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MATHEMATICAL ANALYSIS FOR QUADRILATERAL
. ROTATED ©Q; ELEMENT
II: POINCARE INEQUALITY AND TRACE INEQUALITY*V

Ping-bing Ming  Zhong-ci Shi
(Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

This is the second part of the paper for the mathematical study of nonconforming
rotated Qi1 element (NRQ: hereafter) on arbitrary quadrilateral meshes. Some Poincaré
Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A
discrete trace inequality is also proved.
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1. Mesh Subdivision

Let 75, be a partition of Q by convex quadrilaterals K with the mesh size hx and h :=

maxgeT;, hi. We assume that 7 is shape regular in the sense of Ciarlet-Raviart [3, p. 247].
We define a mesh condition which actually quantifies the deviation of a quadrilateral away from
a parallelogram [10].
Definition 1.1. (1+4a)-Section Condition (0 < a < 1). The distance dx between the midpoints
of two diagonals of K € Ty, is of (’)(h?“) uniformly for all elements K as h — 0. In case of
a = 0, Ty is the trapezoid mesh, and in case of a = 1, T, satisfies the Bi-Section Condition
[13].

We define by Py, the space of polynomials of degrees no more than k, and by Qj, the space
of degrees no more than k in each variable.

Let K = [—1,1]? be the reference square, the coordinates of the its four vertices are denoted
by {(&,n:)}i, which is labelled from the lower-left to the upper-left in a counterclockwise
manner, the same rule applies to K, whose vertices are denoted by {(z;,v;)}7_,. There exists
a bilinear mapping F' such that F(K’) = K. Let F = (2K X&), with

4
1
Tror= 1 E 1+ & +nin)z; = ao + a1€ + azn + a12én,
i=1

4
1
y =7 ) (L GO+ mimys = bo + bi& + bon + b1agn.
i=1

To each scalar function ¢ defined on K, we associate it a function v on K such that v(x) =
v(F(&)) = 0(2).

Before closing this section, we fix some notations. For any integer k, H*(Q) denotes the
standard Sobolev spaces [5]. f,udz is defined as the integral average of v on Q. Denote
by Vi, the NRQ, finite element space, and by V,*, V¥ the corresponding finite element spaces
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with continuous edge integral mean or with continuous mid-point on each edge (see [12,9] for a
definition). For any v € V},, we define a piecewise norm as

ot = (3 190l2.) "

KeTs

Throughout this paper, the generic constant C' is assumed to be independent of the mesh
size h.

2. Poincare Inequality

In this section, we present some versions of the Poincaré inequality for the nonconforming
finite element spaces V" and VP [12]. We adopt all the notations appeared in [9].

In case the element K is a rectangular parallelepiped, the Poincaré inequality has been
proved in [6]. A strengthened version of this inequality is presented in [7]. But both of them
are suitable only for the homogeneous space V; . Moreover, as to the strengthened Poincaré
Inequality, the quasi-uniformity of the mesh subdivision is assumed. In this section, we will ex-
tend Poincaré inequalities appeared in [6, 7] to both homogeneous and nonhomogeneous spaces
over arbitrary quadrilateral meshes without the quasi-uniformity assumption, which allows for
the adaptive mesh subdivision.

Meanwhile, some generalized Poincaré Inequalities have been proved by Stummel in [14]
by virtue of the compact argument. However, when it applies to the quadrilateral rotated Q;
element, we have to assume the quasi-uniformity of meshes and the closedness of the given finite
element space via the generalized patch test. But as we have seen in [9] that the finite element
space V;/ does not pass the generalized patch test for arbitrary quadrilaterals. So, instead of
the compact argument, we adopt Teman’s approach [15] which avoids the generalized patch
test.

There is also another approach appeared in [8, Chp.3] to prove the Poincaré inequality for
nonconforming elements, which starts from the conforming “relative” of the relevant noncon-
forming element, then exploits the high order distance between the conforming ”relative” and
the nonconforming element to prove the desired inequality. This approach is very flexible which
allows for very "rough” mesh. Recently the same approach is employed by Brenner [2] to prove
the generalized Poincaré-Friedrichs inequality for piecewise H' functions.

Theorem 2.1. Poincare Inequality

lvllo < Clvln Vv € Vou. (2.1)

llvflo < C(|U|h + |][ Uda:|) Yo € V. (2.2)
Q

[ollo < C(joln + [lvflor) Vo€ V3. (2.3)

)

1/2
lollo < Cloli+C( > leleP) T voe vy (2.4

eCI'NTh,MEF

Proof. We prove the above four inequalities one by one.
For any v € [H'(Q)]? and v € Vp 3, an integration by parts gives

/Qdivt/wda:: 3 (—/Kz/:Vvda:-%/BKm/)-nds).

KeTh
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It can be shown that

'S /8 v nds] < Clplfo (2.5)

KeTs

In fact, for any v € V!, and e € 0K,

/em/:-ndsz/e(v—][ev)(z/)-n—][z/)-n)ds,

thus (2.5) follows from the above identity and the scaled trace inequality. As for v € V,, we
decompose

Z/aK't,b-nvds: Z Z 'l,b-n(v—][ev)ds

KeTh KeT, eCOK,Mce” €

Yy /6(¢.n_][qu.ndx)(v—u(M)ds)ds

KeT, eCOK,Mee

DY (U—U(M))ds][K¢-n:T1+T2. (2.6)

KeT;, eCOK,Mee " €

Obviously, the first term T can be bounded as |T*| < Ch|t|1|v|;. The estimate of the second
term T2 is performed as follows:

LAED D SR (TR E SR

KeTy, eCOK,Mce

<C 3 kg 19llo,x < Clolallwllo.
KeTh

Here we have used

o = v(M)lo.. < ChILZIV0ll0 (2.7)

and the inequality [ 9 - n|lo,e < Ch,}l/2||'¢/)||07K. Therefore,

[ divipo ds] < Clpllu o
Q

By virtue of a result in [1], there exists 1 € [H!(Q2)]? such that
dvip=v and [l < Cllefo

which together with (2.5) gives (2.1).
As to (2.2), invoking [1, Theorem 3.3] once again, then there exists ¢ € [H}(Q2)]? such that

divyp = v —][ vdr and ¢l < C|v|lo- (2.8)
Q
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/Qdivz/f(v—][gv) dz) do = / div v da

/1/1Vvda:+/ vtp - nds)

As before,

KeTh

< Cllllfoln- (2.9
Combining (2.8), (2.9) and noticing

o~ f sl < Clol,
Q

then by use of the triangle inequality we thus get

M%SM—%UMMH¢UMMSCWMHfU%U
Q Q Q

To prove (2.3) and(2.4), we proceed along the same line as the case for homogeneous spaces.
In fact, we only need to estimate (2.9) for the case e C I' N 7;,. For v € V}?, we have

Z /m/) nds| Z /v—][ nds+/][vds¢ nds|

eCI'NTy eCI'NTy
1/2 —-1/2 1/2
< N PRl Pl + B 191K) + [vllo.cllwllo.e
eCI'NTy
< C(vln + [lvllo,r)[e ]l (2.10)

For v € V}/’, we have

Z /m/) nds| = Z /v—v nds+/ev(M)1/)-nds

eCI'NTy, eC'NTs
<C S Bl gl + B2 ) k)
eCI'NTh
+ > (el o)l llo.c
eCI'NTy
2\ 1/2
<C(loln+ (3 lelloDP) Dl (2.11)

eCI'NTy

Note that in the second to the last step of both (2.10) and (2.11), we have used the trace
inequality

l¥llo,r < Cllepl]-

Thus (2.3) and (2.4) are direct consequences of the above two inequalities. The proof is com-

pleted.

Remark 2.2. Note that a Sobolev version of the inequality in this Theorem is proved in [8].
We will give a strengthened Poincaré inequality for the quadrilateral rotated Q; elements,

its parallelepiped counterpart has been presented in [7]. Such inequality reflects the rotation

property of NRQ; .
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Theorem 2.3. For any w € R? with |w| =1, if the (1 + a)—Section Condition holds, then

vllo < C(IVv - w|lo.n + KPR/ 2Dp|) Vo € Vo, (2.12)
lollo < C(IVv - wllon + B 2ol + [lvllor) Vo € Ve, (2.13)
[vllo < C(|Vv - wllo,n + A2 [y,

+ > |6||v(1\4)|2)1/2 Yo e VP (2.14)

eCI'NTy ,McEe

Proof. First we prove the homogeneous case (2.12). For any w € R? with |w| = 1, we have

/|v|2da::/ lv|? div(w - z)w dz
Q

=— Z / V] ww-zdr+ Z/ [vfw - zw - nds

KeTn KeTn
=1 + L.

We bound I; as follows:

1/2 1/2
|Il|<2max|w z| Z / Vo - w|2dm (/ |v|2dm)
Q

KeTh
/ Vo wl.

As to the term I, we distinguished two cases. Let fn(z) =w-zw-n. Ifv € Voip, then

1
S—/ |11|2d:v+41m213(|c..’-31:|2
4 Q z€EQ KeT,

L] < ][vds+][vds| fn(z
KEeTh eCOK
(| —][ vds|® + |][ vds|?) fn () ds
KeTy, ecok V¢ € €
vds)][ vdsfn(z)ds
KeTh eCOK €
-y ¥ /|v—][vds| ) d
KEeTh eCOK

v ds)][ vdsfn(z)ds

KeTn eCOK
=J¢+ J3. (2.15)
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Obviously, we have Ji* < Ch|v|}. Observing  vds =0 for e C T', then

J2§2Z Z|/][vdsv—][vds (frn(z ][fn|ds

KeTy, eCOK

<Y 3 If vaslo= f vasloclita@ =  falos

KeT, eCOK

<0y hi? (i lollo.x + B [l k)R ol i
KeTs

<C Y (hxlvlloxlvlk + B vh.x)
KeTh

< Chllololol + CH?ol?
1
< Il + CrPof:.

Summing up all the above estimates we come to (2.12) for v € Vi,

For v € V},, we only need to replace +,vds in (2.15) by Ty, (v) (for the definition, see [9]),

and denote the right side of (2.15) by J? and J%. The estimate of J? is the same as J¢. We
estimate J% as follows.

Note fn(z) = w - aw - m, then f,,(2) = §(#)w - n. For any quadrilateral element K, if we
denote its west, south, east and north edges by e, ez, es and ey, respectively, then we expand
JY as

Jy =2 Z Z / (v —=v(M))fn(z)ds

KeT, eCOK,Mece

—2}" / (v — o ))fn(a:)ds+/ o(M) (0 = 0(M)) fr () ds

KeT, "¢t es

+1MMM—MMWMM%+1MMM—MMWMM%)

In what follows, we shall consider the cancellation of the line integrals. Firstly we transform
the integrals over e; and ez to the reference element as

/NMM—MMWM@%

€1

=/‘@«4mxm—Lny—m—Lo»m—mexm2—m)w

—1

+/‘u—Lm@eLm—ﬁemeememm—@>m

—1

=I +1I7. (2.16)
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Similarly,
[ vOD@ = o0 () ds
- / (0L 0)(0(1,) = 5(1,0)3(1, s (e + o)
+ / OL.0)(0(1,) = 6001 mwalars +aa) d
=0+ (2.17)
Therefore,

+ / (6(=1,m) — (=1,0))0(~1,0)5(~1,7)wn (brz + )
- / (6(=1,m) — (=1, 0))i(~1,0)4(~1,n)wn (buz + )

+ / (6(1,m) — 5(1,0))0(L, 0) (L, n)wn (br + ba),

which can be reshaped into
1 n o
B+ =2 [ o(-10)3(-1,0) / 2 b(~1,1) dudy
L)
+WQ b12 + b2 / / dt/ aﬁ(t,O)g(t,’ﬂ) dt dn.

-1
=T'+ T2

It is easy to see that
T < Cdrllollg & 191l 0o, 1011 &
< Cdk|lollg g 10], g < Cdr/hillvllo,x|v]1, K,
and
IT?| < Chilo]y ;189], oo i < Chiclol i lollo,re + Chic|vf} k-

A combination of the above two inequalities gives

I} + I3] < C(dx /hx + hic)lolu k|[vllo,x + Chic|v]f -
Similarly,

[I7 + 3] < C(dr /hi + hic)lolu,k|[vllo,x + Chic|v]f -

The estimate of the second term on the right side of J} is the same. Summing up all the previous
estimates, we get (2.12) for v € V{,. As to (2.13) and (2.14), we only need to estimate the
following boundary terms that are not vanishing in (2.15):

Z/][vds|fn )ds and > /e|v ) fu(@

eCI'NTy eCI'NTy,Mce
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The estimates can be processed as that in (2.3) and (2.4). The proof is completed.

Remark 2.4. Comparing to the previous result [6], we have not used the quasi-uniformity
assumption on the mesh, since the inverse inequality is not used in this proof.

Corollary 2.1. Ifv € Vpp, then

C(|lov/dzlo + h=[v]n), (2.18)
C(lov/dyllo + h=[vln). (2.19)

[[v]]o

[[v]]o

Proof. We only need to select w = (1,0) and w = (0,1) in (2.12), then (2.18) and (2.19)
follow, respectively.

3. Trace Inequality

In [7], a global version of the trace inequality for the rotated Q; element over parallelepipeds
is presented, which is fundamental for the analysis of the martensitic problem. However, their
proof heavily depends on the specific configuration, thus it seems difficult to be extended to gen-
eral quadrilateral meshes. In the following theorem, we will give its quadrilateral counterpart,
which maybe a basic vehicle for some 2-D martensitic problems.

Before state the trace theorem, we cite a lemma about the domain.

Lemma 3.1 [5, Lemma 1.5.1.9, pp. 40]. Let Q be a bounded open subset of R™ with the
Lipschitz boundary T'. Then there exist 6 > 0 and p € C*°(Q)? such that

w-n>06 ae on I. (3.1)

Theorem 3.2. Ifw is a subdomain of Q with the Lipschitz boundary Ow, which is a collection
of elements K, then for u € V%, if the (1 + a)—Section Condition holds, we have

S Y [P < c(/ ul? dz+ b 3 Jul?

KCw,0KCOw eCOK 7€ KCw

([ WP 2 k0 2), (32

KCw

where C' depends on & and ||pl|c1 @)
Proof. As w is a open set with a Lipschitz boundary, then there exist § > 0 and p € C*°(w)?2
such that
p-n>46 ae on Ow. (3.3)

Note the following integral identity:

/V|u|2-uda:: Z/}(V|u|2-udm:2
w KCuw

Using Green’s formula [11], we have

/V|u|2 -pdr = — Z /KU2V-udm+ Z u’p - ds. (3.5)
v KCw

KCw,eCOK "€

Z /KUV|U|-udm. (3.4)

KCw
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Thus

Z Z wp-nds = 22/uV|u|-udm+Z/u2V-udm
K K

KCw,0KCOw eCOK 7€ KCuw KCuw

— u’p - n ds
> D vk

KCw,0KZ0weCOK €
= J;+ Jo+ J5.

It is easily seen that
1] < C Y lullo,rlub,x
KCw

and
FARS c/ luf2da.
w
J3 can be estimated as the term I5 in Theorem 2.3, i.e

sl <O S Tl e+ 1 Y lullo.glulii) Vu € Vi,
KCw KCw

Combining the above three inequalities and Lemma 3.1, we get (3.2) for the case when u € V}.
Following the same line, we get (3.2) for u € V. Noting that

> > lelu(m)? > S [ w)ds

KCw,0KCOw eCOK,MEe KCw,0KCOw eCOK,Mce " €

> Y Y /6|u|2ds

KCw,)KCOw eCOK,Mece

+ 2 ) > /|u—u(M)|2ds,

KCw,dKCOweCOK,Mce"” €

IN

the second term on the right hand side of the above inequality can be bounded by

Ch > |ulf k.

KCw

This completes the proof.
Remark 3.3. Note all results in this paper are valid for some other NR Q; elements proposed
in [4].
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