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Abstract
In this paper we present a trust region method of conic model for linearly constrained
optimization problems. We discuss trust region approaches with conic model subproblems.
Some equivalent variation properties and optimality conditions are given. A trust region

algorithm based on conic model is constructed. Global convergence of the method is
established.
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1. Introduction

Trust region methods have very nice global and local convergence properties, and it has
been shown that they are very effective and robust for solving unconstrained and constrained
optimization problems ( for example, see [2], [3], [4], [6] , [10], [11], [13], [14], [15], [17], [19] and
[27]). Conic model methods, a generalization of quadratic model methods, possess more degree
of freedom, can incorporate more information in the iterations, and provide both a powerful
unifying theory and an effective means for optimization problems [1] [4] [5] [12] [18] [22] [26].

In [4], a trust region method of conic model for unconstrained optimization problems was
presented. It is shown that this method is advantageous in both theory and numerical as-
pects. In this paper, we further describe a trust region method of conic model to solve linearly
constrained optimization problem

min f(x) (1.1)

s.t. ATz =, (1.2)
where f : R™ — R is continuously differentiable, A € R**™ x € R" b € R™, rank(4) = m. Our
method is iterative, and the trust region subproblem solved in each iteration is the minimization
of a conic model subject to the linear constraints and an additional trust region constraint.

Normally, numerical methods for solving optimization problem (1.1)-(1.2) are reduced gra-
dient method, projected gradient method and reduced quasi-Newton method which are based
on quadratic model. Using null space techniques, the constrained problem (1.1)-(1.2) can be
transformed to an unconstrained problem. In order to incorporate more useful interpolation
information in constructing subproblems, Davidon [5] suggested a new model — conic model. A

typical conic model for unconstrained optimization is as follows:
T T
9 S 1 st Ags
S)=Jfr+ + = 1.3
Vi) = fit Tt (1.3)
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where fr, = f(xr),9r = Vf(xk), Ax € R is a symmetric matrix, the vector a € R" is a
vector satisfying 1 —a”'s > 0. If a = 0,(s) is reduced to be quadratic. Also note that (s) is
quadratic along any direction s € R" satisfying a”s = 0.

The conic model (1.3) can be also written as the following form of the collinear conic model:

1
(s) = fetgiw+ §wTAkw (1.4)
w
It follows from (1.4)-(1.5) that
s —Ag'g
1—aT A, gy

is a minimizer of ¥(s) if Ay is positive definite.
Sorensen [18] discussed collinear scaling methods for unconstrained optimization. For the
scaling function

w
iy — - 1.6
rir(w) = @) = Jlanr + ) (1.6)
the corresponding quadratic model is
1
Vg1 (w) = dry1(0) + By 1 (O)w + §U’TBk+1U% (1.7)
which satisfies the following interpolation conditions
Vr+1(0) = ¢r+1(0), Y11 (0) = B44(0), (1.8)
Vrt1(—0) = bpp1 (—0), Yy (—0) = Py (—0), (1.9)
where v € R™ is chosen such that
1—hj v >0. (1.10)

Di and Sun [4] consider a trust region method of conic model for unconstrained optimization.
They give the following model

T T
. 9i S 1 s'Bys

=14 - 1.11

min - y(s) = fi+ 1-aTs 3 (1 —aTs)? (1.11)

st. || Ds|| < Ag (1.12)

or equivalently
1
min  fy, + gi Jrw + §wTBkw (1.13)
ka

They construct a trust region algorithm based on the above model, and give convergence anal-
yses. Another class of conic trust region methods for unconstrained optimization is presented
in [8] where the model is

g{s 1 sTBgs
1—aTs  2(1—aTs)?

| < Ap. (1.16)

min  ¢(s) = f + (1.15)

S
1—aTs
This method with self-adjust strategy has been studied and has desired numerical results.

In this paper we generalize the trust region method of conic model for unconstrained op-
timization to solve linearly constrained optimization problem (1.1)-(1.2). In Section 2, the
motivation and a detailed description of our method are given. Convergence analyses of the
new algorithm are presented in Section 3. In addition, the conic trust region method for non-
linearly constrained optimization is also presented separately in [25].

st ||
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2. Motivation and Description of the Algorithm

Assume that the current point z is feasible, namely ATz, = b, it is easy to see that the
constrained condition is equivalent to ATs = 0 if we let © = 1, + s. Therefore it is reasonable
to use the following subproblem:

min g (s) (2.1)
st ATs=0
[Is[] < Ay

where . .
_ giS 1 s Bys
() = T m Yo S

(2.4)

and gr = g(x) = Vf(xy), By is an approximation of the Hessian matrix V2 f(z;) and h € R™
is a horizon vector such that 1 — h%'s > 0.

Comparing the above subproblem with (1.13)-(1.14), one can easily see that we have chosen
D =T and Jj, = I for all k. It should be pointed out our results in the paper can be extended to
general D and Ji, and we make these special choices for convenience of convergence analyses.
Though theoretical analyses are nearly the same for general D and .J;,, numerical performances
of the algorithms will vary for different choices of D and Jj.

We will use a null space technique to handle the constraint (2.2). Let ¥ € R"™™™ and
Z € R"*("=m) he two matrices that satisfy

ATy =1, ATz =0,2"2=1

with rank(Z) = n —m. For example, Y and Z can be obtained from the QR decomposition of
A. Assume that

a=o| ¢ |-l ]

where () is n x n orthogonal matrix, R € R™*™ is a nonsingular upper triangular matrix, and
@1 and Q)2 are n x m and n x (n — m) matrices respectively. We can choose
V=AN" =R,
Z = Q27

where AT is a Moore-Penrose inverse (see [6] [9]). Since A is a column full-rank matrix, then
At = (AT A)~1AT. Obviously, the columns of Z form an orthogonal basis for the null space of
AT, Therefore condition (2.2) reduced to s = Zu , where u € R"~™. Therefore our subproblem
(2.1)-(2.4) can be rewritten as

min Py (u) = ngAu + E uT?ku
1—hTu 21— hTu)?
st ul] < Ay, (2.6)
where g, = ZT g, is a reduced gradient, By, = ZTB,Z is a reduced Hessian approximation and
h = ZTh is a reduced horizon vector. In fact, the above subproblem (2.5)-(2.6) is a conic trust
region subproblem for the unconstrained optimization
min  f(&) (2.7)

peRn-m
where f(#) = f(zx + Z&). Problem (2.5)-(2.6) can be solved by techniques given by Di and
Sun [4]. It is easy to see that a solution wy of (2.5)-(2.6) satisfies
(Br — geh”™ + g = —gi + prAih, (2.8)
p([|ukl] — Ag) =0, (2.9)
which, in fact, is the first order optimality condition for problem (2.5)-(2.6), where pu; > 0 is a
Kuhn-Tucker multiplier.

(2.5)
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Lemma 2.1. Conic model subproblem (2.1)- (2.4) with trust region in constrained form can
be transformed to a quadratic model subproblem with trust region in unconstrained form.

Proof. Let w = 1—r; (i.e., s = g3y ), then (2.1)-(2.4) becomes

1
min ngw-i—inBkw (2.10)
st. ATw =0 (2.11)
w
— | <A 2.12
Il < A (2.12)

which is to minimize a quadratic function subject to linear constraints and a conic type trust
region constraint. This trust region always lies in {Z € R"| 1+ hT(z — zx) > 0} for any Ay
and T = &, + w.

Set w = Zw, gx = Z%gr, Be = ZT'By Z,h = ZTh, then (2.10)-(2.12) becomes

1 ~
min ¢l + iuaTBkua (2.13)
ﬂ A2 (2.14)
(1+hTw)2 = " '

Note that the conic trust region (2.14) can be written as an ellipsoid trust region. In fact, (2.14)
is equivalent to

T < (14 hTw)2AZ. (2.15)
Let @ be the orthogonal rotation matrix such that
Qh = ||hfles, (2.16)
where e; = (1,0,...,0)T. It can be shown that (2.15) is equivalent to
0(i0; — w)? + w5 + -+ w2, < A7, (2.17)
where {w;,7 = 1,---,n} are components of the vector w = Qw, and
? WA < A
6=1-hPa, o= MR 5 _ A 2.18
L (218)
Define
Z=w—wey, V =diag(f,1,---,1), (2.19)
(2.17) reduces to
2Tvs < AL (2.20)
Therefore, subproblem (2.13)-(2.14) becomes
1 _
min  gi 2+ §2TBk73 (2.21)
st. 2TVi< A (2.22)

where G, = Qdr, Br = QBQT. Setting z = Vizin (2.21) -(2.22) yields

1 ~
min gl z + §ZTBkZ (2.23)
st ||zl < Ay, (2.24)

where g, = V%gk, B, =ViB,Vs. (2.23)-(2.24) just is the desired quadratic model subproblem
with trust region in unconstrained form, which can be solved by algorithms in [11].

From the above analyses, it can be seen that five supbproblems, (2.1)-(2.4), (2.5)-(2.6),
(2.10)-(2.12), (2.13)-(2.14), and (2.23)-(2.24), are equivalent. Therefore in the algorithm we
can solve any one of them. Since our subproblem is based on conic model, these models possess
more degree of freedom to incorporate interpolation information in iterative processes.
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In the following we give a description of our algorithm. Reduced quasi-Newton methods
are used to update the conic model. In the reduced form of updating Bj,, updating formula is

written as . .

Bk+1 = U(Bk,vk,rk), (2.25)
where updating relation U is BFGS or DFP formula. As in unconstrained case, the conic model
satisfies the following generalized quasi-Newton equation (see [18] [26]):

BkJrl'Uk =Tk, Vg = YgUk, hkTHUk =1— v, (2.26)
where o
i, Uk
flur) = fursr) + ok

ov = [(f(ur) = flurs1))? — G undiyue)®,

M=

. 1 - N
Th = Gkt+1 — %[I + hir1uf |9,

1=y

hjyr = —
’quzpk

ks
where p, € R"™™ such that u]py # 0. Clearly, v, = 1 — E{Jrlvk is an important quantity
which shows the characteristic of model function (2.5)—(2.6). If 74 = 1, then the model is
just a quadratic model and the generalized quasi-Newton equation (2.26) is just a standard
quasi-Newton equation .

Bk+1uk = ngrl - gk- (227)

Generally, we have two choices for py.
(1) Set px, = gx, then

5 11— . .
hiy1 = T7A i Sarde, Tk = Ye/ Vs
YUy, Gk
where Yk = 'Ykgk+1 — %gk
(2) Set px = gr+1, then
5 T—v . .
b1 = T779k+1 2apq19k41,
Vil Gri
. 1.
Tk = Brdr+1 — — Gk,
Ve
where v
L .
B =1- Ve Uy 9k

Yoo ulgres1
In the following algorithm the ratio of the actual reduction and the predicted reduction is

defined as
_ Aredy _ f(ox) — fon + i)
Predy —ay (uy,)
Note that s = 0 if and only if x; is a Kuhn-Tucker point of (1.1).

Pk

Algorithm 2.2. (Conic Trust Region Algorithm for Linear Constrained Optimization)

Step 0. Given a starting point xo, an initial approximation to the reduced Hessian
By € Rn=m)x(n=m) = qn initial trust region radius Ay and € > 0. Given Z
satisfying AT Z = 0 with rank(Z) = n—m. Set u € [0,1),n € (u,1),0 < & <
61 <1<62. Set k = 0.
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Step 1. Compute f(x1),g(xx) and gy, = Z"gi. If ||gxll < e, stop.
Step 2. Solve the trust region subproblem (2.5)—(2.6) of conic model for uy and sy.

Step 3. Compute
f(zr) — f(zr + sk)

pr = - :
—x (ur,)
Step 4. Set
Jre+se ifpr >,
Tht1 = {:rk otherwise ; (2.28)
and let the new trust region bound satisfy
Apt1 € [Ag, LA, if pr > (2:29)
Api1 € [Sollsklls E1Ak], if pr <. (2.30)

Step 5. Update By,.

ok = [(f(ur) = Flurs1))® — GTurglo wel?,

1 —
Fur)—f(urs1)+or

Uk = VU,

Yk = Ykk+1 = 3Gk,

Ty = ykl/’)/k;

Ak = wuggk;

ABkJrl = U(Bk,Uk,T'k),
hi+1 = arge.

Step 6. k:=k+1, go to Step 1.

In our algorithm, we can allow y = 0. By setting u = 0, the algorithm has the nice property
that any “better” point will be accepted. However the convergence results are not the same for
the case p =0 and p > 0.

3. Global Convergence

In this section, we give the convergence results of our algorithm given in the previous section.
The following lemma, is important for convergence analyses of trust region algorithms, which
is a generalization of a result proposed by Powell [13] for unconstrained optimization.

Consider
AT TF
. - gpu 1 u'Biu
min u) = — + = = 3.1
vu(w) 1—hTu  2(1—hTu)? (3.1)
st Jul] < Ag.
Lemma 3.1. If uy, is the solution of (3.1) and if || - || is the Iy norm, then
~ 1. Lo i
Predy(ug) = —iu(me) > 3 Il minf Ay, 121 (52)
[ Bl
where A
Ay = i (3.3)

1+ AphT g/ l|gnll
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Proof. Let v = —=—, then u = H# and (3.1) becomes
1 N
gFv + §vTBkv = ¢(v). (3.4)
where = denotes “defined as”. Let v(7) = —Tﬁﬂ' > 0, then
(7‘ = T o _Tgki N (35)
19k]l = Th™ g
and )
$(r) = d(v() = =7llgull + 57°ma, (3.6)
where .
L= 9¥ Brgr
19>
7 = 12l i5 the minimizer of (3.6).
If [[u(r*)|| < Ag, then
L]Igell®> _ _ 1]1gwll®
) = —— < — - 3.7
S T 0
w || = gl
If [|u(r*)|| = T AT > Ay, we choose 19 such that
7o/|9k|l _
lgkll = Toh™ i
ie.,
A y
k = Ak)

To = o =
11+ AxhTgr/lgnlll
then 7* > 19, that is

il | 5,
k
Then
* 1 A A A m
o(r*) < = lgrllAe(2 - Api) (3.8)
2 9%l
1 -
< —=|lg -
S 2||gk||Ak

Since ¥y, (ug) < ¢(7*), the result follows from (3.7) and (3.8).

The condition (3.2) is quite general. First, it allows the step u to be obtained by several

methods. Second, the reduced horizon vector h can be chosen as long as it satisfies 1 — hWTu > 0.
In above algorithm we use h = g. Third, it allows choosing l1,1l5 or [, norm.

If the accumulation point z* of the sequence {z} generated from Algorithm 2.2 satisfies
Z"V f(z*) =0,
ie., Vf(z*) € N(ZT), where N(-) denotes null space, then there is A* € R™ such that
Vf(z®) = AN,
which means any accumulation point z* of the sequence {x}} generated from Algorithm 2.2 is
a Kuhn-Tucker point of the original problem (1.1)-(1.2).

Next we give the global convergence theorem which says the reduced gradients converge to
zero. Hence, any accumulation point of the sequence of iterates satisfies the first order necessary
condition for a solution to (1.1)-(1.2).
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Theorem 3.2. Let f : R™ — R be continuously differentiable on a feasible region. Assume
{3k} bounded uniformly, i.e., there is a positive constant M such that

1Bill < M, V.
Then, Algorithm 2.2 will terminate after finitely many iterations provided that {f(zy),k =
1,2,...} is bounded below . In other words, if u =0, then either

lim f(zy) = —o0, (3.9)
k—o00
or
liminf ||gk|| = 0. (3.10)
k—oco

Proof. If the theorem is not true, then f(xy) is bounded below and there exists a positive
constant, § such that

lgell > 6 (3.11)
which, together with Lemma 3.1, implies that
Predy,(ur) > T7min[l, Ag] (3.12)
for some positive constant 7.
Define the set
Ko = {klpx > n}. (3.13)
Inequality (3.12) and the assumption that f(zy) is bounded below give that
> Ap < oo (3.14)
keKy
Because Ay < & A for all k ¢ Ko, if follows from (3.14) that
> A < 0. (3.15)
k=1
Therefore there exists Z such that
lim z, = Z. (3.16)
k— o0
Relation (3.15) shows that Ay — 0. Thus it follows from (3.12) that
Predk (uk) Z TAk (317)
for all sufficiently large k. (3.17) indicates that
lim pp =1, (3.18)
k—o00

which yields that, for sufficiently large k&,
Apy1 > Ay, (3.19)
The above inequality contradicts (3.15). The contradiction proves the theorem.
If 4 > 0, the convergence result can be further improved.

Theorem 3.3. Under the conditions of Theorem 3.2, if u > 0, then every accumulation point
of {z} is a Kuhn-Tucker point of (1.1)-(1.2).

Proof. 1If the theorem is not true, there exists an accumulation point £* which is not a KT
point of the problem. Thus, there exist positive constants 7 and € such that

Predy,(ur) > Tmin[l, Ag] (3.20)

provided that ||z, — Z*|| < €. Define the sets
Ky = {k| pr > n}, (3:21)
K = {klllze —z"|| < €} (3.22)

Because ¢ > 0, the set K7 has similar properties as Ky given in the proof of the previous
theorem. Therefore it can be shown that
> Ap< oo (3.23)

kEKlﬂK
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Hence there exists k such that

and

¢, (3.24)

S A< %a (3.25)

keK NK k>k

The above two inequalities imply that z € K for all k& > k. Therefore

o0
> A <0, (3.26)
k=1
which implies that
limzy, = z*. (3.27)

From the above relation, we can obtain a contradiction as in the proof of the previous theorem.
This completes our proof.

4. Conclusion

Conic trust region method is a competitive and potential method for various optimization

problems. In the paper, a conic trust region method for linearly constrained optimization is
presented. We put forth an algorithm with null-space technique and establish the convergence
properties. Further research is needed in both theoretical and numerical aspects. There are
many topics waiting us to do. Various forms of this kind of methods and their applications to
several optimization problems are worth to study.
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