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Abstract

This is the third part of the paper for the rotated Q; nonconforming element on quadri-
lateral meshes for general second order elliptic problems. Some optimal numerical formulas
are presented and analyzed. The novelty is that it includes a formula with only two sam-
pling points which excludes even a Q; unisolvent set. It is the optimal numerical integration
formula over a quadrilateral mesh with least sampling points up to now.
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1. Numerical Integration Formulas

Throughout this paper, we adopt the notations appeared in [4]. Moreover, for any bounded
domain D or its subdomain D1, we denote f , f dz or f , fdx by the integral mean for any
function f € LY(D) or f € L*(Dy).

We define the quadrature formulas on the reference square K = [—1,1] x [—1,1] as follows:

I
/K b dedn ~ S 6d(0),  be C(R),
i=1
where the weight @; > 0, the quadrature point Q; = (&,7;) € K:, i=1,---,I. Let Q =

Spa@{l, £,m,&2 —n?}, we assume that the quadrature is exact on @, hence it is also exact on
Py (K). The following four schemes will be considered:

Schemel : I =4, &; =1, {Qi}t, =(-1,-1),(1,-1),(1,1),(-1,1),
Scheme2: I =4, &; =1, {Q:}~, =(-1,0),(0,-1),(1,0),(0,1),
Scheme3 : I =3, & =4/3, {Q:}, =(-1,-1),(1,0),(0,1),

aji :4/37 {Qt}?:l = (17_1)7(_150)7(07 1)7

aji :4/37 {Qt}ﬁzl = (171)7(_170)5(07_1)7

w; = 4/3) {Ql}le = (_1) 1)7 (1)0)7 (0) _1)'
Schemed4 : [ =2, ; =2, {Q:Y2_, = (-1,-1),(1,1), or (1,-1),(—1,1).

In Figure 1, we only draw one case of Scheme 3 and Scheme 4, the other cases can be
obtained symmetrically.
Remark 1.1. Unlike the standard quadrature formula, the above four formulas are not
required to be exact either for the quadratic or for the bilinear polynomial space, but for the
finite element space itself only. In particular, the scheme 4 does not contain even a Q; (k )-
unisolvent set.
Remark 1.2. In fact, there are some other possibilities for obtaining a quadrature formula.
For example, in the scheme 1, if we denote the weights &; in the counterclockwise manner, then
the following choices are also possible:
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Figure 1

1. 0+ Wy + w3 +04 =4,

2. (111 :(2)3 and (:)2 :@4.

2. Analysis of Quadrature Formulas

The quadrature on an element K is given by

I
[ s = 3" 0uk0(Qur) = Q(6),
=1

where ¢(z) = (), wik = 0iJr(Q:), Qix = Fx(Q;). The quadrature error functional is
denoted by

I
Ex(p) = /I(ﬁb(ﬂf)dﬂf—zwi,ch(Qi,K),

A ~ ~ ! ~ N
Be@ = [ 6=2 0@,

where Ex(¢) = EK(QASJK). Now we apply the quadrature formula Qp to the finite element
equation (2.11) in [4]. Define

ap(u,v) = Z Ok (01100, + a12(0,udyv + Oyud,v) + a220,udyv + auv],
KeTs

and (f,v)n = X ge7, Qi (fv), we solve the following equation:
an(un,v) = (f,v)n Vv € Vou. (2.1)

From now on, we always assume that the Bi-Section Condition [7] holds.
Theorem 2.1. Suppose a;j,a € WH>°(Q), f € WhH(Q),q > 2, and u € H}(Q),up € Vo, are
the solution of (1.1) in [{] and (2.1), respectively, then

2
Ju—unln < Ch [ D7 (laijllieo + llalloo)lull + 1 fll1q

ij=1
This theorem is a direct consequence of following lemmas.

Lemma 2.1. The modified bilinear form ap(-,) with the quadrature Qr is Vi, -ellipticity, that
18

ah(vh,vh) > C””h”i Yy, € Vo,h- (2.2)
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Proof. For the quadrature scheme 1, 2 and 3, (2.2) is obvious (e.g. [2]). We consider the
scheme 4. It is a special scheme which does not contain even a Ql(K' )-unisolvent set, so the
existing result in [2] is not available. Now we give a proof of Lemma 2.1 for the case vj, € V.
The ellipticity of the given differential operator £ implies that

szKZaU@vhavh QZK >CZW;KZ|6’U]1 QzK . (23)
i,j=1
Following the same line of [2, Theorem 4.2], we have

ap(vp,vp) > C inf  Jp,(&n) inf w; 0;0,(Q
Kze:n (€mek (emek IDFx (&P f l* < Z Z'
It is easy to see that
o = (38 =) — €+ Do) + (G0 =€) — 30 + )0 (2)
+ (106 =1°) + 56+ Do) + (2 (0 =€) + 30+ 1)0n(4)

Note that

1
2
where A = 05,(1) — 04(2) + 0n(3) — 0n(4), B = 0p(1) — 04(3), C = 04(2) — 01(4). Therefore,
i @i Y5 19;0n(Q0)[? = 247 + B? + C2.
On the other hand, it is easy to verify that |64]7 x = 2A4% + B? + C?. Hence

1
ap(vp,vp) > C inf Jp.(&,n) inf S P
(o) 2 € 3 inf Te(En) I B
> C Y |onli s > Clluallz.
KeTn

In the last step we have used Poincaré Inequality [5]. Thus Lemma 2.1 is proved for the case
vp € Vi,- As for the case vy, € Vi, the proof is similar.

Lemma 2.1 implies that equation 2.1 admits a unique solution.
Lemma 2.2. Suppose u € HE(Q),up € Vo, are the solution of (1.1) in [4], (2.1), respectively.
Then
Jan(v,) = an(v,w)

lu—uplln < C 1nf (||u—v||h+ sup

wEVo,n [[wlln
yWh) — (J, W ap(u,w) — (f,w
4 sup w0 = (Fwnl et w) = (£l
weVo,n [lwlln wEVo,n [[wlln

The main point in the derivation of Lemma 2.2 is the Vj-ellipticity of the bilinear form ay,
which has been proved in Lemma 2.1. The other steps are the same as in [2].
Lemma 2.3.
o anw) = (7,0)
wEVon [lwlln

< Chllall1 oolull2- (2.4)

Proof. We denote the consistency error functional by

dh(d)vw) = dh(d)vw) - ('£¢7w)
Integrating by parts gives

dp(u,w) = E all—wnl + a 8uum2 + au@wnl + 0/22@’11}712 ds
ox oy dy
KeTy

L+ L+ 1+ 14
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By virtue of the V}, approximation, we have

L, = Z/ an—wnlds

KeT,

— Z Z / a11—Wﬂ/l(alldx)%(w—TK(w))nlds

KeTn FCOK

1 Ou
+ Z Z W/Kandx/fa(w—TK(w))nlds

KeT, FCOK
= I5+ Ig.

Using [4, Lemma 2.2], I5 can be estimated as follows:
15| < Chllally,colfell2]lw]]n- (2.5)

To estimate I, we first consider the V,* -approximation:

= 1Y S o [ende [5G - TG - T3w)lmas

KeTn fcaK
< Chllallo,ollull2llwl|a-

As to the VP-approximation, following the same technique as in the proof of Theorem 4.1 in
[4], it follows that

[Is] < Chllally,collull2][wl]n-
Therefore, the above three inequalities give
(1] < Chllallycollullz][w]]n-

Similar estimates hold for I, I3 and I;. Thus,
2

i (u,w)| < Ch Y aigllseollullzllw]|s.
i,j=1
We still need to estimate the following two terms in Lemma 2.2, i.e. ap (v, w) —ap (v, w) and

(f:w)h - (f,U))
Lemma 2.4. Let a;5,a € W1o(Q). Then for any K € T, and v,w € Bx = Vo 4|k, we have

Ov Ow Ov Ow Ov Ow Ov Ow
5 )|+ |Bxlan 55N + |Bxlarn g )|+ |Bx(an 5] 50|+ | Brcavm)

2

< Chi (Y llaijllinox + llalltco)lI0ll2, s Jwlly, -
ij=1

|Ek (611 5=

Proof. In fact, we only need to estimate the following two terms:
|Ex (adp0p)| < Chillall1,co,kIpll2,x [Pl VP, p' € Br. (2.6)
|Ex (app")| < Chillally,co,x Pl x|lP'll0,.x VP, p" € Bk (2.7)
Noting that Ex (adpdp') = EK(l;ﬁzi)) with
b= Ji'aTl, s 0sFjs Ty iy € W2 (K),
0 =0pp € P1(K),
W= Op' € P1(K),
we have following estimates for b ([2], pp. 262)
16]5,00 < Chl|al]i,00,i = 0,1,2.
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Let ngS = I;ﬁ, then
B ($)] < gl m ¢ < Il il i
W) =0 V¢ € Po(K), then an application of Bramble-Hilbert Lemma yields

|Eg (¢0)] < Cloly o gll@lly z

2,
Qo
=
@D
oSl
=
-
-

|Eg (bow)] < C(Iblg oo 1011 & + 10l oo, |00, i) @0 &
< CO(Iblg oo, #1Plo, 5 + 10l oo, 71811 2P| &
< Chgllallyco,k Pl2,x 1P|k

which implies (2.6). Following the same line, we can prove (2.7).
The following Lemma concerns the quadrature error bound of the right side term of (2.1).
Lemma 2.5. Suppose f € WH4(Q), q > 2, then for each K € Ty, and v € Bg, we have

|Ex (f0)] < Chiemes(K)* 7% || fll1qx 0]l - (2.8)

Proof. Ek(fv) = Ep(Jk f0). Let § = Jk f and ¢ = §o, then
Bk (fo) = Eg(§9) = Eg () < Clillo,co < Clitbll1,q-
Note that Ex(p) =0 Vp € Py(K), then

Ex (fv) < Cllig < CUlyq k10l 5 + 19104, 1011 1)- (2.9)

Using the scaling trick, we can conclude (2.8) from (2.9).

Summing up Lemma 2.1-2.5, we come to Theorem 2.1.

To derive the £? error bound, we use the Aubin-Nitsche trick [6].
Theorem 2.2. Let u € H () NH2(Q) and up, be the solution of (1.1) in [4] and (2.1),
respectively. Assume a;j,a € W2*°(Q), and f € W>1(R), then

lu— unllo < Ch?. (2.10)
Before giving the proof, we need several lemmas.
Lemma 2.601.  Let u € H(Q) N H2(Q) and uy, be the solution of (1.1) in [{] and (2.1),
respectively, then
lu —unllo < SUPosger2(0) g Dfunevon [an(w = un, ¢g — ¥n)l + |dn(u, g — )]
+dn (g, v — un)| + |an(un, ¥n) — an(un, ¥r)| + [(f, ¥n) = (fsn)nl ], (2.11)

where ¢, is the solution of the following auziliary problem:
£p,=9g in Q, ¢,=0 on 900N (2.12)

Now we estimate the terms in the right side of (2.11).
Lemma 2.7.

| (u; g — n)| + ldn (g, u — un)| < Ch?[Jull2]lgllo- (2.13)

Proof. Let Wy, € C(Q) N H(Q) be the bilinear element space over the mesh 7j, and

9y, : C(2) = Wy i, be the associated bilinear interpolation operator. Choosing ¢y, = 7, (Qrog),
we have
dp(u, Yn — ¢g) = dp(u, Y — Qrdy + Qrndy — ¢y)
=dp(u,Yn — Qndy). (2.14)
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Let xn = mh(Qnog) — Qnoy, then ff Xrds = 0 due to Lemma 2.3. We have

ou ou
dn(u, b —tn) = Y / (115 Xnmds + 12 5 Xhnads
KeT, " K o o
ou ou
4+  a1a=—xnrN1 ds + ass —xpnods
oy oy
= J1+Jo+ J3+ Jy.

We estimate J; to Js as follows.

ou
|J1| = Z / ail 6_th1 ds
KeT, ' 0K v

ou
< /(011 —][ andw)a—(Xh—][ Xn)n1 ds
KeT,, Fcok’F K z F
Oou Oou
+ Z ][ auda:/ [% - %][Xh—][ Xn]n1 ds
KeT,,Fcok’ K F F F
< Chllay]leoallull2llxally < Ch*|lart|l1,c0.ellull2llégll2
< CR?||axi |1 0,2llull2llgllo-

Similar result holds for Js, J3 and J;. Thus
|dn (u, ¢y — 1) < Ch?|larn |1 c0.cllull2llgllo-

Next,
dn(pg, v —up) = dp(dg,u— Qpu+ Qpu — up)
= di(¢g, Qru — mr(Qpu)) + di(dg, Th(Qru) — us)
= Js+ Js.
| J5| < ch?[|dg Il Qnulla,n < Ch?[|gllol|wll2-
|Jel < Chllggllz [mr(Qnru) — unlli,n
< Chllggll2(lmn(Qru) — Quulli,n + [|1Qnu — ulli,p + |lu — unll1,n)
< CP?(|gllollull2-
Therefore,
|dn (g, u — un)| < Ch?||gllo||ullz, (2.15)

and (2.13) follows from (2.14) and (2.15).

The following Lemma concerns the consistency error due to the numerical integration.
Lemma 2.8. Suppose a;j,a € W>>®(Q), then for any K € T, and v,w € Bk, the quadrature
scheme 1-4 admit the error bound as follows:

ov Ow ov Ow ov Ow ov Ow

el |EK(G12%6_y)| + |EK(al2a—y%)| + |EK(G22a—y6—y)| + |Ex (avw)|
2

< Ch% (Y Nlaijllz,co i + llall2,o0, )10l llwl|2

i,j=1
Proof. As before, we only need to prove the following two facts:

1) |Ex(adpop')| < Chicllallz,co klIPll2 k[IP'll2. 5 VP, ' € Br,
2) |Ex(app')| < Chicllallz,co xllpll.x|lP'll.x Vp,p" € B
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We prove the first one, the second is almost the same. Note that Ek(adpdp') = EK(Eﬁﬁ)),

where b, 0,1 are defined as in Lemma 2.4. Let Ily be the L2-projection from £2(K) onto the
piecewise constant space, i.e. o0 = 1/|K]| fK ©. Based upon this projection, we can decompose

EK(Bﬁﬁ)) as follows:
B (bind) = Ep (bo (i — o)) + Eg (b(6 — yd)Mgw) + E . (b oTTob)
= A; + As + As.
A; can be estimated as in Lemma 5.4:
Ai] < ClIbbly oo il = Thotbly 5 < ClIBBII, oo lb]y &
< C|Eﬁ|1,oo,f(|w|l,f(
< O(bly oo i 18llo, i + Bllg oo 1811 )01, -
Exchange the place of v, w, we get
| As| < Cbly oo g ITotdllg 101, & < Clbly oo i llBllg 18], -
An application of Bramble-Hilbert Lemma [1] yields
|As| < Cllblly oo i Tobllg g Totblly 5 < CllbILy o0 i l0llg N0,
< C|B|2,m,K||ﬁ||O,K||w||0,f('
In view of the above three inequalities, it follows
B (bo)] < (IBllg o, icl0ly e l0]y & + 10y o, el 19llo, 0],

+ 10l o, & 1@ lo, & |011, &+ 10l2 00, & [101]0, £ 1@ 1lo, )

IN

2
Chie Y Nlaijlla,o x 1Pll,wlP[12, -
ij=1
We complete the proof.
Based upon Lemma 2.8, we can estimate the term @y, (up, ¥n) — an(un,¥n) as follows.
Lemma 2.9.

|an (un, ¥n) — an(un, ¥n)l < Ch?||ull2llgllo- (2.16)

Proof. Note that mpu is an interpolation of u, then
an(un, ¥n) = an(un, ¥n) = (an(un — Thu, ¥n) — an(un — Thu, Pr))

+ (@n(mhu, Yn) — an(mhu, ¥n))
= By + Bs.

By virtue of Lemma 2.4, we estimate B; as follows:

|B1| < Chllvnll2llun — mhulln - < Chllgllo((lun — ulln + [lu — mrulls)
< CR?|igllollull2,
where we have used Theorem 2.1 and Lemma 2.1. Using Lemma 2.8, we have
|Ba| < CR?[[pnllzllmnulln < CR?llgllollulle.

A combination of the above two estimates yields (2.16).
Now we turn to the last term on the right hand side of (2.11).
Lemma 2.10. Suppose f € W24(Q),q > 2, then for each K € T, and v € By, we have

| Ex (fv)] < Chiemes(K)> ™% ||fllz,q,x [[v]|2.x-
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Proof. Ek(fv)= EK(JKfﬁ) Let § = Jx f. If we denote II; be the £2 projection operator

from By onto P;(K), then
Exc(fv) = E(§0) = B (3110 + §(0 — I10)).
Note that in the present situation, Ky (p) = 0 Vp € Py (k), thus
Eg(@id) < Cllgihiblly o, g < CIGTLDI,, &
C|gﬁlﬁ|2,q,f(
Clgla,q, & 10llo & + 1911 4 21011 &)- (2.17)

For any ¢ > 2, we can select p > 2 and the following embedding relation holds:
N . ~ 1 1 1
W2I(K) = W' (K) < C(K),- = - — =.
p g 2
An implementation of the estimate for the £? projection gives
19(6 — 11,0)| Cllallo oo, &
C||g||1,p,f(|ﬁ|1,f( < C|§|1,p,1%|ﬁ|1,1%

C(|g|1,q,f( + |g|2,q,f()|ﬁ|1,f('

<
<

IN

|6 — Lol 4

IN N

The above two inequalities imply

[Eg (90)] < Cllgly g & 10ll0, + (19114, + 19124 2101 ] (2.18)
Using the scaling trick, the desired result follows from (2.18).

Combining Theorem 2.1 and Lemmas 2.6-2.10 yields immediately Theorem 2.2.

It means that the optimal error bounds in both energy norm and L? norm are obtained
with the numerical integration schemes introduced in the beginning of the paper. Notice that
the third and the last scheme employ less sampling points than the corresponding 4-node
bilinear element, which may considerable reduce the computing cost, such phenomenon was
also observed for quadrilateral Wilson nonconforming element in our early work [3].
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