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Abstract

In this paper, a V-cycle multigrid method is presented for quadrilateral rotated Q1
elements with numerical integration.
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1. Introduction

The rotated @1 nonconforming element first proposed and used to solve the Stokes problem
by Rannacher and Turek in [12]. Klouéek, Li and Luskin have implemented it to simulate the
martensitic crystals with microstructures [9], [10]. Recently, Shi and Ming [14] gave a detailed
mathematics analysis for this element under the bi-section condition for mesh subdivisions,
which was first introduced by Shi [13] for analyzing the quadrilateral Wilson element. Meanwhile
they also proposed some effective numerical quadrature schemes for this element[14]. Moreover,
they have succeeded in using this element for the Mindlin-Reissner plate problem [11]. Quasi-
optimal maximum norm estimations for the quadrilateral rotated (); element approximation of
Navier-Stokes equations were established in [17].

In this paper, we will investigate multigrid methods for solving discrete algebraic equations
obtained by use of the quadrilateral rotated ()1 elements. An effective V-cycle multigrid algo-
rithm is presented with numerical integrations. A uniform convergence factor is obtained. A
similar idea has been exploited for the Wilson nonconforming element [15] and the TRUNC
plate element [16]. We also mention that some nonconforming multigrid algorithms for the
second order problem are studied in early papers, see [1], [6] for P, nonconforming element,
and [8] for the rectangular rotated Q; element.

The outline of the paper is as follows. In section 2, we introduce the quadrilateral rotated
@1 element. In the last section an effective V-cycle multigrid algorithm is presented.

2. Quadrilateral Rotated ); Elements

We consider the following general 2-order elliptic boundary value problem over a convex
polygonal domain in R?:

Lu = _(aw(allamu) + ay(al,?azu) + az(al,?ayu) + 3y(a228yu)) +aou = f in Q,
v = 0 on 00,

where the coefficients ai1,a12,a22, a € W1’°°(Q), and a > 0, the right hand term f €
Whi(Q),q > 2, WH>(Q) and WH4(Q) are the usual Sobolev spaces.
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We assume that the differential operator £ is uniformly elliptic, i.e. there exists a positive

constant ¢ such that )

THE+E) <) &l <o +8)
i,j=1
for all points (z,y) € Q and real vectors (&1, ).
The weak form of this problem is to find u € Hg () such that

a(u,v) = (f,v) Vv € Hy(Q), (2.1)

where

a(u,v) = / [@110;u0,v + a12(05u0yv + Oyudyv) + a220,udyv + auv]dedy.
Q

Let I';, be a partition of the convex polygonal Q by convex quadrilaterals. Denote I' = 99.
We define by P, the space of polynomials of degrees no more than k, and by @} the space of
polynomials of degrees no more than k in each variable. Let the diameter of K be hx and
assume that hx < h. As in Figure 1, we denote the four vertices of K by P;(z;,y;),1 < i < 4,
and the sub-triangle of K with vertices P;_1, P;, and P;y; by T; (the index of P; is modulo 4).
Define px = max;<;<4 (diameter of the circles inscribed in 7}). It is assumed that the partition
satisfies the assumption: there exists a constant ¢ > 2 independent of h such that

hx < opk. (2.2)

Note that this assumption is equivalent to the usual regularity condition for quadrilateral par-
titions (see [7], pp. 247). Let K = [~1,1] x [~1,1] be the reference square having the vertices
P;(1 <i < 4), then there exists a unique mapping Fx € Q1 (K) given by

4 4
I‘K = Zl‘lNz(f,n), yK - Z%Ni(f;ﬂ),
i=1 i=1

where

N=ta—ga-n, m=taroa-n, m=taroa+n Mm=ta-oa+a

4 4 4
such that Fg(p;) = pi,1 <i <4, Fg(K)= K. We also denote e; = PyPy, e = PiPy,e5 =
P2P3,64:P3P4. R
To each function (£, n) defined on K, we associate a function v on K such that & = vo F.
In the following, we list some geometric properties of an arbitrary quadrilateral mesh:

e~

=K = ag + a1€ + a:n + ar2én, yK =bg + b1& + ban + b12€n.

dag = =1 + T2 + T3 + 24, 4bo = y1 + Y2 + Y3 + Ya.

da; = —x) + T2 + T3 — T4, 4b; = —y1 + Y2 + y3 — Y.
das = —11 — T2 + X3 + T4, 4by = —y1 —y2 + Y3 + ys.
dais = 1 — 22 + T3 — T4, 4b12 = y1 — Y2 + Y3 — Ya-

b1 + bian  bo + b12€

and the Jacobi of Fi is Jx (£,n) = det(DFy) = JE+JE¢+TEn, where, JI = a1by—asby, JE =
a1bia — aaby, JQK = a12b; — azb13. Denote the inverse of Fi by Fgl, then

B _ 1 by +b12§  —az —a12€
(DF¥k) 1(5777) = m <_b1 —b1on a1 +aen )

a1 +a as +a
DFK(fﬂ?) _ < 1 127 2 12€ )
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By
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Figure 1

We state a condition on the mesh subdivision which appeared in [13].
Condition A. The distance dg between the midpoints of the diagonals of K € I'j, is of order
O(h%) for any K as h — 0.
Two kinds of the quadrilateral rotated @1 finite element space can be defined as follows
(1) Let Bp - Span{¢17¢27¢3)¢4} Then B - Span{QSl o FK 7¢2 o FK 7¢3 o K 7¢4 o

F'Y.

~

G(&m =3E@ - -3+, bellm) =10 - —In+ 1,
¢3(&m) = (& =)+ 56+ 5, da(Em) =107 - &) + 277+
V,f) = {’U € LQ(Q) | U E Bf{ VK € Ty, ’U|K1 (CM) = ’U|K2(CM),

CM is the middle point of E12 = K1 N KQ},

ENTENE

the shape function 9(&,1) = Y1, vigi(&,m), vi =v(enr,), 1 <i <4,
(2). Let By = Span{t1,12,93,¢4}. Then By = Span{t: o Flihs o it ahg o Fret ahy o

FZ'Y.

—&)—dn+1,
52) 277 + 1

A

1/:}1(5777):%(52_772)_%54_%’ 1/:}2(5777):
1;[]3(6)77) = %(62_772)—'_%6"_%7 1[]2(6)77) =

Vha = {U€L2(Q) |17 EB?{ VKEFh,/ U|K1 :/ U|K2, €12 :KlﬂKg},

€12 €12

00|woo|w
A
w w

the shape function 4(¢,7) = Yi_, v¥i(€, 1), vF = [, 0%, 1<i < 4. We denote Bg be By
and BY%.

To solve the Dirichlet problem (2.1), we introduce the associated homogeneous spaces:

Vo'n = {vn € V¥, up = 0 at the middle point of edges lying on the boundary 9Q},

Voo = {vn € Vh“,/vh =0,e = 0K N 9N},

e

and define

ol = D> oligs  olh= Y lolix-

Kel'y Kel'y

It is obvious that | - |5 is a norm on Vi, or V.
‘We need some interpolation results. Define the Lagrangian interpolation operator 7 :
C(Q) = Vi to be either 7F : C(Q) — V/F or 7 : L*(Q) — V}* as follows:

Yo e C(Q), mhv e VP mhu(em) = viem) Ve,
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where ¢y is the midpoint of the edge F € 0K, K € [y, and

Yo e C(Q), mv e V) /WZvds = /Uds Ve € 0K, VK €T,

€ €

The following lemma concerns the interpolation error of the finite element space V;* and V.
Lemma 2.1. [12] For v € H*(K), and if the
Condition A. holds, then

[lv = mpvllk,k < Ch27k|v|27K, k=0,1,2.

Define the quadrature scheme on the reference element K as follows:
~ I ~ ~
[ demazan =3 5idQ0.  de i)
K i=1

where the weight @; > 0, the quadrature point Q; = (&,1;) € Ig, i=1,---,I. Let Q =
Span{1,&,m,£% — 1}, we assume that the quadrature is exact on @), hence it is also exact on
P;. The following four schemes will be considered:

Schemel : I =4, @; =1, {Qi}, =(-1,-1),(1,-1),(1,1),(~1,1),
Scheme2: T =4, &; =1, {Q:}~, =(-1,0),(0,-1),(1,0),(0,1),
Scheme3 : I =3, @; =4/3, {Qi}}, =(-1,-1),(1,0),(0,1),
w; :4/3> {Ql};lzl = (17_1)7(_170)>(07 1);
a}i :4/37 {Ql}?:l = (171)7(_170)5(07_1)7
a}i :4/37 {Ql}?zl = (_171)5(170)7(07_1)'
Scheme4 : [ =2, @; =2, {Qi}2, = (-1,-1),(1,1), or (1,-1),(-1,1)
Figure 2
Scheme 1 Scheme 2 Scheme 3 Scheme 4

In the above figure, we only draw one case of Scheme 8 and Scheme /, the other cases can be
obtained symmetrically.

Remark 2.1. In fact, there are some other possibilities for the numerical quadrature. For
example, in the scheme 1, if we denote the weights @; in the counterclockwise manner, then the
following choices are also possible:

1. 01 +@wo + w3 +04 =4
2. (111 :(2)3 and (:)2 :@4.

The quadrature on K is given by

I
/K b~ S w0 d(Qixc) = Qre(6),
i=1
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where ¢(z) = gzg(:%), Wi Kk = @iJK(Qi), Qix = FK(Ql) Now we apply the quadrature scheme
Q@ k to the finite element equation (2.1). Define

ap(u,v) = Z Qr[a110;u0,v + a12(0;udyv + Oyudyv) + azdyud,v + auv],
KeTy,

and  (f,v)n = Y ger, @K (fv), we solve the following equation:
ah(uh,v) = (f,’l))h Yv € VO,h- (23)

From now on, we always assume that the Condition A holds.
Theorem 2.1. [14] Suppose a;j,a € WH®(Q), f € WH1(Q),q > 2, and u,up, € Vi are the
solution of (2.1), (2.8), respectively, then

2
Ju—unln < CRICY (laijllieo + llallyoo)llullz + fulz + | fllLq]-

ij=1

3. Multigrid Implementation

It is known that the condition number of stiff matrix of (2.3) is of order O(h~2), which results
in a slow convergence rate in real computations. The multigrid method is a useful tool to solve
such kind of systems. In this section an effective V-cycle multigrid algorithm is presented for
the quadrilaterial rotated 1 element. We use the isoparametric conforming bilinear element
space as the coarse-grid correction space on all coarse levels [ = 1,...,L — 1. It is shown that
this V-cycle multigrid requires only one smoothing step on all coarse level I < L, while on the
last level L a sufficient number of smoothing steps is needed. A similar idea has been exploited
for the Wilson nonconforming element in [15] and for the TRUNC plate element in [16].

Define the operator Ay : Vi, — V4 as follows:

(Apu,v) = ap(u,v) Yu,v € V.

Then (2.3) can be represented as:
Ahuh = fh; (31)

where fn € Vi, (fa,v)n = (f,0)n, v € Vi,

Let {I''}2, be a sequence of quadrilateral partitions of (2. Assume that I'; is obtained by
connecting the midpoint of two opposite sides of K € I';_;. Moreover, we assume 'y = T'j.
In order to construct a multigrid algorithm for (3.1), we define the isoparametric conforming
bilinear finite element space S; C H}(Q) on the grid I';, [ < L. It is obvious that

51CSQC...CSL_1¢V}L.

Because Sy,_1 (Z_Vh, we must define a suitable intergrid transfer operator Iy, : S;,_1 — Vj. Note
that Sr,_1 C C(Q), we simply choose the interpolation operator 7, in Lemma 2.1 as Iy, i.e.

/Ihvds = /vds Yv € Sp_1, (3.2)

where e is an edge of K € I'.

Let t7,—1 : C(2) — Sy be the isoparametric bilinear interpolation operator, then
Lemma 3.1. For the operator I, t;,_1, we have

(D) Tpv —v|lo < Chlv|r  |[ITpv|p < Clvjr Vv € Sp_1.
(2).]|tp 1€ — Intp1&|lo < Ch2[€]y VE € H*(Q) N H ().
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Proof. Lemma 2.1 gives

1T —vllo < CR3( > B k)® Yve S i (3.3)
Kel'p_1

Then by the inverse inequality, we can see that the first inequality of Lemma 3.1 is valid.
On the other hand, Lemma 2.1 and the estimate of the interpolation operator t7—1 [7] yield

ltr—1€ — Intr—1€llo < CR2( Y. [to-1€[3 x)*

Kel'p 1
< Ol VE € HA(Q) N HL(9).

We complete the proof.
By the similar technique in [14], we can show that
Lemma 3.2.

1
lan1(u,0) = g1 (w,0) < Chy aluli( Y B} Vu, ve Sy,
Kel'r -1

where ar,_1(-,-) and ar,_1(-,-) denote the bilinear form with and without numerical quadrature
on the coarse level L — 1, respectively.
Define the operators Ag, : S; = S; and Qs, : Sp—1 — S;, I =1,...,L —1 as follows:

(Ag,u,v) = ap_1(u,v) Yu, v €S,

(Qsu,v) = (u,v) Yu€ Sp_1, veES.

Noting that here we apply the quadrature scheme on the level L — 1 to all other coarse levels

(I=1,...,L —2) asin [3]. Moreover, define the projection operators Qr_1, Pr,—1 : V), = Sr_1
as follows:

(Qr-1u,v) = (u, [Hv) Yu € V,, v € S, (3.4)

ar—1(Pr—1u,v) = ap(u, Inv) Yu € Vi, v € Sp_y. (3.5)

It is easy to check that
|Pr—1v]1 < Clv|p. (3.6)
Using the similar technique in [2], we can construct certain smoothing operator Ry, : Vi — Vj
such that )
N
an(RpApv,v) < bap(v,v) Yv € Vp, (3.8)

(v,v) < (Rpv,v) Yv € Vp, (3.7)

where Aj, is the largest eigenvalue of Ay, and 6 € (0,2). By(3.7), (3.8) and a similar argument
of Theorem 3.6, 5.1 in [2], we have
Lemma 3.3. For any v € V},, it holds

ApK™o||? 1
cw <an((I — K})K}"v, Kj*v) < C—ap(v,v),
>\h m
where K, = I — Ry Ay, and m is the number of smoothing steps.
Similarly, on the coarse space S; (I = 1,...,L — 1), the smoothing operator Rg, : S; — S
satisfies

(1).0%(1},1}) < (Rgv,v) YV €85, (3.9)
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(2).ap_1(Rs,As,v,v) < far_1(v,v) YveS, (3.10)

where J); is the largest eigenvalue of Ag, and 6 € (0, 2).

It is known that the Richardson, Jacobi and symmetric Gauss-Seidel iteration satisfy the
above conditions. (cf. [2] for details)

Now we define the V-cycle multigrid algorithm as follows.
Multigrid Algorithm

Given g € V},, define Bpg by
(1). Set 7o =0, 2" =2""'+ Rp(g— Apa™ 1Y), n=1,...,m.
(2). Define 2™*! = 2™ + I,q, where
q=Mp 1Qr-1(9 — Apx™).
(3). Set yo = 2™+ and
y" ="+ Ru(g— Any™"), n=1,..,m.

(4). Define Brg = y™.

The operator My _; in the above algorithm is defined as follows: Let M; = Agll. For a
given g; € S;, M; (I=2,...,L — 1) is defined by

(i). Set ¢, = Rigi.

(ii). Define M;g; = x1 + p, where p € S;_; is given by

p=M_1Qs,_, (g — As,x1).

It is seen that on each coarse grid space S;, we perform only one smoothing step. It is easy
to check that

I—BpAy=K(I—-I,P, 1+ In(I — My 1As, ,)PL 1)K} (3.11)

By a similar argument in [3], we can prove
Lemma 3.4. For the operator I — My,_1Ag,_,, we have

lar—1((I = Mp_1As,_,)u,u)| < dpar—1(u,u) Yu € Sp_1,

where the constant §o € (0,1) is independent of the mesh h and the level L.

Let {X; };V:hl and {p; };V:hl be the eigenvalues and corresponding normalized eigenfunctions
of Ay, i.e.

Anpj = Ajj,  J=1,..., N,
and
(i, 05) = dij,

where d;; is Kronecker symbol.

For any v € V}, we write v = Zjv" cjpj. Let Ajv = Ejv" Aicjpj, then we define the
following discrete norm on the space Vj,:

lollls,n = (Ajv,v)%. (3.12)

It is easy to see that )
oMl = an(v,0)2, [[[olllo,n = llv]lo- (3.13)

Lemma 3.5. For the operator Pr,_ defined by (3.5), we have

v — Pp_1vllo < Chll[v]|lin Vo € V.
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Proof. Consider the following auxiliary problem

£n =v—Pr v in
{ n =0 on ON. (3.14)
Since () is a convex polygon, the elliptic regularity property follows that
Inll2 < Cllo = Po_yolo. (3.15)

On the other hand,

o= Ppyolly = (£n,0 = Pp4v)
an(n,v) —ar—1(n, PL-1v) — dn(n,v)
= ap(mpn,v) — ar—1(tL-1m, PL—1v) + an(n — man,v)
+ar—1(tL—1m —n, Pr—1v) — dn(n,v)
= ap(mpn,v) —agp1(tr-1m, PL1v)
+an(n —mpn,v) +ap—1(tp—1n —n, PL_1v)
+ [@n (T, v) — an(mrn, v)]
+lap—1(tL—1n, PL—1v) — a(tL—1n, Po—1v)] — din(n,v)
= ap(man — Intr—1n,v) + an(n — 70, v)
+ar_1(tr—1m —n, PL_1v)
+ [@n (T, v) — an(mrn, v)]

+lar—1(tr—1n, Pr_1v) — a(tr—1n, Pr—1v)] — dn(n,v)
6

i=1

We estimate the terms J;,7 = 1,...,6 one by one as follows. An application of Lemma 2.1, 3.1
and (3.15) yields

[J1| < Chinlzfvln < Chllv = Pryollo[|v][]1,n-
By Lemma 2.1 and (3.15), we get

| J2| < Chinlz|vln < Chllo = Pr_yvllo|[|v]l]1,n-
By (3.6) and (3.15), we have
|[J5| < Chllv = Pr_yollo][[v][]1.n-

By Lemma 3.4 and (3.15), we get

1
[T < Chlola( Y Jmnnl k)
KeTy,
< Chlvfn[nl2
< Chllo - P sollollellln

Similarly, by Lemma 3.2 and (3.15), we have
|J5] < Chllv = Pryvlfol[[v]]|1,n-
Finally, applying Lemma 5.3 and (3.15) gives
|Js| < Chlnllzlv]n < Chllo = Pryvlfol||v][l,n-
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So we get Lemma 3.5.
Lemma 3.6.
[llv = InPr—1v|[|1,n < Chl[[v]ll2,n YV € V.

Proof. By Lemma 3.1 and Lemma 3.5, we get

lv=InPr-1vllo < |lv—Pr-yvllo + (I = In)Pr-1vllo
< Chllollln + ChlPL o)y
< Chlf|vll]1,n-
On the other hand,
[llv = InPr—1v|llin = sup ap(v — InPp_1v,w)
wEVh,[[|w]]]1,n=1
= sup ap(v,w — I Pr,_w)
wEVh,[[|w]]]1,n=1
< sup [[olll2,nllw = InPr—1wllo

wEVh,|||w||[1,n=1

< Chlfjolll2,n-

The proof is completed. Finally, we show the main result of this section.
Theorem 3.1. For any § € (0o, 1), if m, the number of smoothing steps on the last level L, is
large enough, then

lan((I — BpAp)v,v)| < dap(v,v) Yo € V.

Proof. Let v = K['v, by Lemma 3.4, we get

|lan((I — BLAR)v, )|
S |ah((I — IhPLfl)ﬁ,ﬁ” + |a((I — MLflAstl)PLflﬁ,PLflﬁ”
<lan((I = InPr-1)0,0)| + do|a(Ip Pr—19, )]
< (14 do)|an((I — I Pr,—1)0,9)| + dola(v, 0)].
On the other hand, Lemma 3.3 and Lemma 3.6 imply

lan((I = InPr—1)0,0)] < Ch[|o]l]2,n][|0]]]1,n

Ahﬁ 2 L%
= ooy g,
h
< Clan((I = KKy, Ki') = |IollI7 ),
1
< Cﬁah(v,v).
Then, if m is large enough, we have
1+6
lan((I — BLAp)v,v)| < (% + do)an(v,v)
< dap(v,v).
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