ', where P, denotes the set
of polynomials of degree 7 in the arc length on the edge; for simplicity we assume 7 to be the
same on all edges of all elements. Let Y" consist of two copies of P, over each interior edge
in T, with one copy associated with the edge as a part of 9{2; and the other as a part of Q5.
Denote the collection of copies of P, associated with ; by Y}*. Then, the selectively hybridized
mixed finite element method is given by seeking {q?,u?, A2} € V* x W x Y} such that

(a’i_lqzh’v)ﬂi - (u?,div U)Qi + <>‘£L7U : Vi>F = _<gi7v ) Vi>Fi7 Vv e ‘/;'ha (26)
(div g, w)a, + (ciuf, w)e, = (f,w)a,, Yw € W, (27)

>‘,11 - /\g = M on I, (28)

a - vita v =n, on T. (29)

If T includes every interior edge of all elements, then the method above is said to be totally
hybridized; however, it should be emphasized that the partition {2, {} is fixed and does not
depend on the mesh parameter h.
The discrete version of our iterative algorithm can be stated as follows. Let {QF,U*, AT}
denote the finite-dimensional approximations of {¢!",u, \'}. Choose an initial guess
{QF U AT} e VI x W x Y
arbitrarily. For n = 0,1,2,..., construct pairs {Q7", U™} € V/* x W/ satisfying:
(a7 QT2 vy, — (U"+1/ div o)y + (AT v v = —(g1,v- )y, Vo€ ViR
(div QT w)y + (UM w)y = (frywh, Yw € W, (30)
P =aQt n —(1-a)@5 e+ (1-a)y on T
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(a5 'y v)y — (U2 div 0)y + (AFT2 0 wo)p = —(g2,0 - wa)r,, Vo € Vi,
(div Q3% w)s + @alJ"+1/2 w)s = (fa,w)s, Vw € WP, (31)
;Hﬂ ve=—a@Ql 1+ (1—-a)@Q%-va+an on T,
and
(a7' QT v) — (UM divw), =
—(BATT 4+ (1= B)ATT 4 (1= B v - vdr — (g1, 0wy, Yo € VY, (32)
(diV Qn+1 )1 + (ClUn+1 )1 = (fl, )1, Yw € Wlh,
(a3' Q5™ v)2 — (U5, div ), =
(ﬂAn+1/2 +(1- ﬂ)A;Hl/Z — B, v - va)r — (g, v - 1)1, Yv € VI, (33)
(le Qn+1, )2 + (62U2n+1,UJ)2 = (f2,’LU)2, V’LU € W2h
This iterative hybridized mixed finite element algorithm reduces the original indefinite prob-
lem to iteratively solving well-conditioned small problems defined for individual phases. Since
quantities corresponding to each phase, such as heat conductivity, density, and concentration,
are usually continuous functions, our subproblems have continuous solutions and coefficients and

thus can easily be solved with good accuracy. The idea of the iterative algorithm is motivated
by the Schwarz Alternating Method [8, 28, 30, 15, 26, 35, 38, 39, 37, 40].

3. Error Analysis

In this section, we analyze the convergence of the iterative scheme (30)-(33). Let

rf:q?— f, ef:u?—Uik, 6{-“:)\?—1&?, 1=1,2.
Then, by combining (26)-(29) and (30)-(33), we have the following error equations:
(ai_lrfﬂ/z,v)gi - (enﬂ/2 div v)q, + (6?“/2,1) vy =0, Yv e Vh, (34)
(div 772 w)g, + (el TP w)g, =0, Yw e Wh, (35)
PP = v+ (1= o)l - on T (36)
and
(a7 ' e, — (€ divo)g, = =657+ (1= )82 0 v, Yo e VALBT)
(div 7 w)g, + (ciel T w)a, =0, Yw € Wh. (38)

Let ® = {¢-vi|r ¢ € ViI,i = 1 ,2}, and define the extension operators
Ri:¢p€® = {Rj¢,Rip,RI¢} € V' x W] x V!

by
(a’i_leld)v’U)Qi - (Rz2¢a div U)Qi + (R?(j),’l} . Vi>F = Oa Vv € Vviha (39)
(div R} ¢, w)q, + (c;R3¢p,w)q, =0, Yw e WP, (40)
Rl¢-v;i = o, on T. (41)

Then, define the linear operators Ty, : ® = ®, k,m = 1,2, by
Tkm¢:£'ym E(P)
where {£,(} € V! x W] satisfies

(G/;llg,’l})gm - (Ca div U)Qm = —<R2¢,’U : V’m>F7 Vo € V727 (42)
(le gyw)Qm + (CmC>w)Qm = 07 Vw € erwlz (43)
Let o denote the restriction operator on I'. From (34)-(36), we have
Yo T;H_ /2 -vy = ayry v — (1 — a)yory - ve, (44)
Yo r;H_l/Q vy = —aryory - v + (1 — a)yory - ve. (45)
From (37)-(43), we have
Yorp v = Byort v+ (1= BT (qory T 1), (46)

707”2”1 Vo —ﬁT12(70r1+ /2 v1)+ (1 =B rn+1/2 Vs. (47)
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For convenience, we define the following norms on the interface I' :
and introduce the two quantities

2 2
U:supm T:sup%.
sca |Pl1

sco |03 (49)

Note that |- |; are equivalent discrete norms of the space Hégz(l“). Thus o and 7 are positive
and finite numbers.
We are now in a position to show the convergence of our algorithm.

Theorem 3.1.
B(1 - 3)

2 n
horf ™ mlf < {87 = Tm e (1= 8 ort (50)

Proof. By (46) and (48), we have
hori*tmft = Bhort ™ nlf + (1= 8 Tarory ™ ol (51)
+25(1—-8) (al_thor?H/2 : Vl,R%Tm%T;LHm ) V2)91
+25(1 - 5) (ClR%%T?Hp : Vl,R%Tm%T;LHm ) V2)Ql'

In order to estimate (51) term by term, we need some preliminary bounds. From (39)-(41) and
(42)-(43), we have, V¢ € ®,

(a7 'RiTo10,v)q, — (RiT21¢,div v)g, (52)
= (a5 ' R3¢, Ry (ov - v1))0, — (R3¢, div Ry(Yov - v1))a,, Vv €V,
(div R{To1¢,w)q, + (1t RiTo1¢,w), =0, Yw € W, (53)
(div R3¢, R3 (700 - 11))a, + (c2R30, B3 (00 - 1)), =0, Vv e V" (54)
Letting v = RiT»1¢ in (52) and (54) and w = R3Ts ¢ in (53) and adding, we obtain
(a; 'RiTo ¢, RiTo19)q, + (1 RITo10, RiTo10)0, (55)

= (a3 'Ry, RyTo19)a, + (2R3, 3T 9)a,, V9 € @,
where we used the fact that
(R%(f), div R%Tm ¢)Q2 = (le R%(b: R%Tm ¢)Q2 . (56)
Indeed, the equality (56) can be proved by combining (40) and (43). Combining (55) and (49)
yields

To10]1 < V7|02, Vo € @. (57)
From (57), (49), (44), and (45), we obtain immediately
|T21707“;L+1/2 “valp < \/FWOT;H_I/Q Vol < \/F|’707“?+1/2 “vi]2 < 7'|707“;L+1/2 Vi1 (58)

Now, from (52), we have, V¢, 1) € @,
(a1 ' RiTo1th, Rig)o, —(RiTorh, div Rid)a, =(a; ' Ry, Ryd)a, — (R3¢, div Ryd)q,. (59)
Since (R?¢,div RITy1)q, = (R2Ta14,div Rid)q,, then (59) becomes
(a7 Ri¢, RiTnt)a, — (Ri¢,div RiTont)a, =(a5 ' Ry, Ryd)a, —(R3¢, div Rid)q,.(60)
In view of (53) and (40), we have
(div RiTo14), Rig)a, + (c1 RiTn¢), Rig)a, =0, (61)
(div R3¢, R3)q, + (ca R3¢, R3)a, = 0. (62)
Combining (60), (61) and (62) yields
(a; 'R1, RiTo1h)q, + (a1 Ry ¢, RiTo1h)q,
= (a5 ' R3¢, Ry)a, + (2 R3¢, R3¥)a,, V6, ¢ € . (63)
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Thus, by (63)

(a7 Rino r Y vy, R yory T ), F (e1 Rivo r Y vy, R Ty T 12)q,
:(a21R2'7 Tn—H/ -v1, Ryvo 7“2+1/2 V2)Q (cle'y ry e -v1, R0 Tn+1/2 ’/2)92 (64)
—hor 2wl < ot .

Substituting (58) and (64) into (51) gives (50).

Theorem 3.2.

Ivory ™ a3 < |87 —

28(1 — .
JK;—@wwl—ﬂfﬂ (Tinors ™ - w3, (65)
Proof. From (47) and (48), we have
|%Tn+1 V2|§ _ 52|T12 707{& /2 )|; |7 rn+1/2 Vo |; (66)
-HMI—mw;R&h%m /lmer+/ 2o,
+28(1 — B) (2R3 Thavor} /% - v, R3yors ™% - o),

Instead of bounding |yory ™ - 2|3 in terms of |70r’;“/2 . 1/2|2 in the same fashion as for (51),

we estimate (66) differently. The idea is to bound all terms on the right side of (66) in terms
of |T1270rg+1/2 : 1/2|;. From (39)-(41) and (42)-(43) we have, V¢ € @,

(a5 ' RiT120,v)q, — (RiT12¢,div v)q, (67)
= (a; 'R, Ri(yov - v2))a, — (R1¢,div Ri (v - 12))a,, Vv eV,

(div RiT19¢, w)q, + (c2RET126,w)q, =0 Yw € W, (68)

(div R} ¢, R (yov - 1)), + (1 R2¢, R2(yov - 12))q, =0, Vv € Vi (69)

Let v = RiTi2¢ in (67), (69) and w = R3T}2¢ in (68) and add; then,
(a5 ' RyTi2¢, RyTi2)o, + (caR5T12¢, RyTi2¢)a,
= (a; 'Ri$, RiTi20)q, + (a1 Rid, RiTi2¢)q,, V¢ € @, (70)
where we used the fact that
(Ri¢,div RiTi2¢)o, = (div Ri, RiTi2¢)a,
Combining (70) and (49) yields
T128l2 < Volgli, Vo e . (71)

In particular,
|T1270r?+1/2 ‘vp < \/E|fygr7f+l/2 ‘v1, Vo € ®. (72)
Now from (67) we have, V¢, ¢ € ®,
(a3 " RyTiot), Ry¢)a, — (R3That), div Ryd)a,
= (a; 'Riv, Rig)q, — (Riv, div Ri)q,. (73)
Since (R3¢, div RiT12v)q, = (R3T12t,div R3d)q,, then (73) becomes
(a5 R3¢, R3Thoth)a, — (R3, div RyTist))o,

= (a; 'R{Y, Ri¢)a, — (R, div R{¢)q,. (74)

In view of (68) and (69) we have
(div R3T129, R3), + (caR3T12%), R3d)a, =0, (75)
(div R} ¢, R3)q, + (c1R?¢, R¥tp)q, = 0. (76)

Combining (74), (75) and (76) yields
( 71R%¢7 R%TIQQ/})Qz (C2R ¢v R2T121/})
= (a; 'Ri¢, Riv)a, + (aRid,Riv)a,, Vo, ¥ € @. (77)
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Thus, by (77), (72), (44), and (45),
n+1/2

(a3 RETvyory /% - 0, Ry va)as + (2 RETiav0ry ™/ - vn, R3yory ™72 - 1)q,
= (GflRi’YngH/z - va, Rivor? ™% i)o, + (CIR%'YOT;L+1/2 v, R2yory 2 ),
n 1 n
= —|or T mfl < _;|T12707“2+1/2 vl (78)
The formula (78) also gives
horp T}
= —(ay " R3Tuovory ™7 w1, Rbyory ™2 - ), — (e2R3Tianory ™% vn, Raors ™72 - 1)a,
< |T12707{L+1/2 : V1|2|’Y07';L+1/2 “ Va2
< |T12’YOT';LH/2 : V1|2|’Y07{LH/2 2P
< VTTyory ™2 - vilalyort 7% -,
which leads to
|’Y07“711+1/2 i < \/7_'|T12’YOT{L+1/2 ‘vl (79)
Thus
ors T2 i3 < rhort T n < P Tavort T w3 (80)
Combining (66), (78), and (80) gives (65).
Theorem 3.3.
20(1 —«
hort 72t < a2 = 22D 4 apa2 o (1)
Proof. By (44) and (48), we have
hort ™2 mE = @?horf - mf} 4+ (1= ) o - val} (82)
—2a(l — ) (aflRi'ygr{L -y, Riyorlh - VQ)Ql
—2a(1 — a) (a1 R{yory - vi, Rivory - 1/2)91.
We now estimate (82) term by term. From (37)-(38) and (40), we have
(al_lr?v v)Q1 - (e?a div v)Q1 (83)
= (CLQ_ITS,R%(’)/O’U ' Vl))Qz - (ega div R%(’YO’U : Vl))Qza Vo € ‘/lha
(diV T?)w)Kh + (Cle?vw)Sh = 07 Vw € Wlhv (84)
(div Riyov - vy, w)q, + (c2R23y0v - v1,w)q, =0, Yo € V', we Wl (85)

Letting v = r}* in (83) and (85), w = e} in (84), and w = €} in (85) and adding, we obtain
(a7 "7 ey + (i€, ef)ay = (a5, Ryyort - v1)a, + (c2e5, Rovory - vi)g,.  (86)
Thus
ort - vt < 1vors - walzlyort - vile <VTory - val2lyort - il
which gives
[ort’ - vili < VTlvory - vale. (87)
Similarly,
[vors - vala < Volyory - il (88)
Now combining (37)-(38) and (40) and noting that Rivo(Riyory-ve)-vi = Rivo(rf-ve) = r¥,
we obtain

(a7 'r}, Rinors - v)a, — (ef', div Riyory - v2)q, (89)
= (0,2_17“3,7“3)92 - (egadiv Tg)Qza
(le Ri’)/()?“g : V27w)91 + (ClR%’yng : V27w)Q1 = Oa Yw € W1h7 (90)

(div 75, w)q, + (c2eh,w)q, =0, w € W2h (91)
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Letting w = e} in (90) and w = e} in (91), and combining with (89) we see that
(ag 1], Rivory - vo)o, + (crel, Rivory - w)a, = (a3 '15,13)a, + (263, €5),. (92)
Thus, from (92), (87), (88), and (82),

hort ™ mlf = a?horf - mlf + (1 - a)[org - vy (93)
—2@(1 - a) [(a;lr;‘, rg)Qz + (Cleg) 63)92]
2c(1 —
< {Cf S a)zaz] or - v 2. (94)
This completes the proof.
Theorem 3.4.
20(1l — o
Tianor 2 < |2 - 202 s mape | porg o (09
Proof. From (37)-(38) and (39)-(41), we see that
R} (ory - wn) = 667712 + (1= p)a; 2. (96)
By the definition of the operator T2, (96), and (37)-(38) we have
’)/07"; *Vy = Tlg’)/(ﬂ“? V. (97)
By (45), (48), and (97), we have
Tiovors ™2 = |Thal—agory - v1 + (1 — a)ror} - 13

=|—ayry - va + (1 = a)Ti2y0r5 - v2l3
= a’|yory - vefs + (1= a)?[Tizyory - vl (98)
—2a(1 — a) (a3 ' Ryyory - va, R3Ti27v0rh - 1/2)Qz
—2a(l — ) (CQR%')/OT'S - vy, RET 2701y - 1/2)

In view of (71) and (49) we obtain

|Ti2vory - vels < olyors - vaff < o®|ory - vaf3. (99)
From (77) and (49) we have

(a;lR%'ygrS - v, RET127y0ry - 1/2)QZ + (caR370r% - vo, R3T12707% - VQ)QZ

Qs ”

= (a7 'Rinory - va, Rivors - va) g, + (1 RIYors - va, Rinors - ) (100)
1
= [yory - vel? > —horz a3
Combining (98), (99), and (100) leads to (95).

Theorem 3.5. Let
pla, B,0,7) = [aQ +(1—a)?e”® - M} {ﬂ2 +(1-p)>2r - M}
Then

(aflr?+1’ r?+1)91 +(01€?+1, e?+1)91 Sp(aa ﬂa g, T) [(allr?a r?)Ql +(016?, e?)91:| ) (101)

(ay 'y ry o, +(e2ey ™ 30, <plar, B0, 7) [(azlr;‘, 7). +(c2e5, 63)92} , (102)
where the errors r' and e’ are defined by (34)-(38).
Proof. From (37)-(38), it follows that

{ri*h ety = {R; (oor{ ™ - vi), B (or ™ i)} (103)
Thus, by (48), we have
ori ™ - wilf = (ai ' e e, + (cief T el oy (104)

Combining Theorems 3.1, 3.2, 3.3, and 3.4 we then finish the proof of this theorem.
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Corollary 3.1. The iterative algorithm (30)-(33) converges if o and (3 are chosen such that

2(r+1) 2(c+1)
0,1l - ————}<a<l, 0,1 - ———} <8<
max{ 7'0’2+7'+2} @ max{ 7'20'+0'+2} p
Corollary 3.2. The optimal relazation parameters are o = % and 3 = %

Corollary 3.3. When o = 7 = 1, which is true if Q1 and Qs are symmetric with respect to the
interface and the coefficients a; = az and ¢ = ca are constants, then (30)-(33) with 8 = 1/2
and o € (0,1) converges in one iteration no matter what the initial guess is.

Note that Theorem 3.2 could be changed such that |70r;‘+1 - V2|2 was bounded in terms
of |1ors™/% . 1y, instead of |Tiovors ™ /% « 1s]o. But this would lead to a recursive relation
that is hard to analyze. In particular, it was not obvious how to obtain optimal relaxation
parameters like the ones given Corollary 3.2. In fact, such recursive relation would not guarantee
convergence no matter how a and 8 were chosen. In contrast, our Theorem 3.5 guarantees
convergence no matter how large the jumps are in the solutions and coefficients across the
interface, provided a and ( are suitably chosen. Besides, an expression for optimal relaxation
parameters is obtained. Note that the optimal values of a and § in Corollary 3.2 can be
approximated numerically and they can be used to achieve nearly optimal convergence.

4. Numeric Examples

In this section, we present some numerical experiments for our iterative procedure using
triangular lowest order Raviart-Thomas mixed finite elements in two dimensions. Numeric
examples will show that our iterative method is insensitive to discontinuous solutions and
variable coefficients even with big jumps across the interface. We will apply approximated
optimal relaxation parameters a and  in all of our numerical tests, which would not converge
for wildly behaved coefficients with @ = 8 = 1/2. Sharp interfaces of the true solution can
also be captured fairly easily and accurately. For simplicity, we will test our algorithm on
problems with a simple interface, although our theory permits rather arbitrary ones when
a sophisticated grid generator is available. Subregion problems are solved by GMRES with
symmetric SOR preconditioning. Only nonzero entries of subregion matrices are stored in the
compressed sparse row format [27]. This means that all neighboring nodes for each node in
a subregion triangulation need be found and sorted. Since the number of neighboring nodes
varys with each node and with different triangulations, allocating a large array for each node
would unnecessarily increase memory storage. We use a linked list for finding and sorting the
neighboring nodes. Our implementation is in C++ with double precision on an SGI machine.

For the lowest order Raviart-Thomas mixed finite elements, pressure is constant on each
triangle and is discontinuous across different triangles. The flux on each triangle is a vector
function ¢(z) = [a + cx,b + cy]” in two dimensions. Let p; be the middle point on side i of
a reference triangle and v; the unit outward normal at p;, i = 1,2,3. Three basis functions
¢i(i = 1,2,3) can be constructed corresponding to p; such that ¢; - v;(p;) = 6;;5. Then the
approximate flux function g(x) on the triangle can be written as a linear combination of the
basis functions: q(z) = q1¢1(x) + ¢2d=2(x) + gsp(x), where ¢; = ¢ - v; is the flux unknown at
node p;, ¢ = 1,2, 3. Note that the global flux is continuous across the middle points p; from one
triangle to another.

In all of our test, we let the domain Q = (0,1) x (0,1) and the interface I' be at the line
x =y, which divides the domain into two subregions @ = {(z,y) : 0 < z,y < 1 and z < y}
and Q2 = {(z,y) : 0 < z,y < 1 and z > y}. Uniform triangular grids are used in each of the
subregions. All initial guesses are chosen to be zero. Optimal relaxation parameters a and 3
are obtained by an iterative algorithm that generates random numbers on the interface and
extends them to subregions:
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Algorithm 4.1. optipms(M,e)

c=T=o0p=1p=0;

for (n=0,1,---, M) do
generate random numbers for vector ¢ on the interface;
Extend ¢ to Q1 and compute r1 = |B|3;
Extend ¢ to Qo and compute ro = ||3;
o = max(o,r1/72);
T = max(7,72/71);

if (max(lo —opl|,|T —7p|) <€ and n > 1) break;

op = o;
™=T;
enddo

a= (o> +1)/(r%0 + 0 +2);
B = (1o +1)/(c?r + 1 +2);
output o, 3;

In particular, we will use optipms(100,10~%). That is, we choose M = 100 and € = 10~* in the
algorithm. In reality, the for loop in the algorithm is broken within a few iterations (1 to 4
in our examples) for obtaining fairly good approximations « and 3. The algorithm is very fast
due to the random vectors ¢ generated on the interface, and the stronger the discontinuity in
the coefficients, the faster convergence it has.

We consider the following four examples with continuous and strongly discontinuous coeffi-
cients across the interface.

Example 4.1.
0 Ou 0 ou 1
b - (e )
Jy oy 1+z+y
62’LL2 62U2
B (8:62 + 8y2)_f2’
—Vuy - vy = g1, on 0y NOLY,
Uz = ga, on Qs NON,
where vy is the unit outward normal along 9€2;. The value of § stands for the strength of dis-
continuity in the coefficients and will be given in the tables below. The functions fi, f2, g1, g2
(u = n = 0) are chosen such that the exact solution is discontinuous across the interface and
given by:

uy = fi, inQy,

m QQ,

ui(z,y) =10z +y, inQy, us(z,y) = sin(z +y), in Q.

Example 4.2.
oe* ¢ .
-V <|: (5; 6?@; :| vul) = fl(may)) m Ql)

_v. ({ :uj(mly) ;ii(“i“y) ]Vu2> + (24 sin(@) + cos(y))us = fo(a,y),  in s,

up =g, ondQNoNk=1,2.
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The value of § stands for the strength of discontinuity in the coefficients and will be given in
the tables below. The functions fi, fo, g1, g2 (u = n = 0) are chosen such that the exact
solution is

ur(z,y) = 2e"sin(3z)cos(3y), in Qy, ux(z,y) = 2e"Vsin(3x)cos(3y), in Qs.

Example 4.3.

1+z+y

e’ =z Uy _ ]
_V.<{m ey]Vu1>+7l+x+y—f2(m,y), in Qs,
Up =gk, o0noQNONk=1,2.
The value of ¢ stands for the strength of discontinuity in the coefficients and will be given in

the tables below. The functions fi, f2, g1, g2, i, 1 are chosen such that the exact solution
has a jump discontinuity:

oe* ¢ u )
-V- ({ 6:: 6; ] Vu1> +6— = filz,y), inQy,

ui(z,y) = eV, inQy, us(z,y) =5"Y, in Q.

Example 4.4.
de* 4 .
s (FRALOREE

z

-V ({ et :vy ] Vu1> po—t = sin(z + y) cos(13zy),  in s,
r e l+z+y

up =5, ond NN,

us=z+y, ondflyN o

The value of § stands for the strength of discontinuity in the coefficients and will be given in the
tables below. The exact solution is unknown so that we only check the speed of convergence.

Our numerical results will show true errors for both pressure and flux between the numerical
solution and the given exact solution at the time the iterative process is stopped when the
iterative error is less than 1072, At the m-th iteration level, they are defined in Sobolev space

norms as:
Fm — max { ||Qm - Qm—l”H(diV;Ql) ||Qm - Qm_l”H(diV;Qz) } ,

)

1Qmll idivian) 1@l (div;on)

{ ||Um - Um71||L2(Ql) ||Um - Um71||L2(92) }
P,, = max ) )
UmllL2(0y) 1UmllL2(0,)
Iterative error = max {F,,, P}, (105)
Qm—q iv: Qm —q iv:
True flux error = max | lirdivien) , | lirdivie) , (106)
||Q||H(div;91) ||Q||H(div;92)
Un — Un —
True pressure error = max { (L UHL2(91)7 1~ vl } . (107)
lull2(y) lullz2(,)
where U, and @,, denote approximate solution and flux at iteration m, v and ¢ denote exact
solution and flux, and || - “H(diV'Qk) and [ - ||z2(q,) denote the discrete norms of

) 1/2
1oll gz divion = (113200 + iy vlB2y))

1/2
lolls@n) = ( / |v|2dw) |
Qr

The iterative process will be stopped when the iterative error, defined by (105), is less than
1075, The the number of iterations and true flux and pressure errors, defined by (106) and
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(107), will be reported for Examples 4.1, 4.2, and 4.3. However, for Example 4.4, only the
iterative error, defined by (105), is reported to show the speed of convergence.

4.1. Numeric Experiments on Matching Grids

In this section, we conduct numerical experiments with the grids from different subregions
matching at the interface; that is, they form a valid triangulation in the whole domain €.

We first test the dependency of the convergence upon the grid size. Two uniform triangular

1 1
grid sizes 0 X 0 and — X 20 are applied to Examples 4.1, 4.2, 4.3, and 4.4, with results

shown in Tables 4.1, 4.2, 4.3, and 4.4, respectively. Note that our algorithm contains a fractional
step, at which the iterative errors are also shown in Table 4.4. From these results, we see the
iterative errors in the relative Sobolev norms are essentially independent of the grid size. The
same conclusion has been claimed for similar methods [21, 22, 39, 38].

We now observe the accuracy of our method in capturing strong discontinuities in the
solution, its conormal derivative and the coefficients. From Table 4.1 for Example 4.1, Table
4.2 for Example 4.2, and Table 4.3 for Example 4.3, we see that our method is very accurate
after a few iterations for both the pressure and flux variables. The accuracy of our method
is observed to be independent of the coefficient jump, which is the greatest advantage of our
method. No other numerical methods are known to share the same property for the general
problem (5)-(8). Notice that the methods in [24, 31] have accuracy independent of the coefficient
jumps only for a special class of problems. Furthermore, a first order accuracy is observed for
both flux and pressure variables. This is consistent with standard results of mixed finite element
methods [4, 25] for well-behaved coefficients.

Finally we observe the dependence of convergence upon the coefficient jumps. From Tables
4.1,4.2, 4.3, and 4.4, our method also converges very fast even for very large coefficient jumps.
The convergence tends to be faster when the jump gets larger from § = 1 up to § = 1012,
This can be explained theoretically by our error reduction formula in Theorem 3.5. When the
coefficient jump is getting larger, one of o and 7, defined by (49), will go to infinity and the
other goes to zero. With the optimal relaxation parameters chosen according to Corollary 3.2,
one of o and B will go to 1 while the other go to 0. Then the error reduction factor p(a, 8,0, 7)
in Theorem 3.5 will approach zero. In other words, in the absence of approximation errors,
the larger the coefficient jump is, the faster convergence we should have. However, this is not
true when the coefficient jump is § = 10~!®. This could be caused by the mixed finite element
method. Notice that we need to compute the inverse matrix a; Lin the iterative method and &
appears in the denominator of this inverse. When 6 = 10~!%, this could cause a lot of numerical
errors in the iterative method.

4.2. Numeric Experiments on Non-Matching Grids

In this section, we conduct numerical experiments with the grids from different subregions
not matching at the interface; that is, they do not form a triangulation in the whole domain (2.
See Figure 4.2 for an example of a non-matching grid. Thus the grids in different subregions
can be generated separately. This provides great flexibility in grid generation as the interface
can be of arbitrary shape and it is much more difficult to generate grids in the subregions that
match each other at the interface. Our current theory in the paper needs to be extended to this
situation, but we want to see how well our method performs numerically. When the grids do
not match at the interface, a linear interpolation is used to interpolate from one grid to another
at the two sides of the interface.

For non-matching grids, the convergence is much slower. Thus the stopping criterion is now
changed to when the iterative error, defined by (105), is less than 10~2. As soon as this criterion
is met, the iteration is stopped and the true flux and pressure errors are computed according
to (106) and (107). Table 4.5 shows the results for Example 4.2 in the cases of grid size &= x ==

10 © 10
in subregion ; and grid size % X % in subregion Q- (denoted by % X 11—5 for short; see Figure
4.2 for the grid), and grid size % X % in subregion Q; and grid size 21—0 X 21—0 in subregion 2
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(denoted by % X 21—1 for short). In Table 4.6 we show the results for Example 4.3 in the cases
of grid size 11—5 X % in subregion Q; and grid size % X % in subregion 2, (denoted by 11—5 X %

for short) and grid size 55 X 55 in subregion Q and grid size {= x 1= in subregion €, (denoted

20
by 5= x 1= for short).

Table 4.1: True flux and true pressure errors, as defined in (106)-(107), and number of iterations when

the iterative process is stopped for Example 4.1 with different grid sizes % X 1—10 and % X %, and jump
discontinuities § = 1,1072,107°,1071°, 10715, respectively.
. I 1 L 1 T
Grid size = 10 X 10 Grid size = 20 X 20
Jumps Iterations | flux error | pressure error | Iterations | flux error | pressure error
60=1 5 3.39e-02 5.27e-02 5 1.64e-02 2.63e-02
§=10"" 3 3.59e-02 5.27e-02 3 1.67e-02 2.63e-02
§=10"° 2 3.59e-02 5.27e-02 2 1.67e-02 2.63e-02
§=10"1 2 3.59e-02 5.27e-02 2 1.67e-02 2.63e-02
§=10""7 4 3.59e-02 5.27e-02 7 1.67e-02 2.63e-02

Table 4.2: True flux and true pressure errors, as defined in (106)-(107), and number of iterations when

the iterative process is stopped for Example 4.2 with different grid sizes 15 x &5 and 55 X 55, and jump
discontinuities § = 1,1072,1075,107'°,107'5, respectively.
Grid si T . T
rid size = 10 X 10 Grid size = 20 X 20
Jumps Iterations | flux error | pressure error | Iterations | flux error | pressure error
=1 4 1.37e-01 1.03e-01 3 6.90e-02 5.19e-02
§=10""2 3 1.37e-01 1.03e-01 3 6.90e-02 5.19e-02
6=10""° 3 1.37e-01 1.03e-01 2 6.90e-02 5.18e-02
§=10"1° 3 1.37e-01 1.03e-01 2 6.90e-02 5.19e-02
§=10""° 3 1.37e-01 1.03e-01 4 6.90e-02 5.18e-02

Table 4.3: True flux and true pressure errors, as defined in (106)-(107), and number of iterations when

the iterative process is stopped for Example 4.3 with different grid sizes %0 X 1—10 and % X %, and jump
discontinuities § = 1,107%,1075,107"'2,107'5, respectively.
Grid size = li X % Grid size = 2i X %
Jumps Iterations | flux error | pressure error | Iterations | flux error | pressure error
60=1 2 8.58e-02 2.63e-02 2 4.29e-02 1.31e-02
6=10"3 2 8.64e-02 2.65e-02 2 4.30e-02 1.31e-02
§=10"° 2 8.64e-02 2.65e-02 2 4.30e-02 1.31e-02
§=10"" 2 8.64e-02 2.65e-02 2 4.30e-02 1.31e-02
§=10"" 3 8.64e-02 2.65e-02 4 4.30e-02 1.31e-02
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Table 4.4: Iterative errors between current iteration and previous iteration, as defined in (105), at
each iteration for Example 4.4 with different grid sizes &5 X {5 and 35 X 55, and jump discontinuities
§ =1,1072,107°,107'2,107'5, respectively. Notice that each iteration contains two fractional steps
and the iterative error at iteration 0 is always 1 since zero initial guess is used.

Grid size = % X % Grid size = % X %
Jumps Iteration iterative error iterative error
0 1.00e+00 1.00e+00
0.5 1.02e+00 1.01e+00
=1 1.0 1.47e-02 1.92e-02
1.5 3.04e-04 4.43e-04
2.0 6.57e-06 1.14e-05
2.5 - 2.87e-07
0 1.00e+00 1.00e+00
§=10"3 0.5 1.41e+00 1.44e+00
1.0 1.65e-03 1.71e-03
1.5 3.58e-07 3.35e-07
0 1.00e+00 1.00e+-00
§=10"° 0.5 1.51e+00 1.54e+00
1.0 1.56e-03 1.59¢-03
1.5 3.93e-09 7.06e-09
0 1.00e+00 1.00e+00
0.5 1.51e+00 1.54e+00
§=10"" 1.0 1.56e-03 1.60e-03
15 1.12e-04 4.32¢-04
2.0 2.35e-07 7.41e-07
0 1.00e+00 1.00e+00
0.5 1.54e+00 1.64e+00
1.0 2.50e-02 7.72e-02
§=10"1 1.5 7.33e-03 5.11e-02
2.0 1.01e-04 2.41e-03
2.5 4.46e-05 1.29¢-03
3.0 7.64e-07 8.12¢-06

Table 4.5: True flux and true pressure errors, as defined in (106)-(107), and number of iterations when

the iterative process is stopped for Example 4.2 with different non-matching grid sizes ;5 x - and
% X %, and jump discontinuities § = 1,1072,107°,1071°,107 1%, respectively.
Grid size = li X % Grid size = % X %
Jumps Iterations | flux error | pressure error | Iterations | flux error | pressure error
6=1 2 1.38e-01 9.97e-02 2 9.20e-02 6.64e-02
d=10""2 2 1.38e-01 9.96e-02 2 9.20e-02 6.64e-02
§=10"° 2 1.38e-01 9.96e-02 2 9.20e-02 6.64e-02
§=10""" 2 1.38e-01 9.96e-02 2 9.20e-02 6.64e-02
§=10"" 3 1.38e-01 9.96e-02 3 9.20e-02 6.64e-02

A notable difference between matching and non-matching grids is the slow convergence
when the grids do not match. However, the accuracy of the method, i.e. the error between the
approximate solution and true solution for both flux and pressure variables, is about the same
as in the matching grid case.
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Table 4.6: True flux and true pressure errors, as defined in (106)-(107), and number of iterations when

the iterative process is stopped for Example 4.3 with different non-matching grid sizes 1= x 15 and

& X &, and jump discontinuities § = 1,107%,107°,107'%,107'%, respectively.
Grid size = % X % Grid size = 2i X 115
Jumps Iterations | flux error | pressure error | Iterations | flux error | pressure error
60=1 5 8.02e-02 2.62e-02 1 5.36e-02 1.75e-02
§=10"°% 2 8.03e-02 2.62e-02 2 5.36e-02 1.75e-02
§=10"° 2 8.03e-02 2.62e-02 2 5.36e-02 1.75e-02
§=10""7 2 8.03e-02 2.62e-02 2 5.36e-02 1.75e-02
§=10"1 2 8.03e-02 2.62e-02 3 5.36e-02 1.75e-02

The algorithm with non-matching grids is worth further investigation, since it offers an
opportunity for easily and accurately tackling realistic interfaces such as in alloy solidification
problems. In such problems, the interface between the two phases can be of arbitrary shape
and grid generation can be applied in parallel and separately in subregions. Note that grid
generation usually consumes a large portion of CPU time in a typical numerical simulation, and
generating non-matching grids in parallel in subregions can dramatically improve the efficiency.

. Fi§ 4.2. Non-matching grids at the interface with grid size %0 X %0 in subregion {2; and grid size

15 X 15 in subregion .

5. Concluding Remarks

We have proposed a numerical method to solve two-phase interface problems with possibly
strongly discontinuous coefficients by iteratively solving smaller and well conditioned problems
corresponding to each phase using the mixed finite element method with Lagrange multipliers
at the interface. When the solution and its conormal derivative have known jumps at the
interface, our method still works well without additional computational cost. Notice that a
sophisticated technique is developed in [19, 20, 18, 32] to handle problems with discontinuous
solutions and conormal derivatives at the interface, whose accuracy should decrease when the
coefficient jump is large.

The advantage of our method is that its accuracy does not seem to deteriorate when the
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coefficient jump is getting increasingly larger, provided the jump can be accurately represented
on a given computer. Experimentally, it seems the coefficient jump d(z) or its inverse (scaled
to 0 < d(x) < 1) must be larger than the machine epsilon. In double precision on most work-
stations, this machine epsilon is approximately 2.22 x 10~'6. Another advantage of our method
is that it converges very fast even for strongly discontinuous coefficients. Notice that the condi-
tioning of problems with strongly discontinuous coefficients is very bad and standard numerical
methods converge very slowly on them, unless some sophisticated preconditioners are properly
constructed and implemented. Besides, our method is guaranteed to converge, provided the
relaxation parameters are chosen according to Corollary 3.2. In fact, these parameters may
not have to be chosen exactly optimally. An approximation such as by Algorithm 4.1 with just
a few iterations provides values for the parameters that lead to very fast convergence for our
method (30)-(33).

Our numerical experiments have included the case in which the grids in different subregions
do not match on the interface, but the convergence is faster when they match. The accuracy,
however, does not seem to be affected by non-matching grids. This method is particularly
suitable for object oriented programming [38, 41] and collaborative PDE solvers [23]. The
accuracy, ease of implementation, and extendibility to more complex interface geometry make
this method very competitive compared to methods studied previously [9, 10, 12, 11, 19, 18, 6,
31, 24]. In general, the interface can be of arbitrary geometry. Applying non-matching grids is
a good feature and grids in different subregions can be generated separately and in parallel.

It should be noted that our algorithm does not seem to directly apply to more than two
phases, in which more than two subdomains should be employed to tackle strong discontinuities
in order to obtain accurate numerical solution.

In the future, we may try to solve two and three dimensional application problems with
more complex geometry and interface. For some elliptic interface problems, the position of
the interface is unknown and the iterative algorithm has to include a procedure to find an
approximate location of the interface. For some time-dependent problems, the interface may
move with time. Thus the subregion that each phase occupies and the finite element grid on it
are varying dynamically. In this respect, dynamic finite element methods [33, 34, 36] may be
applied.
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