Journal of Computational Mathematics, Vol.21, No.4, 2003, 411-420.

MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR
PARABOLIC PROBLEM *Y

Xue-jun Xu
(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences,
Beijing 100080, China)

Jin-ru Chen
(School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, China)

Abstract

In this paper, a mortar finite element method for parabolic problem is presented. Multi-
grid method is used for solving the resulting discrete system. It is shown that the multigrid
method is optimal, i.e, the convergence rate is independent of the mesh size L and the time
step parameter 7.
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1. Introduction

The mortar finite element is a new type of domain decomposition method, which can handle
the situations where subdomain meshes may be separately constructed and nonmatching along
the interface. We refer the reader for the general presentation of the mortar element method
to [3]. In [1], some domain decomposition preconditioners were constructed for the discrete
system of the mortar element method. Recently, a variable V-cycle multigrid preconditioner
and a W-cycle multigrid for the mortar element method were presented in [7],[4].

The objective of this paper is to study the mortar finite element for parabolic problem.
First, we extend the results in [3] to parabolic problem. An optimal energy error is obtained.
Meanwhile, we consider a multigrid method for solving the discrete system resulting from the
mortar finite element method. It is shown that the multigrid method is optimal, i.e., the
convergence rate is independent of the mesh size L and the time step parameter 7.

2. Parabolic Problem

Consider the following parabolic problem: to find u(z,t) such that

O tw =f in Qx0T

ot
u(z,t) =0 in 9Qx[0,T), (2.1)
U(l‘,O) ZUO(Z’),
where 2 C R? is a bounded domain, f € L2(2). £ is an elliptic operator

d

Lu=-)" %(%(m)g—;). (2.2)

ij=1
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Here a;;(z) satisfies
d

gl < Z aij&€; < 08¢ Vo e Q,¢ € RY, (2.3)

i,j=1

where ¢,C are positive constants.
The variational form of (2.1) is to find u € H}(Q), u(z,0) = ug(x) such that

0
(57+0) +Blu,v) = (£,v) Vo€ H)(Q), te0,T], (2.4)
where the bilinear form B is
d
B Ou Ov 1
B(u,v) = /ngl a;j 9z, Oz, dx Yu,v € H (Q)

and

(fv) = /vad:n.

We refer the notations of Sobolev space to [6] for details. It is easily seen that the bilinear form
B(u,v) is

(1). bounded, i.e. |B(u,v)| < Cluli|v|s Vu,v € H ().

(2). elliptic, i.e. |B(u,u)| > Clu|} Vu € HJ().

We use the backward Euler scheme and Crank-Nicolson scheme for the time discretization
[10]. Both schemes are absolutely stable [8]. Let At, be the n'" time step and M; the
number of steps, then Ei/[:ll At, =T. We lead to the following problem: for a given function
gn—1 € L*(Q), find w € H () such that

A (w,v) = 77 (w,v) + Bw,v) = (gn_1,v) Vv € Hy(Q), (2.5)
where 7 is the time step parameter. For the backward Euler scheme, we have
w=u"—u"t,
T = Aty,

(gn—la ’U) = (fa ’U) - B(U’n_la ’U),
and for the Crank-Nicolson scheme, we have

w=u" _un—l,

T = At,/2,
(gn-1,v) = 2((f,v) = B(u""1,0)).
It is known [6] that if Q is a convex polygon, then for any g € L?(2), there exists a solution
u € H2(Q) N HL(Q) of
B(u,v) = (g,v), Yo € H(Q) (2.6)

with
llullz < Cllgllo- (2.7)

Here and throughout this paper, ¢ and C' (with or without subscript) denote generic positive
constants, independent of the time step parameter 7, the mesh parameters L and h;, which will
be stated below.

Based on the regularity assumption (2.7), we have
Lemma 2.1. For any g € L?(2), the equation

Ar(u,v) = (g,v) Vv € Hy(Q) (2.8)
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has a solution u € H?(Q) N H}(Q) which satisfies
[lull2 < Cllgllo- (2.9)
Proof. Please refer the proof to [11].

3. The Mortar Finite Element Method

Now we partition 2 into nonoverlapping polygonal subdomains such that
N
Q=% and NQ; =0, i#j.
i=1

They are arranged so that the intersection of {;, N §Y;, for k # j is either an empty set, an edge
or a vertex, i.e., the partition is geometrically conforming. The interface

N
I ={]o0:\00

i=1

is broken into a set of disjoint open straight segments ,,(1 < m < M) (that are the edges of
subdomains) called mortars, i.e.

M

m=1

We denote the common open edge to €2; and €2; by vm,. By V(s we denote an edge of Q; is a
mortar and by d,,(;) an edge of (2; that geometrically occupies the same place called nonmortar.
There is no rule of selecting as a mortar.

Let I'% be a coarset triangulation of {; with the mesh size h;. The triangulation generally
do not align at the subdomain interface. Denote the global mesh U;I" by I';. We refine the
triangulation T'; to produce I's by jointing the mid-points of the edges of the triangles in I';.
Obviously, the mesh size hy in I's is ho = hy/2. Repeating this process, we get the I-time
refined triangulation I'; with mesh size by = h127! (I =1,...,L).

Define

X = {vlv]g, € H'(Q;), VYi=1,...N, v =0 on 0Q}. (3.1)

On each level [, we define the linear continuous finite element space over the triangulation
[} denoted by V;;, whose functions are equal to zero on 0. Let

N
‘7l = HVE,z = {'Ul|'Ul Q; =V, € V}yi}, (32)
i=1

forall [ =1,..., L, with the norm and semi-norm as follows:

N N
ollie = Q Mol @)Y, ol = (3 lin@,)'? Yo eV (3.3)
i=1 i=1

It is easy to see that
Vic---CVp.
For any interface vm = Ym(i) = Om(j), 1 < m < M, there are two different and independent
1D triangulations with mesh size h;; and hy ;. Let Mj(vp(;)) and M;(6,(;)) be piecewise

continuous linear function spaces corresponding to the triangulations I'} and F{ restricted to
Ym respectively. Additionly, we need an auxiliary test space Si(d,,(;)) as a subspace of the
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nonmortar space M;(0p,(j)) such that its functions are constants on elements that intersect the
ends of 0,,(;). Then we define the following mortar finite element space:

Vi = {v € Vi[V0p(;y CT, VY € Si(6m(j)) / (v, — vi,i)pds = 0}. (3.4)
m ()
The mortar element approximation of (2.8) is to find u; € V; such that
A (ug, )= (uy,v) + B(ug,v) = (g,v) Yv eV, (3.5)
where B(u,v) is the bilinear form on X x X
al d Ou Ov
m%nggéwg%%aja(m Yu,v € X (3.6)

Define the A,-norm by || - % = A.(-,-) and the 7-norm by || - [|2 = 7| - |3 + | - I3,
According to Proposition A.1 in [3], (2.3) and the definition of 7-norm, we have

o]l < CAr(v,v) Vo€V, (3.7)

and R
|A;(u,v)| < Cllu|l-lv|l: Yu,v € V. (3.8)

By (3.7), (3.8) and Lax-Milgram lemma, we know that (3.5) has a unique solution u; € Vj.
According to the proof of Theorem 5.4 in [3], the following result holds.
2(Qy),i=1,---,N, w €V}, we have

| Z / vwngds| < C Zh Z|1J|Hl(Q WP wily g, k=1,2, (3.9)
Kely
where (n1,n2) denotes the outer unit normal along 0K and h;; = maxgeri hic, hi is the
diamater of triangle K € T}.
Based on Lemma 3.1, we have

Lemma 3.2. Let u, u; be the solutions of problems (2.8), (3.5), respectively. Assume
aij(z) L (Q;) and u|q, € H*(Q;),i=1,---,N. Then

_ : _ 1/2
lu = wlr < Cf inf [lu — vl + th|u|29 (3.10)

Proof. Using Lemma 3.1, (3.7),(3.8) and integration by parts, for any v; € V}, we have
Cllu — w2 < A (w — v, ug — vy)

= A (u—vl,ul—Uz)—l-{(g,ul—vl)—ﬁ (u w — )}
A

- - 1 z d
(u — v, u —vy) Z/BKZ a]a Yni(u — vy)ds

Kely i,j=1
< C'{||U—Ul|| e = vrl-

Z hiilul3 o) 2w — v},
which yields

N
s = wnlly < Cfllu—willr + (3 B ull 0,02} (3.11)

The desired result follows from above inequality and triangle inequality.
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In order to estimate the approximation error, we need the following simultaneous approxi-
mation of V; in L? norm and H' norm.
Lemma 3.3. For any ~,, = 6m(j) = Ym(i) C I, assume C1hyj < hy; < Cohy ;. Let u € H&(Q),

ulo, € H*(Q;),i=1,---,N. Then there exists an element v; € V}, such that
N
lu—wil2, <CY W ullg,, s=0,1, (3.12)
i=1
where |- [lo = || Ilo-
Proof. For any 7y, C T, define operator 7, : L*(Ym) = Wi(dm(j)) by
/ (mmv)wds = / vwds, Yw € S;(0m(j)), (3.13)

m m

where Wj(~,,) defined by
Wi(dm(;)) = {vlv is a linear continuous function on 6p;), and v
vanishes at end — points of &,,;)}

From [7] we know

Imm vl L2(6,,5) < Cllvllr2(s,,))- (3.14)
Let {yl’} denote the nodes of 6m(j) and the operator Elygm(j) X = ‘71 is defined by
= iy (ﬂ'l,m(v|’vm(i) - U|6m(j)))(yli)7 yli € Om(j)
Ernn @) = { § Ui € b .15
It is not difficult to check that for any v € Vi,
M
v =0+ Y Eis, ) €V (3.16)
m=1

Let C} : H*(Q;) — Vi,; be usual interpolation operator. Define Cilo, = C} and v, = Cju +
M

> Elbmi) (Ciu). Obviously v; € V;. Since E; 5, ., (Ciu) equals zero at every interior vertex of

m(j)
m=1

the mesh in Q;, using the discrete norm and inverse inequality, we have
|El76m(j) (Clu)ﬁ—ll (25) <C zk: El76m(j) (Cru) (ylk)2 < Chl_,Jl ||El76m(j) (CZU)H%%JWU)): (3.17)
U

B8y (Crt) 1220y < OBF 5 32 Bty (C) 41)? < ChujlIEtsnisy (Cr)lliag, - (3-18)

Ui

m(j) m(5)

The above sum is taken over the vertices of the mesh in ©; that lie on d,,(;). By (3.14), triangle
inequality, trace Theorem, and standard interpolation estimate, we have

||El76m(j)(Clu)||%2((5m(]‘)) = ||7rl7m{(c’lu)|7m(i)_(Clu)|6m(j)}||%2(6m(j))

< C{||Cziu—u||2L2(ym(i)) + ||U—C;U||2L2(am(j))}
< C{h ICiu = ullfaq,) + huil Ciu — ulf g,
+hy 17w — w0y + hagClu = ulf o)}
< C{h?,imﬁlz(m) +h?,j|u|%12(9j)}- (3.19)

It follows from (3.17)-(3.19) and interpolation estimate that

lu—uli; < C{lu=Cullii+ D IE16,., (Crw)lls}
Om (s €L

N
< Yo g, s=0,1
i=1
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Combining Lemma 3.2 with Lemma 3.3, we obtain the following error estimate.
Theorem 3.1. For any Vm = Op(j) = Vm) C L, assume Cihy; < hy; < Cohyj. Let
u € H} () be the solution of problem (2.8), u; € V; be the solution of problem (3.5). Assume
aij(z)|o; € WL(Q;) and u|g, € H*(Q;),i=1,---,N. Then

N
lu—wlle < CLY_ AT (L4707 )lul3 0,17 (3.20)

i=1

4. Multigrid Method

In this section, we will propose a W-cycle multigrid for solving (3.5). An optimal convergence
factor is obtained, i.e. the convergence rate is independent of the mesh level [ and time step
parameter .

Define the operator 4;, : V; =V} as:

(A rv,w) = A (v,w), Yo,we V.

Then (3.5) can be written as
Arw = g1, (4.1)

where (g;,v) = g(v), Yve V.
In order to present the multigrid algorithm, we introduce the following intergrid transfer
operator [; for the nonnested space V(I = 1,..., L), which is first constructed in [7]:

M
Lv=v+ Z Elbms) (v), Yv eV, (4.2)

m=1

here the operator Z5,, . is defined by (3.15).
Lemma 4.1. For the operator I;, we have

(1).[Lvl g < Cloly,
(2).llv = Lvllo < Chylv|iy.

Proof. Please refer the proof to [7].
By Lemma 4.1 and the inverse inequality, it is easy to check that

||[l’U||0 < C”UHO, Yv € Vj_1. (43)

Then we have
v < C|vll-y, Yv € V. (4.4)

We now define the multigrid interation. In this paper, we choose the framework in [2]. The
kth-level iteration with the initial guess wq yields MG(l,wo, F}) as an approximation to the
following problem at level I: Find w € V; such that

Ar(w,v) = (F,v), YveV, (4.5)
where F; € V.
Multigrid iteration.
(1). If I = 1, (4.5) is solved directly.
(2). If I > 0, let wo € V; be an initial guess, a final approximation MG(l,wo, F}) is defined
as follows:
Smoothing step: For 1 < i < m, w; is defined by

(w; —w;—1,v) = /\lTTl[(Fl,v) — fL(wl,l,v)] Yv e V. (4.6)
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Correction Step: Set
Wpt1 = Wy + Ilq;u (47)

where ¢, € V;_; is the approximation of ¢ € V;_; obtained by applying p iterations with zero
as the initial guess of the [ — 1-level schems to the residual equation

A (q,v) = (F*,v) Yv eV, (4.8)
where for any v € V;_
(F'l*,’l}) = (Eallv) - AT(wmallv)
= A (w—wnm,[v) YveVi_. (4.9)
Finally, we have
MG(l, Wo, .Fl) = Wmt1- (410)

In the above multigrid algorithm, \;, = A\; + 77!, where ), is the largest eigenvelue of B;
defined by (4.12), m is a positive integer to be determined and p any positive constant bigger
than or equal to two.

For the convergence analysis, we also need the operator P,y : V; — V; which is defined by

A (Pyv,w) = A (v, [Iw) YveV,we V. (4.11)

Let {X; };VZ’I and {p; ;.V:’I be the eigenvalues and corresponding normalized eigenfunctions
of By, i.e.
Blipj :/\jgaj, j=1,...,Ng,
and
(i, 5) = bij,
where d;; is Kronecker symbol and B; is defined by

(Byv,w) = B(v,w) Yv,w € V]. (4.12)
For any v € Vj, v = ;.V:’l cjpj, define the following discrete norm over the space V; by
lollar = D cf i+ 7712 (4.13)
It is easy to check that ||v||o,r = [|v]|o, ||v|]1, = ||v]|, and
[oll3- =Dt + 71 = [ A 0f5. (4.14)

Then for the smoothing operator Tj,; = I — 51— A; ,, we have (cf. [2], [9],[11] for details)

(DTl < (L4770 o]l (4.15)
bt m
(2)-1T73vlf2,r < C#a +7 Y ol mo>2. (4.16)

Moreover, for the projection operator P,_1, we have

Lemma 4.2. It holds that
lv — P_1v|, < Ch(1+ 77 0] ||vl]2.,, Vv € V. (4.17)

Proof. Consider the following auxiliary problem: Find ¢ € H{ (2) such that
7€) + B(&,v) = (g,0), (4.18)

where g=A4; ;v.
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Obviously, v is the mortar finite element solution of ¢ in the space Vj, so by (2.9), (3.20),

we have
Chi(L+7 %)% |gllo
Chi(1+ 77 hE) || A ]lo.

1€ =vll <
<

Let v;_1 € Vi1 be the solution of the following variational problem

A-,—(Ulfl,ﬁb) = (g> QS) V¢ S Wfl-
By (2.9),(3.20), we conclude that
1€ = vi—illr < Chy(1+ 77" B3) %[ Ay 7vllo,

here we use the fact hy = hj—1/2.
An application of the triangle inequality yields that

lo LRl < o =€l + 11§ - LRyl
o = €ll, + 11§ = viall + 12 = L)oial»
I (w11 = Pi_y)]ls

4
= > I
j=1

Now we estimate .J; one by one, by (4.19),(4.21),(4.14) we know that
il < Chi(L+7 ' h) 2| Asollo
< Chy(L+7 B3 ||v]lar, i=1,2.

IN N

For Js, note that
M

(I -IL)vy_1= Z Bl by (V1-1)-

m=1
By a scaling argument and definition of I; (cf. [7] for details), we can derive

M
|(I - Il)vlflﬁ,l <C Z ||Ul*1|%n(i) - Ul*1|5m(j) ||%/2,'ym'

m=1

Note that & € H}(Q), so that

M
I=Iyval, < C Y N1 = Ol = W1 = Olsnes 132,

m=1
N N

< OO Ny =€l mna; + Y o1 =€l a.00,)
i=1 j=1

< Cllur =€l g+ Clluis — €3 g

< CRIL+ 7 R A vl2

Then we get the estimation of J3.
Similarly, we can get

(T = Iviall§ < Chif (1 + 77 b))l Ar-oll5.
Combining (4.25),(4.26) and using the definition of 7-norm, we have
|J3| S Chl(]. + Tﬁlhlz)HAl’T’U”g.

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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For the last term Jy in (4.22), by (4.11), we have

A-(vj—1 — P10,
Jy < C sup (Vs =10, %)
PEVIL1 lloll7
— 1
¢ swp (9,9 — Lip)
pevies el
Chullgllo = ChullAr7vllo
Chi(1+ 7B} || Az v]lo- (4.28)
Then combining (4.22), (4.23), (4.27),(4.28) yields Lemma 4.2.
Finally, we can prove the main result of this paper.

Theorem 4.1. Let p > 1 in multigrid algorithm, then there exists a constant 1 < v < 1 and
an integer m, all independent of level number | and the time step parameter T, such that if

17 = qull- < ~*[lall- (4.29)

<
<

Then
lw = w1l < yllw —woll+- (4.30)

Proof. Let e; =w —w;, 1 =0,1,....m+ 1.

€m+1 = €Em — Ilqu
= (em—NQ) + (7 — qu)
= (I-ILP_-1)em+Li(7— ‘Ju) (4.31)

It follows from (4.17),(4.16) that

I = LPDenll? < CHEL+7 0| Avreml3
< Chi(1+ 717 h7)? lemlla,-
h—2

< C’hf(l + Tﬁlhlz)2l7(1 + Tﬁl)\fl)meegH%
1

< C—lleolly. (if m>2). (4.32)

On the other hand,
||Il(q_qM)||T < C”q_qM”r

< Ol = CY*||Pi-1emll~
< CYlemllr < Cv*leol| - (4.33)

Hence, using similar arguments as in [2], (4.30) follows from the triangle inequality, (4.32),(4.33),
and choosing appropriate v and m.
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