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Abstract

In this paper, we investigate the coupling of natural boundary element and finite ele-
ment methods of exterior initial boundary value problems for hyperbolic equations. The
governing equation is first discretized in time, leading to a time-step scheme, where an
exterior elliptic problem has to be solved in each time step. Second, a circular artifi-
cial boundary I'r consisting of a circle of radius R is introduced, the original problem
in an unbounded domain is transformed into the nonlocal boundary value problem in a
bounded subdomain. And the natural integral equation and the Poisson integral formula
are obtained in the infinite domain €, outside circle of radius R. The coupled variational
formulation is given. Only the function itself, not its normal derivative at artificial bound-
ary I'r, appears in the variational equation, so that the unknown numbers are reduced
and the boundary element stiffness matrix has a few different elements. Such a coupled
method is superior to the one based on direct boundary element method. This paper dis-
cusses finite element discretization for variational problem and its corresponding numerical
technique, and the convergence for the numerical solutions. Finally, the numerical example
is presented to illustrate feasibility and efficiency of this method.

Key words: Hyperbolic equation, Natural boundary reduction, Finite element, Coupling,
Exterior problem.

1. Introduction

In many fields of scientific and engineering computing, problems in unbounded spatial do-
mains are encountered frequently, such as acoustic waves, electromagnetics wave guides, aero-
dynamics, and meteorology, and so on. Such problems pose a unique challenge to computation,
since their domains are unbounded. Although we can apply classical boundary element methods
(BEM) or boundary integral methods (BIM) to solve these problems in unbounded domains,
in practice a great many singular integrations usually need to be calculated. At the same
time, we make the integrations about time interval for the time-independent problems while
the problems are discretized in time. Therefore, it takes a lot of time to deal with the original
problem. The natural boundary element method initiated and developed by K Feng and D Yu
(see [1 — 6]) has some distinctive advantages comparing with classical boundary element meth-
ods. One of them is fully compatible with finite element method, and it can be coupled with
finite element method naturally and directly. The coupling of natural boundary element and
finite element method for the elliptic problems, we can refer to [6,7,8]. Mathematical theory
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of natural boundary element method for the elliptic problems is being perfected (see [8]). At
present, authors have made some developments in natural boundary element method for the
parabolic problems(see [9]), and been investigating into the problems related to this.

In this paper, the coupling of natural boundary element and finite element method for hy-
perbolic exterior initial boundary value problems in R2. A circular artificial common boundary
I'r, which consists of a circle of radius R large enough, is introduced. It divides the domain
into two subregions, a bounded inner region ; (bounded annular region by I'g and T'g) and a
regular unbounded region Q2 (unbounded domain outside circle 'g). We obtain the natural in-
tegral equation on boundary I'g and corresponding Poisson integral formula of the subproblem
over unbounded domain {25 by the natural boundary reduction. Only the function itself, not its
normal derivative at the common boundary I'gr, appears in the variational equation obtained.
Not only the boundary element stiffness matrix is symmetric, but also its elements have explicit
forms. We only calculate a few different elements, and can get the boundary element stiffness
matrix. It is easy to be implemented on calculation and storage.

Following is the outline of this paper. In section 2 we first state the problem under consider-
ation . Second we discretize the problem in time, leading to a time-stepping scheme, where an
exterior elliptic problem has to be solved in each time step. In section 3 we introduce a circular
common boundary ', and obtain natural integral equation in the unbounded domain outside
circle I'r. The problem in an unbounded domain is transformed into the nonlocal boundary
value problem in a bounded domain. We then introduce the corresponding variational formula-
tion and show that the variational problem has a unique solution. We also give some properties
of the natural integral operator K, and the bilinear form D,(-,-) obtained by operator K.
The finite element discretization is employed to solve the variational problem in section 4. The
convergence for the numerical solution is taken into account. In section 5 we present some
numerical results to illustrate feasibility and efficiency of our method.

2. Statement of the Problem and Time Discretization

Let 'y be a closed curve in plane, and 2 be an exterior domain with I'y as its boundary.
For any fixed positive number T', writing J := (0,7]. Consider the following initial boundary
problems:

uge — a?Au = f(z,t), (x,t) € Q x J;

w = 9(z,1), (z,t) € Ty x J; (2.1)

u(z,0) = p(x), wu(z,0) =(x), x € Q.

where u(xz,t) is the unknown function, u; and u;; denote the first derivative and the second
derivative with respect to time ¢, respectively. a is a given positive constant (It is usually wave
speed). f(x,t), g(x,t), p(x) and ¥(x) are all given functions. % is the normal derivative
operator on I'g (Here n is the outer unit normal vector on boundary I'y of domain €2 toward the
interior domain with T’y as its boundary). Moreover, we assume the function u(z,t) is bounded
at infinity. However, there is no need in a “radiation condition” at infinity to complete the
statement of the problem (see [10]).

Let 7 be the time-step, and write t, = k - 7, u¥(z) = u(x,ty), 2% (z) = wi(z,tg), wk(z) =
Utt (1’, tk)

2
A= (Tay/a) T T A %(1 —2a)wk,

shtl . Sk + (1 _ ﬂ)ka, fk+1 = gkt OéTszJrl

Here o € (0,3] and 8 € [0,1], k=0,1,2,---,[T/7] — 1. Then the original problem (2.1) can
be reduced to the following one (discrete problem in time ¢):
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I) Find @F*+1 2541 and f*! (k=0,1,2,---,[T/7] - 1)

2
T R 7-?(1 — 20)w* (2.2)
L =2k 4 (1 - B)rwk (2.3)
fk-‘rl — _ak+1 _ OéT2fk+1 (24)

IT) Solve the boundary value problem

Auktt — N2kt = N2 fhtt z €

o k+1

=0 @) z € Ty; (2.5)
n

[uF T < 400, |z| — +o0.

III) Update w**! and z**!, preformed in the following relations:
whtl = a2/\2(uk+1 _ ak+1) (2.6)
2Rl = R 4 grphtl (2.7)

As stated above, we discretize the problem (2.1) with respect to time ¢, and obtain a time-
stepping scheme (2.5) at each time step 7. For each time level, we first find @***, ¥+ and
1 by (2.2) — (2.4) in turn. Second we mainly solve the boundary value problem (2.5), and
get ufT1. Then we update w**! and z**! by (2.6) — (2.7) in order to solve the problem in next
time level. We repeat the solution procedure, and can obtain u* at each time t;.

3. Coupled Problem and its Variational Formulation

We truncate the exterior domain by introducing an artificial common boundary I'g consist-
ing of a circle of radius R large enough to contain the interior domain with I'y as its boundary.
I'r divides the unbounded domain €2 into two subregions : a bounded annular region €4 by I'g
and FR

O = {(z1,22) | (x1,22) € Q, x% +m§ < RQ},

and a regular unbounded outer region 2
Qy = {(z1,22) | (z1,22) €Q, 27 + 23 > R*}.

Referring to [9], the solution of the unbounded problem for Q- is given by the following
Poisson integral formula:

uFt(r,0) — F(\ R; f*71r,0) = Piyoutt, r>R (3.1)
where
1 X K,(r) [ '
c k1 _ n _ gl . k+1 NIg! 2
Piyou o nE_O En Ko OR) /0 cosn(@ — 6" -u"" (R, 6")db (3.2)

- 2 +oo +oo 5 5
F(\R; f*1 r0) = 7 an/ o*Gy(r,0) - [fFT14(a) cosnf + f¥15 (o) sinnf]do (3.3)
R

n=0

~ 1 2w -
e () = ;/ cosnf - f*+1(0,0)dd, n=0,1,2,--
0

27
fr]§+1’s(a) — l/ sinnf - ]FkJrl (0,0)d0, n=12,---
™ Jo
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Kn(A0)thn(r)/En(0), r<o

7" Cnlr,0) = { In(@)KnOW)[En(0),  r>0
n(0) = In(A0) Kn(AR) — Kn(A0) I, (AR)

2 d [K,(\o)

do [ I,(\o) ]

where €,, = 1,n = 0;¢,, = 2,n > 0. And there is a natural integral equation on I'p (where 7q
is the trace operator, i.e., you = u|ry)

Eo(0) = Ku(AR) (I(\o))

k+1 0 -
ou” (R,6) &(LR’ ) + G\ R; fAL0) = KSyouh™? (3.4)
where N
A —=  K.(AR) [*"
c k+1 _ & n _ 0N .kt / /
KSyou"" = o nOSnKn(AR)/O cosn(d —6") - u""(R,0")dd (3.5)
Fl+1 e B Fk F
G\ R; ff+1 9) = 5 > en ; G\ R;o) - [fit1¢(0) cosnb + fit1¥ (o) sinnf]do  (3.6)
n=0
— K,(Ao) o
Gn )\,R7 = — F =, = ,1’2, ...... i
( o) K.OR T n=0 (3.7)

where I, (z) and K, (z), which appear in the expressions above, are the modified Bessel functions
of the first and second kind, respectively. The expressions (3.1) and (3.4) are usually known
as the Poisson integral formula and the natural integral equation, respectively. The Poisson
integral operator P§ and natural integral operator K are respectively expressed by (3.2) and
(3.5). From this, the problem can be reduced to the following problem:

Auktt — N2kt = \2 fhtt) z € Qy;

Qukt!
—— =¢""(w), x € Ty; (3.8)

0,
Ot (R, 9)
on
Using the conventional method, it is not difficult to obtain the following variational formulation
associated with the problem (3.8):
{ find w**' € H'(Q,), such that

D, (uk+17vk+1) + D2 (uk+1)vk+1) = f(karl)

+ G\ R; fF1,0) = K§youht, on Tg.

(3.9)

for all v**+! € H'(Q). Where

Dy (u,v) :== / (Vu - Vv + \u-v)dz, (u,v)1 == —/ N - vde,
Ql Ql
ﬁg(u,v) =< K$vu, %0v >1p= KSvou - youdS, < U, U >yi= /u -vdS,
o - I'r B *
f) =< G\ RB; f*10),v >r, + < g8 v >py +(F4 0)y.

For any non-negative p, we introduce Sobolev space as follows
HP(Tg) :={F :F € L*(Tg),||F|lyrs < +o0} (3.10)
where the HP(T'g)-norm of F is given by

+0o0
IFpry =1 Y (L4 n®)P[Ff*) (3.11)

n=—oo
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1 27 . -
F,=— F(R,0)e~™dp, F,=F_, (3.12)
2T 0
The space H P(T'g) is the dual space of HP(T'g).

Lemma 3.1, For the modified Bessel function K, (z), and x > b (where b is arbitrary finite
positive real number), the following assertion holds

K 1
‘ T O(1), n — 400 (3.13)
K/ (\R) 1 .
Corollary 3.1. For all natural number n, | —= . is bounded.

Proof. By Lemma 3.1, there exist a positive integer N and two positive constants ¢; and
s such that ¢1 < |K},(AR)/K,(AR)| /V1+n? < ¢z asn > N and we can prove the assertion
with

Mpin :=min < c mln KI (AF) }
min +— 1, )\R \/H——TL2

Eatl

Theorem 3.1. The natural integral operator K has the following properties:
(i) The natural integral operator K is a linear operator from HP*'/2(T'g) to HP~'/?(T'g);
(i) The operator K5 has the following explicit form

_ ' (AR
Mimaq = max{c“” 0SnEN ‘K (AR

K] (A ;
==X Z Up - 7R; en?, (3.14)

where {Un}:io_oo are the Fourier coefficients of function v.
(iii) For all f € HPT'/2(T'R), the following inequality holds
IKSfllp=1/2,0 < Cx - Ifllp+1/2,08 (3.15)

where p is any non-negative integer, and C) is a positive constant independent of f.
Proof. (i) It is obvious that K is a linear operator.
(ii) Setting

n=—oo

K.\ R;0—8") an cosn(e — 6"
Since e + e~ "? = 2cosng, and K_,(z) = K, (z) (see [11]), we have

()\Re 0 Z K zn(0 0")

Thus, from (3.5) we get

A 27 +0oo I()\R) ) , +00 o,
c - 2 _ n L oin(0-0") . inf /
o) (2 e 2 e ot

n=—oo

Foo.
_ K;L(AR) infd
= =\ Z Un, Kn(/\R)e
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(iii) For all non-negative integer p, given f € HP*1/2(T'g), we must show that its image

!
F = K5 f lies in HP~'/2(Tg). Let hy(z) := Ifﬁg\g) From (ii), we find out that
¢

+o0 “+oo
F(R,0) ==X Y fo-ha(AR)e™ = " F, e

From corollary 3.1, we have
“+oo
ICSAR 1 jorn = I 1jorn = 2 (L+n?)P7 2B,
n—oo
+00 1
_ 32 . 2p+1/2) ¢ (2. 2
= A n;m (1+n2)PH 2 f 2 (|hn(AR)] 1+n2)
==
= OX Y (L
n=-—o0o

IN

C- N |flpr1/2.0m

Theorem 3.2. The bilinear form Dg(u, v) obtained by natural integral operator K is symmet-
ric and continuous on H'/?(Tg) x H'/?>(T'r) and positive definite on H'/?(Tg), i.e.

(i) Da(u,v) = Ds(v,u), Y u,v € H'/?(Tg) (3.16)
(ii) There exists a positive constant Co such that
Ds(u,v) < Co - lullijo,rg - 10ll1/2,05s Y u,v € H'/?(T'g) (3.17)
(iii) There exists a positive constant C1 such that
Dyuw,u) > Cillul oy, ¥ u€ H'2(Tp)

(3.18)

Proof. From (3.14), for all u € H'/?(T'g)

+oo
K§u= =X > un- hy(AR) - €™

(i) For all u,v € H'/?(T'R), we have
Dy(u,v) = < KSyu,yv >rp,
- / ( f vn-eme)-(—)\ f um-hm(/\R)-eim")dS
o T 400 » e »
- —AR/O (nz_:oovn-em ) : (mz_:ooum-hm(m) eim )d0
= —AR-2r io ha(AR) - U, - T
Thus
Dy(v,u) = —AR- 21 f ha(AR) - vn - T = Do (u,v) = Da(u, v).

The symmetry has been proved.
(ii) From Theorem 3.1, for all u,v € H/?(I'g), we get

Ds(u,v) =< K§yu, 70 >r, < IKSull-1 /2,05 - 10llij2,0n < Callullijo,rp - 110l /2,1

Inequality (3.17) is proved.
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(iii) From [11], for the modified Bessel function K,(z), there is the following recursive
formula

Ko@) = 5 [Knin@) + Ko@), 21 Kjla) = —Ki(2)

From the fact that K,(AR) > 0, implying K (AR) < 0. Therefore K|, (AR)/K,(AR) < 0. we
have —K! (AR)/K,(AR) = |K!(AR)/K,(AR)|. For all u € H'/?(T'g), taking v = v. From (i)
and Corollary 3.1, we can obtain

+o0
. K! (AR
Dy(u,u) = AR-27 ) (—ﬁ)-mnﬁ’
oo
K] (AR) 1
— .92 1 2\1/2 n2 L|l_Iin .
+o0
> AR 2mc Z (14 n?)2|u,?

= Ci-lullir,

which proves (3.18).
If we define A(u,v) := Dy (u,v) + D2(u,v), we have the following results:

Theorem 3.3. The bilinear form A(-,-) is symmetric and continuous on H'(Q1) x H*(Qy)
and H*(Q)—coercive in the sense that exist two positive constants Co and C3 such that

(i) A(u,v) = A(v,u), vV ou,ve HY(Q)

(i) A(u,0) < o - lullioy - lollioy, Y u,v € HY(@)

(iii) A(u,u) > Cs - llullf g, V ue H' (M)

Proof. (i) It follows from (3.16) and D;(-,-) is symmetric.

(ii) The Cauchy-Schwarz inequality, (3.17) and the trace theorem give, successively,

Alu, v) |A(u,v)| < D1 (u,0)] + [D2(u, v)]
max{1, X }ullra, - vl + Cx - llullijorg - 0]l /2,0z

Cs -[lullo, - vl

IN A IA

(iii) Let C3 := min{1,A\?} and by (3.18), we can obtain
Alu,u) > Di(u,u) > min{1, X }ullf o, = Cs - [|ullf g,
From Theorem 3.3 and the closed graph theorem, we have

Theorem 3.4. Let f**1 ¢ L2(Qy), g*t' € H='/2(Ty), the variational problem (3.9) has a
unique solution u*+*. Moreover, if Iy is reqular enough, g*t' € H'/?(I'y) then u**+* € H? ()
and there exists a positive constant C' such that

[ 200 < CLUIF* Nlon + 19" llaj2,00 + G200 } (3.19)

4. Finite Element Discretization

We now consider the finite dimensional version of the variational problem (3.9). To this end,
we impose a subdivision on domain €4 into {e;} of which longest element has diameter h. We
divide the artificial common boundary 'g into N parts (It is equivalent to divide the interval
[0,27] into N parts). In addition, it is assumed the Ny and N; nodes are taken, respectively, in
Q; and on I'y, and the nodes on I'g coincide with the nodes on 8Q; N Q. All the nodes on I'g,
in ©; and on I'g are numbered from 1 to N to M; to M in turn. Where M; = N + N; and
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My = My + N>. And let W;(Q;) be a finite element subspace of space H'(£21). So the discrete
variational problem corresponding to (3.9) is

Find uf™ € W;,(Q1), such that
Dl( k+1 k+1)+D2( k+1 ;cLJrl) fh( Z+1)’ k+1 c Wh(ﬂl)

Where fu(vf™') =< GO\ R; ff,0), 0™ >rp + < g opt >p +(FF vf ), and
firt = —abtt — ar? f*1 Since Wi(Q) € H'(Q) and the existence and uniqueness of
solution to the problem (3.9), the problem (4.1) has a unique solution uf™" in W} (Q;).

Let {¢;(x)}2 be a basis function system of W} (), then finite element discretization of
problem (4.1) leads to the system of algebraic equations

(4.1)

K- Ukt = pht! (4.2)
(2)
K\Y 0 -
where K = K(l) + |: 0 11 0 :|, K(l) = (D1(¢i’¢j))M2xM2’ Kl(i) = (D(¢i’¢j))NxN’
U o= (b k) B s (B )
27
PR+ = fu(n) = G(\ R; fFT1.6) - 6;(0) - Rd6 + / g*t - ¢i(0)dS — N? f’c+1 bi(z)dx
0 o

According to Theorems 3.2 and 3.3, we know that matrices K() | K 1(?) and K are all symmetric
and positive definite, we can obtain

Theorem 4.1. The system of linear equations (4.2) has a unique solution.
Once we solve the system of linear equations (4.2), and get UF!  then the approximate
solution of the original problem can be expressed by

Mo .
Zuf“ i (), e

ubtt = {721 (4.3)
D usthPS - qees(x) + FOLR; fir,6), we
j=1

Since
R 27
Ds(¢i, b5) = ¢;(0) - K39i(6) - Rdf
OAR 27 27
- sn/ hn\R) cos (6 — 0') i (6) - &, (6')d6d6’
n=0
If I'g is divided into N equal parts and ¢; (a:) (i =1,2,---,N) are piecewise linear functions,
and setting
27r)\R N4 X1 nmw nm
m = =5~ {ho()\R) + ”—nz:l = —hn(AR) - sin (N) -COS(W : 27r)} (4.4)
m=0,1,2---,N—1
Thus . .
D2(¢Za¢j):a’\l7]| :D2(¢]7¢Z)7 7/7.]:17277N (45)
KD = (D2(61,65))nxn = (0,01, an-1)) (4.6)
From (4.6), we know that the matrix Kg) is a cyclical matrix produced by ag,a1,---,an_1.
We can get the matrix Kg) by only calculating [%] + 1 numbers ag, a1, -+, a;y) owing to

a;=an_; (i=0,1,2,---,N —1). So it is easy to be implemented on calculation and storage.



The Coupling of Natural Boundary Element and Finite Element Method for 2d Hyperbolic Equations 593

From Lemma 3.1, the series a,, is convergent, and absolute convergence. Under the state-
ments above, we have

. 1 Ko(wr) | 2N X1 K () nmw. 2 o
PX-108i = 5 {KO(AR) o 2 ek oR) (47)

n=1
Referring to [8], we have

Theorem 4.2. Let uFt! and uf™ be the solutions to problems (3.9) and (4.1), respectively.
Then the following hold

g =Tl =0, Tl =l =0 (4.8)

where || [l := v/Di(-,) and || - [l2 := /D2 ().

5. Numerical Examples

We consider the following problem in square exterior domain 2, i.e. Q := {(z1,x2) | (z1,22) €
R |z > 1, i=1,2}. f(z,t) = e*”t{(# — & +7%)sina, -sin w2y + 25 (2 cos vy sin Tz, +
Tysinmay cosmra)}, where r = (/ai+23. a = 1, ¢(z) = Lsinway - sinway, Y(z) =
—Tsinmxy -sinmre. Tp = {(z1,22) | (21,22) € R%r = 2}.

g(1,x2,t) = \/% ce ™ sin iy, |z2| < 15
D)
m —nt :
g(wl,l,t):ﬁ-e -sinmxy, |z1| < 1;
vV 7
m —nt :
g(—l,xQ,t):—\/ﬁ-e - sin wz3, |z2| < 1;
Ty
m —nt :
g(x1,—-1,t) = ——=—=-€e""" -sinmxy, |z1| < 1.

V1+ai

The expressions for F(\, R; f**1,r 6) and G(\, R; f**1,6) (see (3.3) and (3.6)) involve infinite
series. In practice all the infinite sums are truncated after a finite number of terms, M. So are
the expressions for a,, and P5 - v¢; (see (4.4) and (4.7)). Ejqe denotes the maximum of the
relative errors for all the nodes on 'y, in ©; and on ['y. The results are shown in the following
Tables 5.1 and 5.2.

Table 5.1: a=1/6,8=1/2,t=0.1

N [ My | M | Emao(r = 0.05) | Emas(r = 0.025) | Emag(r = 0.0125)
8 | 28 | 20 | 5.973551E-1 2.131856E-1 4.125776E-2
16 | 66 | 40 | 2.178516E-1 5.925028E-2 1.178099E-2
32 | 232 | 80 | 7.015094E-2 1.910536E-2 3.480178E-3
64 | 784 | 120 | 2.231752E-2 5.753432E-3 1.197058E-3

—

Table 5.2: a=1/6,8=1/2,t=
N [ My | M | Emao(r = 0.05) | Emas(r = 0.025) | Emax(r = 0.0125)

8 28 20 2.381972E-1 7.155211E-2 1.701513E-2
16 | 66 40 8.019251E-2 2.283867E-2 4.659449E-3
32 | 232 | 80 2.746892E-2 6.310132E-3 1.417132E-3

64 | 784 | 120 7.914087E-3 2.096349E-3 3.908435E-4
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As shown in the Tables above, the coupling of natural boundary element and finite element

method is efficient.
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