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Abstract

We consider the numerical approximations of the three-dimensional steady potential
flow around a body moving in a liquid of finite constant depth at constant speed and
distance below a free surface in a channel. One vertical side is introduced as the up-
stream artificial boundary and two vertical sides are introduced as the downstream arti-
ficial boundaries. On the artificial boundaries, a sequence of high-order global artificial
boundary conditions are given. Then the original problem is reduced to a problem defined
on a finite computational domain, which is equivalent to a variational problem. After
solving the variational problem by the finite element method, we obtain the numerical
approximation of the original problem. The numerical examples show that the artificial
boundary conditions given in this paper are very effective.

Key words: Ship wave, Potential flow, Global artificial boundary condition, Finite element
method.

1. Introduction

Consider the three-dimensional steady potential flow around a body moving in a liquid of
finite constant depth at constant speed and distance below a free surface in a channel. Let
d denote the depth of the liquid, ¢ denote the width of the channel, U denote the speed of
the body and g denote the acceleration of gravity. We scale the physical quantities by the
length d and the velocity /gd. We describe the motion in Cartesian coordinates fixed with
respect to the body, where the x-axis points opposite to the forward velocity and z-axis is
directed vertically upward, y-axis points the remaining direction of the right-angle reference
frame, y=0 corresponds to one side of the channel and y=c to another side of the channel, z=0
corresponds to the undisturbed free surface and z=-1 to the bottom. Let 2; denote the domain
occupied by the body, then © = {R x (0,¢) x (=1,0)}\€; is the domain occupied by the liquid.
The total velocity potential is split into a free stream potential plus a perturbation potential:
d=pz + ¢(z, 2), where u=U/+/gd is the Froude number. By linearizing the boundary condition
at the free surface, see whitham[22], we obtain the following problem for the perturbation
potential on the unbounded domain :

Ap=0 in Q, (1.1)
together with the boundary conditions
(42 Puz + ¢2)]2=0 = 0 —w<z<+00,0<y<c (1.2)
Gzlz=—1 =0 —o<zr<+00,0<y<c (1.3)
Gyly=0 =0 —oo< < +00,-1<2<0 (1.4)
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Oyly=c =0 —00o <z <+00,-1<2<0 (1.5)

0

6—2 = ucost 0Q;, (1.6)
lim ¢ =0, lim ¢ is bounded —-1<2<0; (1.7)

T——00 T—+00

where 0/0n denote the outward normal derivative of €, in the following 0/0n always denote
the outward normal derivative of a given domain. 6 is the angle between the outwardly directed
normal to the body and the x-direction.

There are many authors who studied the numerical simulations of the flow around a sub-
merged body in two dimensional case. For examples, Petersson and Malmliden [20] studied the
numerical solutions of the given 2-D problem using composite grids, furthermore Malmliden
and Petersson [17] proposed a Schwarz-type iterative method. Doctors and Beck [3], Nakos and
Sclavounos [18] presented the boundary integral methods. In this paper we will concentrate on
the numerical simulations of the 3D flow around a submerged body by the artificial boundary
method. The artificial boundary method is very popular used for overcoming the difficulty
caused by the unboundedness of the physical domain. During the last two decades, there are
many mathematicians and engineers who have worked on this field for various problems by
different techniques, see references [4]-[15], [21], [23].

For the given problem (1.1)-(1.7), we introduce the upstream artificial boundary Ty, the
downstream artificial boundary I'y and the auxiliary artificial boundary I'yy . We design the
high-order artificial boundary conditions on Iy, I'y and 'y, then the given problem (1.1)-(1.7) is
reduced to a boundary value problem on bounded computational domain, which can be solved
by the finite element method. Furthermore the numerical example shows the effectiveness of
the method given in this paper.

2. The Global Artificial Boundary Conditions

Take three constants a < b" < b, such that Q; C(a, b')x(0,c) x (—1,0). Then we obtain the
upstream artificial boundary ', = {(z,y,2) : £ = a,0 < y < ¢,—1 < z < 0}, the downstream
artificial boundary T'y, = {(z,y,2) : £ = 5,0 <y < ¢,—1 < z < 0}, and the auxiliary artificial
boundary T'y = {(z,y,2) : ¢ = V',0 <y < ¢,—1 < z < 0}. The artificial boundaries 'y, Ty
divide the domain € into three parts:

Q ={(z,y,2): —0 <z <a,0<y<c,—-1<z<0},

Qr ={(z,9,2);a<z<b0<y<c,—1<z<0}\,

O ={(z,y,2) :b<z < +00,0<y <e¢,—1 < z<0},
furthermore we denote

Uy ={(z,y,2) : b <z < +00,0<y <e¢,—1<2z<0}

2.1. The Artificial Boundary Condition on the Downstream Artificial Boundary
We consider the artificial boundary condition on the downstream artificial boundary. The
restriction of the solution of the problem (1.1)-(1.7) on the domain € satisfies:

Ap=0 in Qy, (2.1)
(12 Ppe + ¢2)|2=0 =0 b <z <400,0<y<c (2.2)
Gzli=—1 = bV <z <+00,0<y<c (2.3)
Gyly=0 =0 —oo<r <400, -1<2<0 (2.4)
Oyly=c =0 —oo <z <400, -1<2<0 (2.5)
IEIEOO ¢ is bounded; (2.6)

where the domain Q is a semi-infinite channel. The problem (2.1)-(2.6) is an uncompletely
posed problem. The general solution of problem (2.1)-(2.6) is given in [16] by the separation of
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variables:
R mry
o(x,y,2) = o+ Z cos — {[aﬁ” cos gt (x — b) + B sin it (x — b)] cosh A\J* (1 + z)
m=0
o0
+ Zﬂ,@”e*“k @=b) cos A (1 + z)} (z,y,2) € Qp (2.7)
k=1
with the pf* > 0 and A\j* > 0 (m=0, 1, --- ) are given by the relation
)2 = () + (5% () = A3 tanh Ay m >0 (2.8)
and p* >0 and A\P* >0 (m=0, 1, --- , k=1, 2, - - ) are given by the relation
(W) = O + (507 W) = AP tan X m >0,k > 1 (2.9)

We suppose that 0< pu < 1, which is the most interested case in physics. This implies a

positive real " and Af* for each m > 0. The functions {cos DY = 0,1,---} are orthogonal

on [0, c].

/ cos ¥ cos ﬂdy =0, i#] (2.10)
0 ¢ ¢

and for each m > 0, we denote Of*(z) = coshAJ'(1+2), OF*(z) = cos AP (1+2) k =
1,2,---, then functions {O}*(z) k =0,1,---} satisfy the following orthogonal relations on [-1,
0]

/01 aogiz(z)aogz(z) dz + (?)2 /01 O (2)07'(2)dz =0, k#j, m=>0 (2.11)
On the artificial boundary T’
9, = o+ mi::ocos — {ag cosh AT (1 + 2)

+ iﬂ;@” COSW(HZ)} (2.12)

k=1
. = mi Y { g cosh N (L + 2)

— iﬂ,’c”,uz" cos)\zn(l-%z)} (2.13)

k=1

From the (2.10), (2,11) and (2.12) we obtain
dcos AT (1 + z)

1 c 0 a¢
mo 9¢ d
K PP di + ()] /0 {/—1 9z, 0z :
0
+ (m)2 ¢| cosAp(l+ z)dz} cos mﬁydy, k=1,2,--- (2.14)
C 1 I'y C
1 (% 0p; OcoshA\P(1+ z)
m _ i - - v  d
" pmugwwa’w(%%m/o {5l =% ’
0
+ (@)2/ ¢ cosh \J*(1 +z)dz} cos mﬂ-ydy (2.15)
C 1 Fb
for m > 0, with
m ¢ mry., ., )& m= 0
R PR
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0 2 20T A\
an = / (cosh AT (1 + 2)) 2qp = 0 € 0 A
Y
1
= / (cos AT (1 + 2))? dz:§ k=1,2,---
AT 20 A\™
gt = / (sinh A" (1 + 2))?dz = erze 2 L
. Y
0 1
g = / (sin/\zn(1+z))2dz:§ k=1,2,---
-1

On the auxiliary boundary I'y, we have

o0
L= ag + Z cos 1Y { [ag® cos (ug' D) — By sin (ug' A)] cosh AG (1 + 2)
o m=0

+ 3 B cos (1 +z)} (2.16)
k=1
with A =b—10, and sin (u*'A) #0, m=0,1,---
Furthurmore we have

ag" cos (ug' ) By" sin (' A)

¢

0 cosh AJ' (1 + z)

[(Am)?dm (Z5) ]/ / F2L S P
0
+ (@)2/ ) cosh)\()”(1+z)dz} cos—dy (2.17)
c _1 Fbl
combining (2.15) and (2.17), we get
gy = : / K|
0 PG dg" + ()] sin (ug' ) Jo
0 9¢ d¢| DcoshAp'(1+2)
/_1 Bz l, o8B = 52 T
0
b ([ |, costup ) - o] Jeoshap(1+ )
c —1 Ty Fbr
} cos _m;ry dy (2.18)

From here we can see the introduction of auxiliary artificial boundary I'y is very important,
otherwise the value of parameter 5J* can not be determined.
Substituting (2.14) and (2.18) into (2.13) we obtain

_ f:cosmﬂy{ g cosh A (1 + 2) /{
2 T 0GR + (BT sin (' B) Jy

Ox Ir,

0 d¢ d¢| Ocosh \p(1 +2)
/_1 52 r, °° (') = 5 T, o
0
+ (E)Q/ (6| cos () = ¢ Jeosh A1+ 2)dz
c —1 Fb Fb’
cos mwydy

dcos AT (1 + z)

——d

Ty 32

_ i s cos)\m1+z / / 99
2 el + (2]
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mm

0
+ (T)2 /_1¢‘Fb cos)\zn(l-%z)dz} cos m:ydy} = Dy(¢) (2.19)

The condition (2.19) is the exact boundary condition satisfied by the solution ¢ of problem
(1.1)-(1.7). The auxiliary artificial boundary I'y is involved in the condition (2.19). Let

M
m cosh A (1 + 2) c
DMK = cos Y fo COF2 2 - /
RO = 2 e T e+ (B ) Jy |
o d¢ d¢| Dcosh\p(1 + z)
/_1 Bz, 8o B) = 52 T P
0
+ (?)2/ [¢F cos (Ul A) — | Jcosh \(1 + z)dz
-1 b
}cosﬂdy
¢
i i cos A ( 1+z / / 8cos/\27(1+z)d
o m m m7r 4. _ az
= pr[(A7)dy] '] 9z
0
+ (m)z/ cos)\z,”(l-kz)dz}cosmwydy} (2.20)
C -1 I'y

for M > 0, K > 0, then we obtain a sequence of approximate artificial boundary conditions on
the downstream artificial boundary I'.

= D" (¢) (2.21)

Oz I,

2.2. The Artificial Boundary Conditions on the Upstream Artificial Boundary
Ly

We consider the restriction of the solution of the problem (1.1)-(1.7) on the domain €,
satisfying:

Ap =0 in Q, (2.22)
(1> Pra + ¢=)]z=0 =0 —o<z<a,0<y<c (2.23)
¢zl:=—1=0 —o<r<al<y<c (2.24)
Gyly=0 =0 —oo<r<+00,-1<2<0 (2.25)
Gyly=c =0 —oo<zr<+o0,-1<2<0 (2.26)
lim ¢ =0; (2.27)

The problem (2.22)-(2.27) is uncompletely posed. The general solution of (2.22)-(2.27) is
given by separation of variables in [16]:

d(w,y, 2 Z cos—{ Za el (T=0) cog AT (1 + z)} (z,y,2) € Qq (2.28)

on the upstream boundary r, we have

¢ . = Z cos
Zcos

{ Zak cos Ay (1 + z)} (2.29)

oz Ir { Zak pi* cos ARt (1 + Z)} (2.30)

From (2.29) we obtain

. 1 c 0
= pra e b U, oh

Ocos A (1 + 2)

d
0z i
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+ (m)2 ¢l cos AP (1 4+ z)dz} cos mﬂ-ydy, m>0k>1 (2.31)
c 1 ITa c
m _ % 0p; dcoshAP(1+z)
rro = [ {[ 5], 2 e
0
+ (%)2 o - cosh \J* (1 + z)dz} cos mﬂydy =0, m>0 (2.32)
-1 b

Substituting (2.31) into (2.29) and integrating (2.29) on [-1, 0], we have
/ bdyd i{ sin AY /C{
ydz = S0V
T PR /o

k=1
0
Ocos Ap (L + Z)dz}dy}

-

T. 0z
= S.(¢) (2.33)
Substituting (2.31) into (2.30), we obtain
dp| 09 = MY [ — ptcos A (14 2) /C
onle, ~ oz, mZ: c {,; PO 2dg + (ZE2ep] J, {

Ocos AP (1 + z)

T. 0z dz

[.%

+ (ﬂ>2/01¢r

c
= U.(9) (2.34)
On the upstream artificial boundary I', we now have the exact boundary conditions (2.32),

(2.33) and (2.34)
Let

cos Ay (1 + z)dz} cos @dy}

SE(g) = i{%/{
a = LR Jo
[
_1 0zlr, 0z
M K
m A (1 4+ 2) ¢
UMK = — cos Y Rie 50 2 /

/0 0¢| OdcosA\'(1+2)
—1 62’

T, 0z
ma s [0
+ )/ﬁ

c

dcos A (1 + z) dz}dy}

dz

cos A\ (1 + z)dz} cos m;ry dy}

a

for M >0,K>1
On the upstream artificial boundary I', we obtain the following approximate artificial bound-
ary conditions:

/ odz = SK(9), (2.35)
Ty

¢ B

e, = Ua " (@), (2.36)

R(9) = 0, 0<m<M (2.37)
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2.3. The Reduced Boundary Value Problem of Problem (1.1)-(1.7)
Using the artificial boundary conditions given in this section, the problem (1.1)-(1.7) is
reduced to a boundary value problem on the computational domain Q7:

A¢p =0 in Qr, (2.38)
(1 buz + ¢2)|2=0 = 0 a<z<b 0<y<ec, (2.39)
Gzlo=—1 =0 a<r<b 0<y<ec, (2.40)
Oyly=0 =0 a<z<b —-1<z<0, (2.41)
Gyly=c =0 a<z<b —-1<z<0, (2.42)
% = pcosf on 01);, (2.43)
R™(¢) =0 0<m< M, (2.44)
| oz =@, (2.45)
Fa
9¢ MK
. = -1 24
onlr, Ua " (#) <z <0, (2.46)
¢ = DME () —-1<2<0; (2.47)
onlr, b ’ '
Let ¢ be a solution of problem (2.38)-(2.47). Then SX(¢) is constant. Let
6=0-S:(%) (248)

For ¢ the condition (2.45) is simplified:

/F $dz =0

and ¢ satisfies the equation (2.38) and the conditions (2.39)-(2.47) except (2.45). hence we
consider the following simplified problem:

Agp=0 in Qr, (2.49)
(12 buz + ¢2)]2=0 = 0 a<z<b 0<y<ec, (2.50)
Gzlr=—1 =0 a<r<b 0<y<ec, (2.51)
Gyly=0 =0 a<z<b —-1<2z2<0, (2.52)
Oyly=c =0 a<z<b —-1<z<0, (2.53)
% = pcosf on 01);, (2.54)
R'¢)=0  0<m<M, (2.55)
/ pdz = 0, (2.56)
T.
6@5 MK
i — -1 2.
anlr, = Ve (¢) <z<0, (2.57)
8¢ _ MK .
ol = D0 (@) 1<2z<0; (2.58)

Suppose 5 is the solution of problem (2.49)-(2.58), then ¢ = $+ Sf(a) is the solution of
problem (2.38)-(2.47). In the following section the equivalent variational problem of problem
(2.49)-(2.58) is given.

3. The Equivalent Variational Problem of Problem (2.49)-(2.58)

Let H™(Q7) and H*(I's) denote the usual Sobolev spaces on the domain Q7 and the
boundary 'y = {(z,y, 2)|a <z < b,0 <y < ¢,z =0} with integer m and real number s [1], we
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introduce the space:
V = {vlv e H'(Qr) and v|r, € H(Ty)}
and its subspace
0
U={vlveV,R*(v) =0,0<m < M and / v|p,dz = 0}
-1
Then we have the following result:

Theorem 3.1. The boundary value problem (2.49)-(2.58) is equivalent to the following varia-
tional problem:

Find ¢y € U, such that
Ar(pmr, ) + Ao(dur, ) + AV K (burc, ) + A K (bur, ) = F(v), VeV (3.1

where

_ 94(z,y,0) 9Y(z,y,0)
AO(¢) dj) - —,LL2 Iy 8.’,17 85[7 dl‘dy,
M K 1
AMK —
a (¢71/}) mz_:o Z {:uk pc )\m zdm (%)20?]

Ocos AP (1 +2)

d
Ta 0z i

[{/.5
+ (%)2/01%1

cos A\ (1 + z)dz} cos

mmy dy}

dcos A\ (1 + z)

d
0z z

0
+ (?)2 /—11/}1“,, cos)\zn(l-%z)dz} cos m;rydy}}
< 1
MK .
A0 = 3\ e+ T )
o m
{/ {/ cos(uo A) — gfp,]%wdz
+ (mT) /_1 [¢F cos (pug' &) — ¢pb,]COSh>‘gL(1+2’)dZ}cos mwydy}

Ocosh AJ' (1 + z)

9 dz

({5,

cosh A\g*(1 + z)dz} cos
I'y

S}

K
1
+ § : mm m
{u?pT[(A?)Qd? + (%)%

A5
+ <7>2/_01

dcos A\ (1 + z)

0z dz

3

m mmy
. cos APt (1 + z)dz} cos ——= dy}
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TR

+ (m)2 /011/} T, COS)\?(1+2)dZ} o8 m:ydy}}}

Ocos A (1 + 2)

Ty 0z dz

c
Fiyp) = /6)Q.ucos9wds.

The proof is standard, which is omitted.
We note that the solution space U is a true subspace of the trial space V. The variational

problem (3.1) is not suitable for obtaining the finite element approximation of the problem
(2.49)-(2.58)

Let
Y = 1, (3.2)
Um = COS ysinugn(m—b')cosh/\(’)”(l—kz) 0<m<M
Uiz = {0, fa<z<V,0<y<ec,-1<z<0N (3.3)
m U, Q={V<zx<bh0<y<e-1<2<0}
0<m<M
Alg,w) = Ar(¢,9) + Ao(6,%) + AL (8,9) + 4 (¢, 9)
Then for any ¢ € U we have
AYE(g05) = 0 1<i<M+2, (34)
A(wi) = A (D) 1<i<M+2 (3.5)
For the variational problem(3.1), we have the following results:
Lemma 3.1. For any ¢ € U the following equalities hold
A, s) = F()) Y peU 1<i<M+2 (3.6)

Proof. Tt is straightforward to check that the equality (3.6) holds for i=1.
For 0 <i < M, on the domain Qs, 1,5 satisfies :

Aipa =0 in s,

(1 (Vig2)ze + (hig2):) =0 V<x<bh0<y<e,

(Wis2)z) =0 V' < <bh0<y<e

8?;2 - = Dp"" (thiy2) 0<y<e,-1<2<0,
Oit2

Oito ox

=L <y <e-1<2<0;
Oz v, cosppA

For 0 <m < M , denote

mmy
gt cos ——
c

X%(y) = mm /C
p[(AG)?dy + (T)chn] sin (ug' A) Jo {
0 d¢ . dp| . Ocosh A (1 + 2)
[\, st = | 1R

w2 [

cos (W' A) — ¢

Iy

Jcosh AJ* (1 + z)dz

b’
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} cos 1Y dy
c
m

Ho
PRIy + (F0) %6 sin (uf? &)

m ¢ 0 9¢ dcos A\ (1 + 2)
Zb (¢) - /0 { _15 FdeZ

0
mm. s m mmy
1 g
+ (c ) [1¢FbcosA0( +z)dz}cos y dy

m (% 0p) OcosAP(1+2)
Zb’ ((ZS) - /0 { . & sz

Ty

ydy

0
+ (m)z/ ¢ COS)\Bn(l-l-Z)dZ} cos 7
c 71 Fbl

Then we obtain

iy
6? - = Dé\/m(z/}i+2)
= Z XYi+2(y) cosh AJ*(1 + 2)
= Z Wil Zi" (Wiy2) cos ui* AN — ZiH (viq2)] cos cosh A\J* (1 + z)
m=0
From (2.11) and (3.3) , we have
Zi(Wiss) = 0 0<itm<M, (3.7)
Zy'(Yir2) = 0 0<m < M,0<i<M; (3-8)
Denote

To ={(&,y,2)lV' <z <b,0<y<c,z=0}
Notice (3.4), (3.5), (3.7) and (3.8) , for any ¢ € U, a computation shows

0 = — ¢ A )i odrdydz
Qo

V¢'V¢i+2da:dydz—/ ¢31/1i+2 da:dy_/ ¢31/1i+2 dydz+/ ¢31/Jz+2d I
‘ s or r or

b’

Q2

/ Vo - Virodrdydz + p? / & ¢z+2d dy

M
= Y Wl Wir2) cos il A = 7 (his2)] / cos T2 cosh Af' (1 + 2)¢dydz |
Ty

m=0
+ Z {Wm[ i (Wir2) COCSOI:(LAA 2y (I/}l+2)] cos 2 cosh Agt(1+ z)¢dydz}
m=0 0 Ty
0¢ Oiyo
_ . . 2 o
= o, V¢ - Viyadrdydz — p v O e dxdy
1 . . ) 1 . ;
+ (ui)QWi[Zg(¢i+2) cos oA Zy(¢) — mWiZg(¢i+2)Zbr(¢)
0 0

8¢ 8¢z+2
R . 2
V¢ - Vigadrdydz — p . 90 0z dady

Qo



The Global Artificial Boundary Conditions for Numerical Simulations of ... 445
M
1 m m m m
+ Y Wszb (Yit2)[2y" (¢) cos pg' A — Zy' ()]
m=0 0
= Ar(,¥iz2) + Ao(¢, Viga) + Ay (¢, Yit2)
= Ar(d,Piys) + Ao(d, Yir2) + AN (0, vira) + AYE (0, Piga)
= A9, Yit2)
Obviously F (1)iy2) = /[, oq, HcosOY;iads = 0, the equalities (3.6) follows directly for 2 < <
M + 2. The proof of lemma 3.1 is completed.
Let V =V*® {¢1,¢¥2 , -, ¥p42}. From the lemma 3.1 we know that

Theorem 3.2. The boundary value problem (2.49)-(2.58) is equivalent to the following varia-
tional problem

Find ¢y € U, such that
Alpmr,¥) = F(y), Vip e V* (3.9)

Suppose Uy, and V,* are the finite element subspaces of U and V*, then we obtain the finite
element approximation of the problem (3.9) :

Find ¢/ % € Uy, such that

AR n) = F(n), Vipy, € V! (3.10)

After solving the problem (3.10) we obtain the approximate solution ¢ ¥ of the original

problem (1.1)-(1.7) on the computational domain Q¢

4. Numerical Results

In this section, we first present the numerical experiments which demonstrate the effective-
ness of our global artificial boundary conditions, then we obtain the approximate solution of
problem (1.1)-(1.7).

In following computations, the body €; is defined by the domain

Qi ={(z,2) eR?: -02<2<0.2,04<y<0.6,-06<2z<—0.4}.
Then the bounded computational domain Qp is given by

Qr={(z,2) eR?:a<z2<b0<y<ec,—-1<z<0}\.

Three meshes were used in our computations. For a given mesh, the mesh size h is defined as
the maximum of the lengths of all cubes in the mesh. We shall always take b’ = b — h in the
following. The partition for mesh A consist of equal cubes with h = 0.2. Mesh B (h=0.1) is
generated by dividing each cube in mesh A into eight equal smaller cubes. Mesh C (h=0.05) is
obtained from mesh B in a similar way.

4.1. Numerical Results of the Test Problem
Let -
$o = cos ug(z — a) cos ™Y cosh A(1+2)
c

We consider following boundary value problem which is similar to problem (2.49)-(2.58) :

Ap=0 in Q7 (4.1)
(42 Puz + ¢2)]2=0 = 0 a<z<b 0<y<ec, (4.2)
Gzlz=—1 =0 a<z<b 0<y<e, (4.3)
Gyly=0 =0 a<z<b —-1<2z<0, (4.4)
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byly=c =0 a<z<b —-1<z<0, (4.5)
0p _ Odo '
a—n — a—n naﬂl, (4 6)
R (¢) = R (¢o) 0<m< M, (4.7)

(4.8)

/gzﬁdydz:/ podydz,
Ty La

99
on
99
on

Then ¢ is the exact solution of this problem.

= UMK () 0<y<e—-1<2z<0, (4.9)

Ia

= D)% (¢) 0<y<e—-1<z<0; (4.10)

Ty

Problem (4.1)-(4.10) is equivalent to the following variational problem:

Find ¢pri € U', such that

Ar(parr, )+ Ao, )+ AV (dnic, ) + A K (urre, ) = F' (), Vi eV* (4.11)

where V*, Ap, Ag, AMK  AME i5 described in section 3 and
U' = {v|v e V,R*v) = R*(¢o),0 <m < M, and / vdydz = / podydz}
T, T,

wy= [ %
F@)= [ G vds

Takea=—-1,b=1and c=1, M =8, K = 20, p = 0.4 in (4.11), after calculation with our
finite element method, a numerical solution ¢, of variational problem (4.11) can be obtained.
The relative errors of ¢, — ¢o in Loo-norm, Lo-norm and H'-norm are given in the Table 1 for
mesh A, B, C, respectively.

Table 1: comparison of ¢, with ¢g
Errors h=0.2 h=01 h=0.05
max|¢p — do|/ max|de| 13.41%  3.21% 0.85%
llon — dollo,or /lldollor 16.88%  4.28% 1.23%
llon — dolli,or /ldollior 40.28% 19.77%  10.51%

As shown in Table 1, ¢y, tends to ¢ when mesh size h decreases, the converge order of max
|¢n, — ¢o| and ||¢n — dollo.ar is O(h?), ||¢n — doll1.0r is O(h). The results demonstrate our
global artificial boundary conditions are very effective.

4.2. Approximate Solution of Problem (1.1)-(1.7)

We can obtain approximate solution ¢ % of problem (1.1)-(1.7) by computing problem
(3.10). Take a = —1,b =1 and ¢ = 1. Figure 1-3 show ¢§L,20 on mesh B on surface of water
when p = 0.2,0.4,0.6, respectively.

We shall test the effect of the terms M, K used in our global artificial boundary conditions.
Let ¢%° denote the finite element solution of the problem (3.10) when M = M* and K = K*
is sufficiently large, so ¢7° can be treated as numerical solution of problem (3.10) solved with
exact boundary conditions. In our computation we take M* = 8 and K* = 20.
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Figure 1 qbi’m on mesh B for 4 = 0.2 when z =0

Figure 3 qbi’m on mesh B for 4 = 0.6 when z =0
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Table 2: The effect of the artificial boundary conditions u =0.2

Errors(K = K*) M=1 M=3 M=5 M=7
max |¢3° — oME|/max |4°| 8.7219E-4 9.0096E-4 8.7077E-4 8.6417E-4
165° — dME||g op /I16°]l0.0 4.3053E-4  4.2573E-4 4.2437E-4 4.2214E-4
l65° — dME|y op /165°]11,0- 5.1055E-4  4.6860E-4 4.6413E-4 4.6253E-4

Table 3: The effect of the artificial boundary conditions u = 0.2
Errors(M = M*) K=1 K=5 K =10 K =15
max |¢3° — ¢ME|/max |¢3°| 3.2301E-4 2.8862E-5 1.8553E-6 9.3234E-7
lp3° — dME g or/Il6°]l0.0r 1.3731E-4  6.2450E-6  7.0347E-7 2.4330E-7
lp3e — dME|y o /|65°]11,0 2.5478E-4  1.45086E-5 1.4297E-6 5.2219E-7

Table 4: The effect of the artificial boundary conditions u =0.4

Errors(K = K*) M=1 M=3 M=5 M=7
max |p3° — pME|/ max|¢°| 2.5389E-2 1.9617E-2 7.0296E-3 6.6776E-3
l65° — dME||p op /16°]l0.0- 8.2597E-3  7.6989E-3 2.1021E-3 3.8877E-4
650 — dME|y o /185°]1,0, 4.9758E-2  1.3734E-2  3.9729E-3 4.4147E-4

Table 5: The effect of the artificial boundary conditions p =0.4
Errors(M = M*) K=1 K=5 K =10 K=15
max |p3° — pME|/ max |p°| 6.0553E-3 4.1266E-3 4.2377E-4  1.7203E-4
l65° — dME g op /165°]l0.0r 4.6411E-3  2.5854E-3 2.7808E-4 1.1423E-4
lp5° — dME|y o, /165°]1,0- 6.8457E-3  3.6049E-3  3.9006E-4 1.5824E-4

Table 6: The effect of the artificial boundary conditions u = 0.6

Errors(K = K*) M=1 M=3 M=5 M=7
max |p3° — pME|/ max |¢°| 6.5388E-2 7.8977E-3 1.0496E-3 1.9887E-4
1650 — dME g o /165°]l0,0-  2.9089E-2  3.6697E-3  3.7359E-4 1.4443E-4
lp5° — dMEy o, /165°]1,0- 3.8602E-2  4.9476E-3 5.2436E-4 1.3514E-4

Table 7: The effect of the artificial boundary conditions u = 0.6
Errors(M = M*) K=1 K=5 K =10 K=15
max |¢2° — pME|/max|p°| 2.7047E-3 2.3370E-3 3.1732E-4 1.2738E-4
650 — dME o o /|65°]l0,0- 1.8192E-3  1.3384E-3 1.8077E-4 8.1712E-5
lp5° — dME|y o /|65°]1,0- 1.9768E-3  1.5399E-3 2.1147E-4 8.9919E-5

Tables 2-7 show the relative errors of ¢3° — ¢M¥ in Lo,-norm, Ly-norm and H'-norm for
mesh B with u = 0.2, 0.4 and 0.6, respectively. As shown in Tables 2-7, our global artificial
boundary conditions are good approximate to exact boundary conditions for some M and small
K, the error caused by using of global artificial boundary conditions is very small, therefore
in the computation very few terms in the bilinear form AME (¢,1)) and AME (¢,1)) are only
needed in order to get good accuracy.

Finally, we shall test the effect of the location of the artificial boundary I';. We take a = —1
and b =0.6,0.8,1.0,1.2, 1.4 and 1.6, respectively. For each b, we use a corresponding mesh with
the mesh size h=0.1. Let ¢ denote the “exact solution” which is the finite element solution of
(3.10) when b = 1.6 and M = M*,K = K*. Table 8 show the relative errors of ¢ — ¢p° in
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Loo-norm, Ly-norm and H!'-norm for different location of the artificial boundary 'y, where Qg
is the bounded computational domain Q7 when b = 0.6.

Table 8: The effect of the location of the artificial boundary T’

Errors b=06 b=08 b=10 b=12 b=14
max |¢ — ¢3°|/ max|¢| 3.3529E-2 5.6646E-3 1.0857E-3 3.7762E-4 2.5664E-4
16 — ¢°llo.c0/lIdllo, 1.1060E-2 2.2828E-3 4.8799E-4 2.6128E-4 2.0300E-4

16— ¢2°lli.00/lldllo, 2.0457E-2 3.8641E-3 8.0621E-4 3.6427E-4 2.4676E-4

As shown in table 8, the influents caused by different location of artificial boundary T’ is
very small. Therefore for a given accuracy, it is possible to use a small bounded computational
domain. So the using of global artificial boundary conditions can save computational cost
greatly.

5. Conclusions

A sequence of high-order global artificial boundary conditions at the downstream and up-
stream artificial boundaries are designed for the three-dimensional steady potential flow around
a body moving in a liquid of finite constant depth at constant speed and distance below a free
surface in a channel. Then the original problem is reduced to a problem defined on a finite
computational domain, which is equivalent to a variational problem. The variational problem
can be solved by finite element method. Then the numerical approximation for the original
problem is obtained. Numerical examples show that our global artificial boundary conditions
are very effective. Summarizing this paper, We can make some remarks:

e Our global artificial boundary conditions are very effective. With this method, the original
problem is reduced to a problem defined on a bounded computational domain with high
accuracy, and only a few terms in the global artificial boundary conditions are needed in
computation.

e Introduction of V* is necessary, because the variational problem (3.1) is not suitable for
finite element method.

e Introduction of auxiliary artificial boundary I'y is necessary, because wave shape at down-
stream must be determined by wave values on two different boundaries.

e The numerical example shows that the convergence rate of the mesh size is consistent with
the usual finite element error estimation for the problems in a bounded domain when using
our artificial boundary conditions to solve a problem in an unbounded domain.

e The numerical example shows that the influents caused by different location of artificial
boundary I'y is very small. Therefore we can choose a small bounded computational
domain to get high accuracy.

Acknowledgments. Mr. Chunxiong Zheng is gratefully acknowledged for many fruitful dis-
cussions on the present problem.
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