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Abstract

Heat transport at the microscale is of vital importance in microtechnology applications.
The heat transport equation is different from the traditional heat transport equation since
a second order derivative of temperature with respect to time and a third-order mixed
derivative of temperature with respect to space and time are introduced. In this study,
we develop a hybrid finite element-finite difference (FE-FD) scheme with two levels in
time for the three dimensional heat transport equation in a cylindrical thin film with sub-
microscale thickness. It is shown that the scheme is unconditionally stable. The scheme is
then employed to obtain the temperature rise in a sub-microscale cylindrical gold film. The
method can be applied to obtain the temperature rise in any thin films with sub-microscale
thickness, where the geometry in the planar direction is arbitrary.

Key words: Finite element, Finite difference, Stability, Heat transport equation, Thin film,
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1. Introduction

Heat transport through thin films is of vital importance in microtechnology applications
[9, 10]. For instance, thin films of metals, of dielectrics such as SiO9, or Si semiconductors
are important components of microelectronic devices. The reduction of the device size to mi-
croscale has the advantage of enhancing the switching speed of the device. On the other hand,
size reduction increases the rate of heat generation which leads to a high thermal load on the
microdevice. Heat transfer at the microscale is also important for the processing of materials
with a pulsed-laser [11, 12]. Examples in metal processing are laser micro-machining, laser
patterning, laser processing of diamond films from carbon ion implanted copper substrates, and
laser surface hardening. Hence, studying the thermal behavior of thin films is essential for pre-
dicting the performance of a microelectronic device or for obtaining the desired microstructure
[10]. The heat transport equations used to describe the thermal behavior of microstructures
are expressed as [14]:

oT
— .q el —_ 1
V-q+Q =pCy 5 (1)
q(z,y,z,t+7,) = —kVT(z,y,2,t+ 1), (2)

where ¢ = (q1, g2, ¢3) is heat flux, T is temperature, k is conductivity, C} is specific heat, p is
density, () is a heat source, 7, and 7 are positive constants, which are the time lags of the heat
flux and temperature gradient, respectively. In the classical theory of diffusion, the heat flux
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vector (¢) and the temperature gradient (V1') across a material volume are assumed to occur
at the same instant of time. They satisfy the Fourier’s law of heat conduction:

ﬂmayazat) = —kVT(.’IJ,y,Z,t). (3)

However, if the scale in one direction is at the sub-microscale, i.e., the order of 0.1uym (1 um
=10"% m) then the heat flux and temperature gradient in this direction will occur at different
times, as shown in Eq. (2) [14]. The significance of the heat transfer equations (1) and (2) as
opposed to the classical heat transfer equations has been discussed in [14] (see pp. 127-128).
In Figure 5.9 (see p. 128 in [14]) the author shows that for 77 = 90 ps and 7, = 8.5 ps the
predicted change in ﬁix over time gave an excellent fit to the data and was significantly
different from that predicted by the classical heat transfer equations.
Using Taylor series expansion, the first-order approximation of Eq. (2) gives [14]

§+Tq%:—k VT-FTT%[VT] . (4)
Tzou et al. [13, 14] considered Eqgs. (1) and (4) in one dimension, and eliminated the heat flux
¢ to obtain a dimensionless heat transport equation as follows:

oT o*T  0°T o*T

Yo P T o P Pama T (5)

They studied the lagging behavior by solving the above heat transport equation (5) in a semi-
infinite interval, [0, +00). The solution was obtained by using the Laplace transform method
and the Riemann-sum approximation for the inversion [3]. Recently, we have developed a
two level finite difference scheme of the Crank-Nicholson type by introducing an intermediate
function for solving Eq. (5) in a finite interval [4]. The finite difference scheme has then been
generalized to a rectangular thin film case where the thickness is at sub-microscale [5].

In this article, we consider the domain to be a cylindrical thin film with the radius in the
zy-directions and the thickness to be of order of 1 mm and 0.1 wm, respectively, as shown
in Figure 1. Since the finite element method is suitable for the cylindrical geometry, in this
study we develop a two-level hybrid finite element-finite difference scheme for solving the three-
dimensional heat transport equation in the sub-microscale thin film, by employing the finite
element method to the xy-directions and the finite difference method to the z-direction.We
show that the scheme is unconditionally stable. The method is then applied to obtain the
temperature rise and the change of temperature on the surface of a cylindrical gold film, where
the radius in the xy-directions is assumed to 1.0 mm and the thickness is 0.05 pm.

2. Hybrid Finite Element-Finite Difference

Since we consider a thin film with thickness of the order 0.1 um and the planar direction to
be of the order of a millimeter, we may assume that there is thermal lagging in the thickness
direction and no lagging in the planar direction. In essence, it presumes an orthotropic lagging
response at short times, with 7, and 77 being nonzero in the thickness direction and zero in
the planar direction perpendicular to the thickness direction. As such, the components of the
heat flux in the x and y directions satisfy the traditional Fourier’s law, while the component in
the z direction satisfies Eq. (4). Hence, we obtain

oT
q1 = _k%7 (6)
oT
q2 = _ka_yv (7)
das aT 9T

BTy =k g Ty (5] ®)
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Differentiating Eq. (8) with respect to z, and then substituting it with Eqgs. (6) and (7) into
Eq. (1), we obtain
oT o*T 0T o*T o*T
+ 421 perr —(L— C—— D51+, 9
En 52 VT + { + a5 + }+ 9)
where A = 7, B = pc , C = :fg ,D = Lﬁ, and S = pT(Q + Tq ) It should pointed out
that A, B, C' and D are positive constants. The initial condition is assumed to be

T (z,y, 2,0
T(a:,y,z,O):To(a:,y,z), % :Tl(xyyaz)' (10)
The boundary conditions are assumed to be insulated, i.e.,
oT
— =0 11
57 =0 (1)

where 77 is the unit normal vector. Such boundary conditions arise from the case that the thin
film is subjected to a short-pulse laser irradiation. Hence, one may assume no heat losses from
the film surfaces in the short-time response [14]. We also assume that the solution of the above
initial and boundary value problem is smooth. Since the analytic solution for T is difficult to
obtain if the shape of the film in the xy-directions is cylindrical or arbitrary, our motivation
is to develop a hybrid finite element-finite difference scheme for solving the above initial and
boundary value problem. Furthermore, unconditional stability is particularly important so that
there are no restrictions on the mesh ratio, since the grid size in the z direction of the solution
domain is very small compared with the time increment. In this study, our goal is to obtain a
scheme with two levels in time and unconditional stability. To this end, we let

orT
=T+A—. 12
u="1+4+ ot (12)
In theorem 1 (to be discussed in the next section), we can show that our scheme is uncondition-
ally stable for two cases, 1) AB —D >0 and 2) AB— D < 0. Since AB—D = —(Tq ),

AB — D > 0 implies that 7, > 7 while AB—-D < 0 lmphes that 7, < 7r. For case 1 we obtain

9L = 1 (u—T) from Eq. (12). Substituting the ZL expression into Eq. (9) gives (noted that

AB - C =0)
ou 0? 0? C C 02 D D
E = (@4—8—:[/2) ((B—Z)T-F ZU) +@ ((B—Z)T-F ZU) +S
C . 02 02 02 D D
= Z(@ + 6—3/2)u+ @ ((B — Z)T-F ZU) + S. (13)

For case 2, we obtain T = u — A%. Substituting the T' value into Eq. (9) gives

ou 0? 02 0? oT
E—(@-“a—yz)B 52 ) <BU+(D AB) 8t>+s (14)

We now employ the finite element method to the zy-directions. To this end, from Eq. (13)

we let
C, 9 0? 0? D D
// T — pdxdy // {Z 922 + @) u+ 9.2 ((B - Z)T + Zu) + S} wdzdy,

where ¢(z,y) is a function in the Sobolev space H' and G is the domain of the thin film in

the zy-directions. Since we assume that g—; = 0 on the boundary of G, the above equation
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becomes, by the Green’s formula,
ou e Oudp Oudy
//8t(’0dmdy_ A//(@maw 8y8 )dd
G
0%u
B—— // P 2<pdwdy+ A//@goda:dy
G

+/ Sedzdy. (15)
a

We construct a finite element mesh in G, as shown in Figure 2, and write test functions for
T(z,y,z2,t) and u(z,y, z,t) as follows:

N N

Th(z,y,2,t) = Y Tp(z,)pp(@,y), un(@,y,2,8) = Y up(2,1)0p(2,7),
p=1 p=1

where @, (z,y) is a basis function, N is the number of grid points in GG, p is a nodal point. Also,
we consider S, = Z Sppp(z,y) as an interplant of ). Replacing T, u, S and ¢ by T4, up, Sh
and ¢, in Eq. (15) respectlvely, we obtain

8u
2 / / Pppqedzdy

_ Opp 6‘1011 a‘Pp %
N Z //(83: 8:6 dy Oy dedy
N

D 9T,
G

(9 u
P // Pppqedzdy

N
+3°8, // opgdrdy, ¢=1,2,...,N. (16)
p=1 G
Introducing the vector notations T(z,t) = [T1(z,1), ..., Tn(z,)]7, @(z,t) = (uy,...,un)7T,
S(z,t) = (S1, ..., Syv)Tand the matrices My xn and Kyxn with the two respective entries,

Opp Opy  Opp Op
M,, = // oppgdrdy, Kg, = // ( 8; amq aypa_yq dzdy,
G

we can express the system in Eq. (16) into a matrix form as follows:

ot C 0*T D_ 07
Ma _ZK u+ (B - —)Mﬁ + AMﬁ + MS (17)

where M is the capacitance matrix and K is the conductance matrix. Both matrices are
symmetric. Further, M is positive definite and K is semi-positive definite. Also, they are
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sparse matrices. For simplification, we apply the lumped mass technique [1, 2] to obtain a
diagonal matrix D, and then replace M by D, in Eq. (17) to give

o1 C D T D_ &4 <
Dyss = —“Ki+ (B - —)Dyes + —Dyos + DyS, (18)
ot A z
where each entry d,, at the diagonal of Dy is £ 3_ Sa (i.e., one-third of the sum of all elements
A
with node p as one vertex). Similarly, we can obtain from Eq. (14) for case 2
it o 8T

- U -
Dy, = ~BKT +BDy 5 + (D~ AB)Dy 5 5o + DS, (19)

Furthermore, we write Eq. (12) into a vector form

i=T+A (20)

E .

We now discretize the above Eqs. (18)-(20) using the finite difference method. We let
T" and @ denote T (mAz,nAt) and @(mAz,nAt), respectively, where Az and At are the
z-directional spatial and temporal mesh sizes, respectively, and m = 0,1,---, N,.

Eqgs. (18)-(20) are discretized using a Crank-Nicholson type of finite difference

antt — an c

DMW = - ﬂK(WnJrl + tiyy,)
1 D - - D
13- Dypyor @t 4 1)+ Doyt + )
1
+DySn 2, (21)
gl — gn B
DM m N m _ _EK(Wn+1+wn)
B D — AB - -
+5DM£wﬁ4+mm+- A D62 (T — T
1
+Du S 2, (22)
T+l _ T 1 . 1
AmTtm = —g(Tfﬁﬂ +T,) + 5(%“ + ), (23)
where §2amHt = Ly (@t —2amt 4 ant), and m = 1,- -+, N, — 1. We now simplify Eq. (21)

to obtain an equation for solving @%"'. To this end, we rewrite Eq. (23) as follows:

1 At = . . At
A+ )T +T3) = AT + — (@3 + ). (24)
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Substituting 77+ 4+ T into Eq. (21), we obtain

At antl —gn 1 At C
A+ =)Dy —m = _ (A + =) =K@ + @
(A+ 5Dy S(A+ SR + )

D —» A
+ (B = DDuEATS + L@ + )

At . D
SHEDw @ + )

At n+l
A+ T)DMSm“

(A+

1
2

_|_

—~

AtC’)
24

(D + %B)DM§§(%+1 + )

(C+ K(iap™ + i)

_|_

N = N =

S At ntl
+ (AB — D)D 62T + (A + 7)DMsijp. (25)

We can obtain the same equation from Eqs. (22) and (23) for case 2. The initial and boundary
conditions are discretized from Eqs. (10)-(12) as follows:

T = (To) , @ = (TO) +A (ﬁ) (26)
m m m
and
V.M =V.at = V. TR =V.i% =0, (27)
where V, is a backward difference operator, e.g., V, 47} = ﬁ?gfg . Hence, one may use Eq. (25)
to obtain @™ 'and then use Eq. (23) to obtain 77+,

3. Stability

To show the stability of the scheme, Eqs. (21)-(23), with initial and boundary conditions
(26)-(27), we first introduce the definition of the inner product between the mesh functions @”,
and 77, Let Gy, be a set of {d" = {@%}, with V.@} = V.@% = 0}. For any @", V" € Gy,
since Dy is symmetric and positive definite, and K is symmetric and semi-positive definite, we
can define the inner products as follows:

N.—1 N.—1
(ﬁnavn)D = Az Z (Wn)TDMUrnna (ﬁna{;n)K =Az Z (Wn)TK{}Tna
m=1 m=1
N.—1
(ﬁna{'m)l,D = Az Z (VZWn)TDMvZﬁ?nv
m=1

where (@7)7 is the transpose of @7,.

Lemma 1. For any d", v" € Gy,
(62", v")

b= (\7’”,651’1’”)]) =—(@",v"); p
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Proof.
N.—1
(@), = Az Y (@)D
m=1
Az Nt
= = Y (Ve ) = (Ve D,
m=1
N.—1 N.—1
Az ¢ Az ¢ T
= A (Vatip 1) Dy, — > (V. "Dy,
m=1 m=1
N N.—1
Az Az ¢
=~ As mzz(vzum)TDMUm—1 T Az mzz:l (Vz%)TDMUrnn
Ar "
= 5 Y (V) D, — ) + (Vaith) Dtk s
m=2
(VZW)TDMQ_’?
N.-1
= Az Y (Vaidn) "Dy VL, 4+ (Ve Dy, — (Vaip) Dt}
m=2
Since V. 4y = Vzﬂ"jifz = 6, we obtain
N.-1
(0", v")y, = —Az Y (Vi) Dy V.o,
m=1
= — (", V"), p
Similarly, we have (V",624"), = — (@",v"); p -

Theorem 1. Suppose that {@, T"} and {&", W™} are solutions of the scheme, Egs. (21)-
(23), with the same boundary conditions, and initial values {@>,, T2} and {3°,, W2}, respec-
tively. Let o7 = ay — Un, €n, =10 — Wi, Then {¢},, €n} satisfy

(3.6")_+(UB-D) &), p < (#,8)_+(UB-D) (@), , (28)
if AB—D >0 and
(3".6")_+(D=-4B) &), p < (#,8)_+(D-4B) (@), (29)

if AB— D <0 for any n in 0 < nAt < ty. Hence, this scheme is unconditionally stable with
respect to the initial values.

Proof. Since {@”, T"} and {#", W™} are solutions of the scheme, Eqs. (21)-(23), with
the same boundary conditions, and initial values {@®,, T%} and {°,, W2}, respectively. Let
5;‘1 =upy— U, &N = f,’}b— WT’}L Then, d?", g" € Gy, and satisfy (from Egs. (21) and (23))

Q_S’?r;rl B g;?n _ C Tn+1 n 1 2 =n+1 -n
ADy, 250 OK( ) + S4B - DDy +20)
D 2/ Tn+1 n
+ EDM(SZ (¢m + ¢m)v (30)
aln+1 _aln 1 n+1 -n 1 n+1 n
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Multiplying Eq. (30) by ($”m+1 + $”m), then summing m from 1 to N, — 1, one obtains
A /- - - 1 S -
il n+1 n n+l _ n _ = _ n+1 n $2(-n+1 -n
S (FH g F =g = S(AB=D) (§ 4 Gt e
1 n+1 n 2/ Tn+1 n
+5D (§7 4 82FH + 3
1 /= - .
_ - n+1 n n+1 n
SC(F 4 g G 4 gn)
By lemma 1 and ((Zf““, 5") = ((5", 5”“) , we have
D D

Ait (($n+l’$n+l)D B (&'n,&'n)D) -

(AB — D) (5”“ Fgn Entl 5“)1 .

D (d_;rH-l + (Z;n’q_;rH-l + q_;n)l N

)

(32)

N = N = N =

C ((Z;n—i-l T (Z;n’(;rH-l T (Z;n)

Further, we multiply Eq. (31) by D62 (€% + &%), respectively, and sum m from 1 to N, — 1
to obtain

K .

A 1
S e B )y = -5 (T B E ),
1/ .
5 (G atEt e (33)
By lemma 1 and (é’”“,é’”)LD = (5’”,5"“)171), Eq. (33) becomes
A n+1 -n+l -n -n 1 n+1 -n -n+1l -n
—At[(s &) p— (€8 )17D]—§(€ +Em e+ ),

1 n+1 nom+l | oon
— = . 4
5 (F g et ve) (34)
If Eq. (34) are multiplied by —(AB — D), and added to Eq. (32), we obtain

2 (g g) —(3nd) ) + BB Pl gy e,

At At
1 - - - - 1 - - - -
_D n+1 n n+l n - n+1 n n+l n
+5D (8 4G ) (8 a4 )
1 -n n on -n
+§(AB—D) (et e ety 2 )ip
—0. (35)

Since AB—D > 0, D)y is symmetric and positive definite, and K is symmetric and semi-positive
definite, one may drop the last three terms on the left hand side from the above equation and
obtain

Ait ((gnﬂ’&nﬂ)n B (g;n’(gn)n) + A(Aiit_D)[(ng’ng)l,D o (glaén)LD]
0.

<

Hence,

(51,647)_+ (4B - D) (1,2
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Summing n from 0 to n, we obtain Eq. (28)
(6".6")  +(AB-D) (&), p < (#,8")_ + (4B -D) (£,8), .

For the case of AB — D < 0, one may use a similar argument. We first obtain from Eq. (22)
and Eq. (23)

St = _

1 . . B B, ;
Dy~ - 5 BK(R™ +6h) + 5Dud (00" + on)
D — AB it
+ TDMéﬁ (entl —¢en) (37)
and ~n-+1 -n
€ — € 1 -n -n 1 n n
AmTtm = _§(€m+1 + 6m) + §(¢m+l + ¢m) (38)

Multiplying Eq. (37) by (7! + ¢ )T and multiplying Eq. (38) by D02 (%F — &), respec-
tively, then summing m from 1 to N, — 1, we obtain, by lemma 1,

é ((grgmr) = (6m4") ) = - é(D —AB) (4 e - )

1,D

1 /- I -
_ B ( n+1 n’ n+1 n)
5 PV 4P, PN + «

—gB (B g (39)

)

and

1
X (an+t = gn antt _gn)LD =3 ((5n+1,én+1)1 - (Eﬂ,gn)LD)

- % e (40)

If Eq. (40) is multiplied by —2;(D — AB), and added to Eq. (39), one obtains

é (((Z;HH’(Z;”H)D B ((Z;n,(gn)D)
+ D48 _AfB ((5*L+1,5'L+1)LD - (sﬂ,gn)w)

1 - - - - 1 - - — —
4 §B (¢n+1 +¢n’¢n+1 +¢n)K 4 §B (¢n+1 +¢n’¢n+1 +¢n)1

)

2
+ 55 AD — AB) (e gt e

=0. (41)
Since AB — D < 0, Eq. (41) can be simplified as follows:

Ait (($”+1,$”+1)D B (5”,571)])) + o _A?B ((gl+175n+1)1 b — (€€, D)

<0. (42)
Therefore, we obtain Eq. (29)

(#".6") +(D—4B) (&, p < (&,8")

)ip
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and hence we conclude the theorem.

Since Eq. (25) is a three-dimensional implicit scheme, it involves heavy computations. To
simplify the computation, we develop a preconditioned Richardson iteration based on the idea
of our previous paper as follows [6]:

Lyre (@)Y = Lype ()" — oDt — i)

At At At ;
+ S A+ SO+ SRR + )

At At At DI
-5 7) YD+ TB)DM(Sz[(UmH)( ) + iy

— At(A+ %)*1(AB — D)Dy 0°T"

(A+

a1 .
— AtDM SRR}, i=0,1,2, -, (43)
where the preconditioner is

Lpre :DM+%(A+ %)_1[(C+%B)DK — (D+%B)DM6§]. (44)
Here, w is a relaxation parameter, 0 < w < 1, Dg is a diagonal matrix where each diagonal
entry of D is chosen to be the sum of elements in absolute value in the corresponding row of
K. It can be seen that the iteration method (43)-(44) converges. A similar argument can be
seen in [6].
It should be pointed out that only a block tridiagonal linear system is solved for each
iteration in Eq. (43). Further, the Thomas’ algorithm [7] can be employed since only inverse
of diagonal matrices are involved. Hence, the computation is simple.

4. Numerical Example

To demonstrate the applicability of the numerical procedure we investigate the temperature
rise in a sub-microscale cylindrical gold film. The thickness for the gold film is 0.05 um, while
the radius in the planar direction is 0.5 um, as shown in Figure 1. The properties of gold are
Cp =129 kJ/kg/K, k = 317 W/m/K, p = 19300 kg/m?, 7, = 8.5 ps (1 ps =107'? 5) and
r =90 ps [14, 8].

The heat source was chosen to be [14]

(45)

1- _z_gl=2el
Q(z,y,z,t) =0.94J { R] e’ o

10

where J = 13.7-5, ¢, =100 fs (1 fs = 107'% 5), § = 15.3 nm (1 nm = 10~° m), and R = 0.93.
The initial conditions were chosen as follows:

T(z,y,2,0) = T, %—Y;(w,y,z,O) =0 (46)

where T, =300 K. The boundary conditions were assumed to be insulated.

To apply our numerical method, we chose a finite element mesh with the same 97 nodes
in the zy-directions, as shown in Figure 2, and chose 50 grid points in the z-direction for the
gold film. The basis function was chosen to be the linear function. The time increment was
chosen to be 0.005 ps. To use the preconditioned Richardson iteration, Eqs. (43)-(44), we
chose w = 1.0 and the convergent solution {T;‘g 11 was obtained if the convergence criterion

nt1) (¢+1) nt1) (8
max | (upt) Y = ()

< 107° was satisfied.
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Temperature Rise (K)
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Figure 3. Temperature profiles along the z—axis
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L=01um
09 —— DPL.t;=90ps, ¢, =85ps
O experiment, Qiu el al. (1994)
0.8 & experiment, Brorson et al. {1987)

ATHAT) ., reflectivity change

00 05 1.0 1.5 20 2‘5
time (ps}

(b)

Figure 4. Temperature change on the surface of the gold film.
The maximum temperature rise (Thqz = 10.80K) was obtained. (b) is obtained in [14].

Figure 3 gives the temperature rise along the z—axis for different times (¢t = 0.2 ps, 0.25
ps, and 0.5 ps). It can be seen from the figure that the heat is transferred from the top to the
bottom.

Figure 4 shows the change in temperature ((Aﬁ%) on the surface of the gold film. The
maximum temperature rise of T' (i.e., (AT)Maz) on the surface of the gold film is about 10.80
K. From this figure, it is seen that the temperature rises to a maximum at about 0.275 ps and
then goes down. This figure is similar to that obtained in [14] for one dimensional case (see p.
125 in [14]) except that the temperature rises start at ¢ = 0. This is because in [14] it appears
that the initial time was set equal to 2t, in Eq. (46).

Furthermore, the preconditioned Richardson iteration is fast since the solution converges at
most after 2 iterations for each time step. The cpu time t = 0.5 ps on a SUN workstation is
about 3.5 minutes.
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