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Abstract

By making use of the Gauss-Seidel-type solution method, the procedure for computing
the interpolation operator of multigrid methods is simplified. This leads to a saving of
computational time. Three new kinds of interpolation formulae are obtained by adopting
different approximate methods, to try to enhance the accuracy of the interpolatory oper-
ator. A theoretical study proves the two-level convergence of these Gauss-Seidel-type MG
methods. A series of numerical experiments is presented to evaluate the relative perfor-
mance of the methods with respect to the convergence factor, CPU-time(for one V-cycle
and the setup phase) and computational complexity.
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1. Introduction

Multigrid(MG) methods are very efficient methods for solving linear systems with a broad
range of applications. The characteristic feature of multigrid iteration is its fast convergence.
This convergence speed does not deteriorate when the discretization is refined, unlike for classi-
cal iterative methods which slow down for decreasing grid size. As a consequence an acceptable
approximation of the discrete problem can be obtained at the expense of computational work
proportional to the number of unknowns, which is also the number of equations in the system.
It is not only the complexity which is optimal, but also the constant of proportionality is so
small that other methods can rarely surpass multigrid efficiency [14] [2] [12].

Usual multigrid methods try to tailor the components to the problem at hand in order to
obtain the highest possible efficiency for the solution process. However, the algebraic multi-
grid(AMG) method is to choose the components independently of the given problem, uniformly
for as large a class of problem as possible. AMG provides a very robust solution method which
can be applied directly to structured as well as unstructured grids. The strengths of AMG are
exactly its robustness, its applicability in complex geometric situations and its applicability to
even solve certain problems which are out of the reach of usual multigrid methods, in particular,
problems with no geometric or continuous background at all as long as the given matrix satisfies
certain conditions [1] [13].

There now exist various different algebraic approaches, all of which are hierarchical and close
to the original AMG idea, but some of which focus on different coarsening and interpolation
procedures. An efficient AMG algorithm for M-matrices is described in [13]. In [3] [4] [5] [6] [7]
[8] [9] and [10], Chang et al. improve the interpolation operator and present different algorithms
to construct the coarse grid equations. In this paper, we apply the Gauss-Seidel solution
method to the computation of operator-dependent interpolation, and thus suggest three new
Gauss-Seidel-type multigrid methods, whose convergence is also proved. Furthermore, many
numerical examples are discussed to compare the efficiency of AMG methods. In section 2, the
basic AMG algorithm by Chang is described. Then three different AMG methods are proposed
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in section 3. In section 4, a convergence analysis for each of the AMG algorithms is given.

Numerical analysis and computational results are reported in section 5. Finally, conclusions
are presented in section 6.

2. The Basic AMG Algorithm

Consider a (sparse) linear system of equations: AU = F or E?:1 ajju; = fi(i =1,---,n).
We first have to generate a sequence of smaller and smaller systems of equations: A™U™ = F™
or i afiult = f*(i = 1,-,nm), where A™ = (a)n,, xn, U™ = (uf, - up )T, F™ =
(fr fm)  m =1, ,Myn=n; >--->na, A = A,U' =U,F' = F.

A fictitious grid Qm can be regarded as a set of unknown u}*(1 < j < ny,). The coarser
grid Q™! is then chosen as a subset of 2™, which is denoted by C™. The remainder subset
— C™ is denoted by F™. A point i is said to be strongly connected to j, if

lafi| > - max|alk| 0<h<1.

Let S/™ denote the set of all atrongly connected points of the point i and let C/* =
CmOSH,NM={j € Q" j #i,a]} #0}, D" = N* = C[",Di = D"\ S[*, DY = D" — D;.

Each variable in C™ interpolates directly from the corresponding variable in Q™! with a
weighting of unity, and each variable i € F'™ interpolates from the smaller set C}".

Because the error e* to be interpolated in an AMG method is obtained after a smoothing
process, we have

T+ > alel =dr ~0,Vie F™, (2.1)
JEN]™

which can be rewritten as

“l+2alkek+2a”3+2a " x0,Vie F™. (2.2)
keCm™ jeD; jeDY
Let g7} = %,j € D",k € C7*, for point j € D}*, the following approximations
kec™
are used in (2.2):
(1) For point j € DY,

e if 177 =0,af} <0,
—ei, if 1™ =0,a™ >0,
e ={ 53 o (2.3)
J QEkeClm g‘%ezb - Egn, if ZZL > 0,6{';’ > 0. 5,a” < 0, .
Ykecm GIRER otherwise.

(2) For points j € Df, more accurate approximations are used,
2) eom gher —eit, i n <0.75,6% > 0.5,a7} <0,

ey = %(Ekecl?“ gier +ei), if gl >2,67 >0.5,a7} <0, (2.4)
2 kecm IGkeR otherwise.
where
2 kecm Gy laZ |13}
m i J m _ %5iltyy
i =~ omp g T = 15; | —{k: ke C™al, #0}.
1] ZkeCi’" |a;‘7}c|7 (¥ Zkecm | |) zJ i J

Substituting (2.3)-(2.4) into (2.2) is equivalent to modifying the coefficients in (2.2) by
combining the following steps:
Step(1) add —|a}}| to aj},Vj € DZ( ), which is equivalent to e7* being replaced by e;* or —ej";

Step(2) add af} gy, to ajy,Vk € C7",Vj € DZ( ), which is equwalent to ef* being approximated

i1
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by Ekecm giker's
Step(3) add 2af} g7k to ajy,Vk € CI", and subtract aj} from aj},Vj € Dl@, which is equivalent
to e]" being approximated by 2 Zkeom giker — €'
Step(4) add 0.5a7g7; to ajy,Vk € Ci", and add 0.5a]} to ajj,Vj € D§4), which is equivalent to
e being approx1mated by 0. S(Ekecm girer +ei);
Where D ={j:j € Di", e} is eliminated by the corresponding step (I)}(l = 1,2,3,4).
Thus, an interpolation formula derived from (2.2) is given by

m m+1 - m
E wirel Vi€ F™, (2.5)
jecm
where
a™
m o __ ik m
wik ——(_l—m,kECl ,
(23
-m __ m m m m
apy =aj — g |ai}| — Z ai; +0.5 g ai;, (2.6)
jep® jeDp® jeD®
m _m
k+ E : a’zjg]k+2 E : az]g]k+0‘5 Z ;i 9jk-
jep® jeDp® jeD®

We refer to the above algorithm as Method 1.

3. Three Gauss-Seidel-type Algorithms

We can obtain three different new AMG methods by adopting different interpolation oper-
ators to be discussed in this section.
Equation (2.1) can be rewritten as

”Z+Zalkek+Zae ~0,Vie F™. (3.1)
keCcm JjeEDT

For each point ¢ € F™, when computing the interpolation formula by using (3.1), we ap-
proximate for all points j € D™ by using (2.3)-(2.4), which is referred to as a Jacobi-type
solution method. In fact, for points ¢ € F'™, only those points j € D}*, and j > ¢ have to be
approximated by using (2.3)-(2.4). This is because the interpolation formulae (2.5)-(2.6) for
those points j € D", and j < ¢ have been obtained by the previous computation. Thus, we
derive the following three Gauss-Seidel-type solution methods to be given shortly.

More precisely, (3.1) can further be rewritten as

m _m m m m _ m m_ m ~, - m
aii ei + E aikek + E aij ej + E aij ej ~ O,VZ € F . (32)
kecr JEDT,j<i JED™,j>i

For points j € D", and j < i, we use the interpolation formula (2.5)-(2.6); however,
for points j € D™, and j > i, we still use the approximations (2.3)-(2.4), and thus e* =
Yjecm wlkef”rl Then we approximately obtain

=—— E afret + E E affwiter ™ + E E aftwiier ™). (3.3)
“ keCm JjeED,j<ikeCT JED™,j>i keC™

In the above formula, for points k € C7",j € D", j < i, but k€C]", we make the following
three different approximations:
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Method II e**! ~ e/"™'. We derive from (3.3)

1 1 _ 1
> a%ezl"' + > > agw;}cez“" + > > agw;}cez“"
kecr jeDMi<igecy Moy JjEDT j>i keC™
f i

el = —
(2 m m m
aip + > > ajuwh

JED,j<i kECJ’."\Cim

Let wf} =0,k € C/*\CJ*,j € DJ*,j < i, and then we have

e = Y Wi(Dep™',vie F™, (3.4)
keCcm
where . o o
ajy + D;' afwi + D; .>.aijwjk
1) = ——— IS e (3.5)
ail + > > ajwi

JEDT,j<i keCT\Cpm

Method IIT ¢]'*! & e"*!, which is possibly more accurate than Method II because of the
geometric assumption that the error between points k& and j is smaller than the one between
points k and i. We derive from (3.3)

m ,m+1 a:’;w;’i m+1 m,nm ,m+1
kZC G ¥ DE 2 =y ik " DZ > kZC ik
m ] m 5L m m J ] m_j>q m
e 1D 7J<’kECJ. nci kecm\cm JERT .z kEC]
e — — i
3 m
N
Let wif =0,k € CM\Ci,j € D", j <, and then we have
m __ m m—+1 . m
et = E i (2)e ,Vie F™, (3.6)
kecr
where o
m Bij Wik m,~m
aje+ > = S g + > afjwj
JED™ j<i ik jED™,j>i
recT\C
Mmooy H
i (2) = — o : (3.7)

Method IV e]'™' ~ 0. We derive from (3.3)

m ,m+1 m,,m  m+1 m,mm ,m+1
>oager+ > X agwhel™ + > ) afwjey
keCc™ JED j<ipcom ﬂC?" JEDM™,j>i keC
j i

e, = —
1 m
Qg

Let w =0,k € CM\Ci, j € D", j <, and then we have

e = Y WRB)ept vie Fm, (3.8)
kecm
where
ag+ > ajjwiy + > aluwl
jeD™,j<i JjeED™,j>i
() = - — (39)

4. Convergence Analysis

In this section, the basic convergence results for Gauss-Seidel-type algorithms are given.
Let G™ : G(Q1™) — G(2™), the smoothing operator, where G(2™) denotes the linear space
of grid functions on the grid Q™;
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I, G(OQ™t) — G(Q™), the interpolation operators;

I G(Q™) — G(Q™TL), the restriction operators;

AMFL L G(Q™) — G(Q™), the coarse-grid operators;

Tm =™ —Im  (A™TH)=H[mH A™ (m, m+41) two-level correction operator, respectively.

We use the following three inner products besides the Euclidean inner product (-,-): (u,v)o =
(Du,v), (u,v); = (Au,v), (u,v)s = (D™t Au, Av) together with their corresponding norms || -
Il:(i = 0,1,2). Here, D = diag(A), (+,-)1 is the so-called energy inner product and || - ||; the
energy norm.

In [13], Ruge and Stueben prove the following theorems which will be used in our analysis:
Theorem 4.1. Let A > 0. Assume that the interpolation operators I}, have full rank and the
restriction and coarse-grid operators are defined by It = I | and A™T = [mttAmm
Further, suppose that, for all e™,||G™e™||? < |le™||? — 8||T™e™||? holds with some § > 0
independent of €™ and m. Then § < 1, and—provided that the coarsest grid equation is solved
and at least one smoothing step is performed after each coarse grid correction step—the V-cycle
to solve AU = F has a convergence factor (with respect to the energy norm) bounded above by
V1-4.

We say that a relaxation operator G™ satisfies the smoothing property with respect to a
matrix A > 0 if

1G™e™ [} < [le™[]} = aumlle™[5 (am > 0) (4.1)

holds with «,, being independent of ™.
Lemma. Let A™ > 0 and let the smoothing operator be of the form G™ = I — Q' A with some
non-singular matriz Q. Then the smoothing property is equivalent to

an@Q@'DT'Q<Q+QT - A

Theorem 4.2. Let A™ > 0 and define, with any vector

1 1
w™ = (wl*) > 0,r™ = maz;{———- ngn|a§?|},r(+m) = maz;i{ ———-: Zw;’ﬂa;ﬂ}
i Yii G2 Wil 535

Then the Gauss-Seidel relazation satisfies (4.1) with o, = 1/(1+ 'y(,m))(l + 7(+m)).

Theorem 4.3. Let A™ > 0 and n,, > p((D™)~'A™). Then Jacobi relazation with relazation
parameter 0 < w™ < 2/ny, satisfies (4.1) with ay, = w™(2—w™ny,). In terms of Ny, the optimal
parameter (which gives the largest value of a,,) is w* = 1/ny,. For this optimal parameter, the
smoothing property is satisfied with c,, = 1/ny,.

Theorem 4.4. Let A™ > 0 and let G™ > 0 satisfy (4.1). Suppose that the interpolation
operator I, | has a full rank and that, for each e™,

minen+[le™ = I €™ < Binlle™ |17 (4.2)

with By > 0 independent of e™. Then (3, > au,, and the (m, m+1) two-level convergence
factor satisfies: ||G™T™||1 < \/1— am/Bm.

In [11], Huang extends the results of Ruge and Stueben and gives another sufficient condition
for (4.2).

In [8], Chang presents the proof of convergence for the AMG method with the interpolation
formula (2.5)-(2.6).

Here, concerning the interpolation formulae (3.4)-(3.9), we have the following theorem:
Theorem 4.5. Let A™ > 0, and assume A™ is a weakly diagonally dominant matriz. suppose
the C-points are picked in such a way that, for each i € F™, and omitting the indices of levels,

we have
Zaj;gz Z a;;, and Zai_kg Z ai_j,

keC; jeF (N keC; jEF(\Ni



426 Z.H. HUANG AND Q.S. CHANG

where

~_J oa; (f a;<0) + [0 (f a;<0)
aij o { 0 (lf G,ij Z 0), and aij B aij (lf G,ij > 0)

Then the interpolation formulae (3.4)-(3.9) satisfy estimate (4.2).

Proof. For simplicity, we only prove (4.2) with respect to the interpolation formula (3.8)-
(3.9) as follows:

ei = Y rec, Win(3)ex
Qij
= it o Lkec Wk ~ 5 Lkeoi X jer (\n: a (Wk T Xiep aitgin
+2 EleD(.s) aigu; + 0.5 ZleD(@ airgir)]er

i

L(at, ajy, + ZleD(z) ]lglk)]ek

= e+ Zkec az.er — Zkec [ZjeFﬂN a5

ai- — —
—an Zkeci [Xjer ﬂNl- ﬁ-(%‘k + EleD@) apgik + 232 pe aagi + 0.5

+
ZleD(4) airgir)]ex +an Zkec A€k — ai; ZkECi 25 GFﬂN a” 75 @ Jk+
ZleDgz) a9 + 2 ZleDgs) aggix +0.5 ZZEDJ(.4) aigie)ler — o Yrec,

a;.
[EjeF ﬂNl ﬁ(a;rk + ElEDJ(.2) a’ﬁglk)]ek

= Egpl(ei—ex) + Ej(ei +ex) + Eies,

where

- _ 1 - @i ¢+ +

Ey = —a: EkECi{a’ik - EjeFﬂNi[ﬁ-(ajk + EleDJ(.z) a’jlglk)
a.. _ _
+ai(ag, + ZleDJ(.z) a9 + 2 EleDJ@) aigik + 0.5 ZzeD§4) airgie)]}s
+

+ _ 1 + a5+ +

Bl = rm EkeCi{a’ik - EjeFﬂNi[f;(ajk + ZzeDJ(?) ajlglk)

+

;E (aj, + Zlengz) a; gk + 2 EZEDJ@) aagie + 0.5 ZleDE‘l) aigik)]},
Ei = alii (@ii + X pec {0, — ZjEFmNi[%
Z]_j (aj, + ZleDJ(_z) aj ik + 2 EIEDJ(.B) aigie + 0.5 Z,€D§_4> airgi)]}
—Yrec:{a — EjeFﬂNi [%(aﬁ + Zlengz) aligik)

A
ot -~
ot ZZEDJ@) guk + 2 ElEDJ(-S) @igir +0-5 ZzeD§4) airgir)]})-

(ajy + EleD? aj,gix)
+

In order to use the inequality
(Z aju;)? < Zaju?,aj >0, Zaj <1,
J J J

we have to verify the corresponding conditions:
The fact that E; + Efk + E;; =1, and E; > 0 is evident; and we easily deduce

+ ; + + - : - -
p > 00 Y pec, g = ZjeFﬂNi ajj, and By > 0if 30, 0 ay < EjeFﬂNi @jj
Then we have the following estimate

rflnlJrn1 le™ — ImHem“H0 < Za“ Eje? + Ejk(ei +ep)? + E, (e — er)?).
ieEF
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Hence, from the equality
lle™|1F (Ae,e)p =32, ; aijeie;
= 1/23%; ;(—aij)(ei — €j)* + 32, 3 aijel
= 1/2%; j(=ai)ei —€;)* = 1/2%; jaj;(ei — e)* + 3, 3 aije?
= 1/2%; ;(—a;) (e — €)% + 305 X5z 05 (267 — (ei — €5)*/2)
+ 20 (ai = 2z laij ez
= 1255 (a6 —ej)” + X 4 ai(ei +€))%) + 2 (i — 30, laijl)ed,

it follows that (4.2) holds with 8, > 2.

The proof of two-level convergence for the AMG method with the interpolation formulae
(3.4)-(3.5) or (3.6)-(3.7) is similar.
Theorem 4.6. Assume A™ is a symmetric positive definite matriz with weakly diagonal
dominance. Let the C-points be picked in such a way that, for each i € F™, the inequal-
ities ZkeC;” a;c > ZjeFﬂNi a;;,zkecim a; < EjeFﬂNi a;; are satisfied. Suppose that
the interpolation formulae (8.4)-(3.5), (3.6)-(3.7) or (3.8)-(3.9) and Gauss-Seidel relazation
(or Jacobi relazation with parameter 0 < w™ < 2/y8, 5 > p((D™)"tA™)) are used in
the AMG method. Then the (m, m+1)-two-level AMG algorithm is convergent with factor
IG™T™||y < /1 — apm/Bm, where By > quy, any, is given by Theorem 4.2 or Theorem 4.3.
Theorem 4.7. Suppose the matriz A™ is symmetmc posztwe definite and weakly diagonally
Vie F™,j e O,

then the coarse grid operator A™t! is also symmetric positive definite and weakly diagonally
dominant.

dominant. If the interpolation weights satisfy |wm\ = |am\ a | > [witai},

5. Numerical Analysis and Computational Results

In this section, we present some numerical results for various problems by applying the
Gauss-Seidel-type multigrid methods given in this paper to evaluate their performance. Nu-
merical results are compared with those obtained using the standard AMG algorithm (Method
I). Particular attention is focused on the convergence factor and the CPU-time consumed.

The following notations are used for the results reported in all tables:

p : asymptotic convergence factor,

t;: computing time in seconds for one V-cycle,

tp: computing time for the setup phase,

N: number of iterations for convergence defined by ||rV||/||r
residual vector at the N-th iteration,

EQ: total number of matrix equations,

o ratio of the space occupied by all operators to the space at the finest grid,

o*2: ratio of the total number of points on all grids to that on the finest grid.

In all computations, the initial iteration u° is taken to be random numbers uniformly dis-
tributed in [0,1], and Gauss-Seidel relaxation is used as the smoothing operator and 6 = 0.25.
Problem 1. Poisson problem on a unit square with Dirichlet boundary conditions(5-point
discretization).

First, we consider the following standard 5-point difference stencil

0] < 1076, where rV is the

LSd—i{—l _411 —1]

N
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Subsequently, the following skew 5-point stencil
-1 -1
1
LiY = — 4
b 2p2

-1 -1],
is considered. Applying the Local Fourier Analysis philosophy, we obtain the h-ellipticity mea-
sure for this operator

min{|L;" (6)]

<Ol <7}
max{|L5*(8)| : 0

o <m}

E, (L") = <|

h /- < | ’
where IiZ“’ (0) represents the Fourier symbol of Lj". However Method IV is able to solve this
discrete operator efficiently.

The computational results for the problem are given in Table 1 and 2.

Table 1 Numerical results for L¢
method EQ p N tr o o'

I 64 x 64 0.021 4 0.17 0.040 2.16 1.66
128 x 128 0.022 4 0.61 0.123 2.18 1.67
II 64 x 64 0.062 5 0.17 0.056 2.16 1.66
128 x 128 0.079 6 0.50 0.128 2.18 1.67
II1 64 x 64 0.078 6 0.22 0.055 2.16 1.66
128 x 128 0.087 6 0.44 0.137 2.18 1.67
v 64 x 64 0.020 4 0.11 0.043 2.16 1.66
128 x 128 0.020 4 044 0.123 218 1.67

Table 2 Numerical results for L;"
method EQ p N tp tr o* ot

I 64 x 64 0.042 5 0.11 0.022 216 1.67
128 x 128 0.045 5 0.55 0.120 2.18 1.67
II 64 x 64 0.061 5 0.17 0.032 2.15 1.66
128 x 128 0.061 5 0.44 0.125 2.18 1.67
II1 64 x 64 0.056 5 0.10 0.044 2.16 1.66
128 x 128 0.060 5 0.61 0.110 2.18 1.67
v 64 x 64 0.029 4 0.11 0.028 217 1.67
128 x 128 0.029 4 044 0.138 2.18 1.67

Problem 2. Poisson problem on a unit square with Dirichlet boundary condition(9-point
discretization).
First, we consider the following 9-point difference stencil

1 [ -1 -4 -1 ]
L9=—1 -4 2 -4/,
6h? [ 1 -4 -1 J
h
which can be obtained by %de + %LZ“’.
Secondly, if I+ and I™,  (m = 1,2,--) are defined as full weight for the restriction
and bilinear interpolation as the prolongation, we obtain the following coarse grid Galerkin
discretization from the standard 5-point discrete Laplace operator A™, A"+t = [+l gmpm

For m — o0, A™ converges to a difference operator which is characterized by the 9-point
difference stencil

ng—limit) _ 3_22 { Ei :% Ei } ’
h
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for which improved results are obtained by using Method IV.
The computational results for this problem are given in Table 3 and 4.

Table 3 Numerical results for L}(Ltg)
method EQ p N tp tr o o
I 32x32 0075 6 011 0.028 131 1.33
48 x48 0.075 6 0.11 0.018 1.31 1.33
I 32x32 0.097 6 0.11 0.028 131 1.33
48 x48 0.098 6 0.11 0.010 1.32 1.33
IIT 32x32 0.08 6 0.06 0028 131 1.33
6
5
5
S

48 x 48  0.086 0.11 0.018 1.32 1.33
v 32 x 32 0.060 0.06 ctal 1.31 1.33
48 x 48  0.060 0.11 0.012 1.32 1.33

cta0: CPU-time approximates 0.

Table 4 Numerical results for LELg*“"“'t)

tp tr o o

method EQ p N
I 48 x 48 0.083 6 0.05 0.008 1.32 1.33
64x64 0.083 6 0.16 0.037 132 1.33
II 48 x48 0.116 7 0.05 0.024 132 1.33
64x64 0115 7 0.16 0.031 132 1.33
IIT 48 x48 0.116 7 0.06 0.016 132 1.33
64x64 0118 7 0.11 0.040 132 1.33
v 48 x 48 0.069 5 0.06 0.022 1.32 1.33
64 x64 0.008 5 0.11 0.044 132 1.33

Problem 3. To compare with Problem 1 and 2, we consider another 5-point difference stencil

1 1
Lgszﬁ -1 111 -1,

h
whose corresponding matrix has the very special property that algebraically smooth error is
geometrically smooth only in the x-direction but strongly oscillatory in the y-direction. Thus
the error between any two horizontal gridlines is strongly related.

As a result, this is a difficult problem for standard AMG or even Gauss-Seidel-type MG
methods. Its convergence factors are not satisfactory, which can be observed from the compu-
tational results in Table 5.

Consequently, we have to further improve the AMG algorithm based on Gauss-Seidel-type
MG methods. Up to now, we know that an additional fully relaxed Jacobi-interpolation step
can solve this problem successfully, and will give the results in future paper [10].

The computational results for this problem are given in Table 5.

Table 5 Numerical results for L}®

method EQ p N tp tr o o
I 64 x 64 0.917 159 0.11 0.022 220 1.72
128 x 128 0.938 216 0.50 0.090 2.22 1.73

II 64 x 64 0.906 140 0.11 0.022 2.28 1.69
128 x 128 0.929 189 0.44 0.091 2.32 1.69

111 64 x 64 0.905 138 0.06 0.023 2.28 1.69
128 x 128 0.928 186 0.44 0.092 2.38 1.70

v 64 x 64 0.858 90 0.11 0.025 2.29 1.69

128 x 128 0.883 122 0.39 0.093 2.33 1.69
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Problem 4. General matrix equations with large off-diagonal positive entries.
We use the following stencils:

1 1
N1 _
Ly, =13 0 4 1 ,
-1 .
and
1 -1
N2 _
Ly =13 -1 4 3 ,
-1 .

whose corresponding matrices are non-symmetric and non-diagonally dominant. Thus these are
very difficult problems.
The computational results for this problem are given in Table 6 and 7.

Table 6 Numerical results for LY!
N tp tr o o'

method EQ p
I 64x64 0.009 3 0.11 0.037 2.53 2.02
128 x 128 0.009 3 0.50 0.180 2.55 2.02
11 64x64 0.003 3 0.17 0.037 3.78 2.02
128 x 128 0.003 3 0.71 0.147 3.84 2.02
11 64x64 0.003 3 0.11 0.053 3.78 2.02
128 x 128 0.003 3 0.71 0.147 3.84 2.02
1AY 64x64 0.003 3 0.11 0.057 3.79 2.02
128 x 128 0.003 3 0.66 0.183 3.87 2.02

Table 7 Numerical results for L} 2
method EQ p N ¢t tr o o'

I 48 x 48 0.067 6 0.06 0.028 3.76 2.12
64x64 0.090 6 022 0.047 3.95 216
II 48 x 48 0.065 6 0.11 0.027 4.14 2.13
64x64 0084 6 0.17 0.053 4.37 216
II1 48 x 48 0.065 6 0.06 0.028 4.14 2.12
64x64 0084 6 022 0.063 4.36 2.16
v 48 x 48 0.066 6 0.16 0.018 4.20 2.14
64x64 008 6 022 0.055 4.39 217

Problem 5. The equation with cross-derivative terms
Lfu = —Au + eugy = f.

This problem is elliptic for |¢| < 2, parabolic for |¢| = 2, and hyperbolic for |¢|] > 2. Hence

standard grid coarsening is problematic for certain values of € and more robust smoothers, like

modified ILU, have to be used to handle the problems on a fine grid in GMG method. However,

AMG changes the grid coarsening process and directs it towards the problem at hand, while

keeping a cheap point smoother. The differential operator L° can not be discretized consistently

by a difference stencil which is axially symmetric for € # 0, but can be done by the following
second order and non-symmetric 7-point differential stencil

—£ —-14£ 0 '|

L) = { “1ds 4—: -1+ J ,

h

LT ey
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where € =1.5 is used.
The computational results for the problem are given in Table 8.

Table 8 Numerical results for L,(:)(E)

method EQ p N tr o o'
I 64x64 0.053 5 0.11 0.022 1.81 1.44
128 x 128 0.058 5 0.17 0.022 183 1.44

II 64x64 0.083 6 0.06 0.018 1.82 1.44
128 x 128 0.084 6 0.11 0.037 183 1.44

III 64x64 0.080 6 0.06 0.018 1.81 1.44
128 x 128 0.087 6 0.11 0.037 183 1.44

v 64x64 0.053 5 0.06 0.022 181 1.44
128 x 128 0.052 5 0.11 0.032 1.83 1.44

Problem 6. First, we consider the Poisson problem on a unit square with Neumann boundary
conditions. The Poisson equation is approximated by the following standard 5-point difference
star

-1
Lsd—i -1 4 -1
h — h2 1 )

h

whose coefficient matrix is symmetric nonnegative definite with |a};| > > i |aj;]. For such a
singular system [3], we obtain as good convergence as those corresponding Dirichlet problems
in which the coefficient matrix is symmetric positive definite and diagonally dominant.

Next, as an extreme case, we consider the difference stencil

LS = ! 1 411 1
h 72
h 1

h

on a unit square with Neumann boundary conditions. The coefficient matrix is similar to

that for the standard 5-point difference scheme for the Poisson equation except that some

diagonal entries are larger and the sign of all off-diagonal entries has changes from negative to

positive. As a consequence, compared to the Poisson case, the role of geometrically smooth

and non-smooth error is completely interchanged: algebraically smooth error is actually highly

oscillatory geometrically and algebraically non-smooth error is very smooth geometrically.
The computational results for this problem are given in Table 9, 10.

Table 9 Numerical results for L3¢

method EQ p N tp tr o’ o
I 64x64 0.098 6 0.11 0.047 217 1.67
128 x 128 0.090 6 0.60 0.118 2.18 1.67

II 64x64 0.097 6 0.11 0.063 2.17 1.67
128 x 128 0.087 6 0.61 0.110 2.19 1.67

III 64x64 0209 9 022 0.054 216 1.66
128 x 128 0.343 13 0.60 0.102 2.18 1.67

v 64 x 64 0.208 9 0.11 0.042 2.16 1.66
128 x 128 0.306 14 0.49 0.102 2.18 1.67
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Table 10 Numerical results for Lj,

method EQ p N ¢t tr o o'
I 64x64 0.0098 3 0.06 0.037 216 1.66
128 x 128 0.0097 3 0.60 0.167 2.18 1.67

II 64 x 64 0.0479 5 0.11 0.032 2.16 1.66
128 x 128 0.0511 5 049 0.154 2.18 1.67

IIT 64 x 64 0.0630 5 0.11 0.032 216 1.66
128 x 128 0.0568 5 044 0.166 2.18 1.67

v 64x64 0.0096 3 0.11 0.057 2.16 1.66
128 x 128 0.0093 3 044 0.167 2.18 1.67

Problem 7. Anisotropic problem on a unit square with Dirichlet boundary conditions.

The anisotropic equation: —eus, — uyy = f plays an important role in practice, as many
physical problems are highly anisotropic by nature. If we discretize using the standard 5-point
different operator, we obtain the following difference stencil

-1
1
L;S)(a):ﬁ - 2(1-;5) - |,

h

where £ =0.1 and 0.01 is used. The same discrete operator is obtained if we discretize the pure
Poisson operator by the standard 5-point difference operator on a stretched grid with mesh
sizes hy = hy/\/€.

For any € > 0, Lf)

its h-ellipticity measure Eh(L§L5)(s)) = 377 = 0 as ¢ —» 0. However, AMG methods apply
the operator-based interpolation and coarsening which can adjust its coarsening process to the
direction of only strong connectivity, that is, the direction of smoothness, and obtain better
results.

The computational results for this problem are given in Table 11.

(¢) is elliptic, but not uniformly elliptic with respect to . Furthermore,

Table 11(1) Numerical results for LS)(O.I)
method EQ p N ¢t tr o’ o

I 32x32 0036 5 005 0.012 315 1.87
48 x 48 0.036 5 0.11 0.032 3.47 1.87
II 32x32 0036 5 000 0.012 321 187
48 x 48 0.036 5 0.06 0.022 3.28 1.87
II1 32x32 0036 5 005 0.012 323 1.88
48 x 48 0.036 5 0.06 0.010 3.28 1.87
v 32x32 0036 5 005 0.006 322 1.88
48 x 48 0.036 5 0.11 0.022 3.27 1.87

Table 11(2) Numerical results for LELS)(O.OI)

method EQ p N tp tr o o
I 48 x 48 0.024 4 0.06 0.028 2.75 1.96
64x64 0025 4 0.16 0.043 2.80 1.96

I 48 x 48 0.024 4 0.06 0.015 2.75 1.96
64 x64 0.025 4 0.11 0.043 2.80 1.96

IIT 48 x 48 0.024 4 0.06 0.028 2.75 1.96
64 x64 0.025 4 0.11 0.043 2.80 1.96

v 48 x48 0.024 4 0.01 0.015 2.75 1.96
64 x64 0.025 4 0.11 0.043 2.80 1.96
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Problem 8. Biharmonic problem on a unit square.

Let
A%y =0,in Q,
u =0, on 01,
g—g =0, on 09,
with the following 13-point finite difference stencil
1
2 -8 2
1 -8 20 -8 1
2 -8 2
1

The resulting coefficient matrix is symmetric and positive definite, but not weakly diagonally
dominant. Furthermore, the matrix is very ill-conditioned with a condition number of O(h~*).
Therefore, this problem provides a good test case of the robustness and efficiency for various
algorithms.

The computational results for this problem are given in Table 12.

Table 12 Numerical results for Biharmonic problem
method EQ p N tp tr o o
I 32x32 078 58 0.11 0.013 213 1.65

48 x48 0.816 68 0.17 0.028 2.17 1.65

II 32x32 0729 44 0.16 0.015 216 1.67
48 x 48 0.701 39 0.22 0.032 219 1.66

II1 32x32 0.787 58 0.17 0.011 215 1.66
48 x48 0.866 96 0.17 0.026 2.20 1.66

v 32x32 0656 33 011 0.013 215 1.66
48 x 48 0.714 41 0.22 0.032 219 1.66

Problem 9. Poisson problem on a unit cube with Dirichlet boundary conditions.
For the three-dimensional problem, the 7-point difference approximation
1
73 (BUij e = Uit1,gb = Wimt gk = Yijr1k = ig—1k = Ui kst — Uigk—1) = fijk
is applied.
The computational results for the problem are given in Table 13.

Table 13 Numerical results for 3D problem

method EQ p N tp tr o o'
I 8 x8x8 0.013 4 0.06 cta0 246 1.61

16 x16x16 0.016 4 0.33 0.070 2.63 1.60

11 8 x8x8 0.039 5 0.05 0.022 240 1.59
16 x16x16 0.0509 5 0.27 0.044 2.64 1.60

IIT 8 x8x%x8 0.044 5 0.06 0.022 240 1.59
16 x 16 x 16  0.061 5 0.11 0.010 2.64 1.60

v 8 x8x8 0.009 3 0.05 0.037 246 1.61
16 x16 x16 0.017 4 0.22 0.043 2.64 1.60

cta0: CPU-time approximates 0.

6. Conclusions

In this paper we give three new Gauss-Seidel-type interpolation formulae (3.4)-(3.9). We
have shown that the new interpolation operators have their own advantages compared with



434 Z.H. HUANG AND Q.S. CHANG

the basic interpolation operator (2.5)-(2.6) proposed in [8]. For each variable i € F™, our
interpolation formulae (3.4)-(3.9) still choose C™ as the basic interpolatory set, and thus the
resulting Galerkin operators do not substantially increase towards coarser levels.

Various numerical experiments are reported including the Poisson equation, an anisotropic
equation, the biharmonic equation, and even a 3D problem. Numerical results demonstrate
that Gauss-Seidel-type multigrid methods not only can accelerate convergence, but they can
also reduce computing time, in particular, for the setup phase. Furthermore, the number of
iterations needed to achieve a fixed accuracy is less than for Method I. This contributes to
decreasing the overall computing time of the AMG method.

It should especially be pointed out that Method IV can be efficiently applied to all the above
problems and thus is a very robust and powerful MG method.

Acknowledgment. Correction of the English text by Prof. Peter Monk is gratefully acknowl-
edged.
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