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Abstract

The unsteady incompressible Navier-Stokes equations are discretized in space and stud-
ied on the fixed mesh as a system of differential algebraic equations. With discrete projec-
tion defined, the local errors of Crank Nicholson schemes with three projection methods
are derived in a straightforward manner. Then the approximate factorization of relevant
matrices are used to study the time accuracy with more detail, especially at points adjacent
to the boundary. The effects of numerical boundary conditions for the auxiliary velocity
and the discrete pressure Poisson equation on the time accuracy are also investigated. Re-
sults of numerical experiments with an analytic example confirm the conclusions of our
analysis.

Key words: Differential algebraic equations, Discrete projection, Numerical boundary con-
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1. Introduction

Let us consider the unsteady incompressible Navier—Stokes equations (INSE)

1
88—1: + (w - grad)w + grad p = @div grad w +f (1.1)

divw =0 (1.2)

on a two—dimensional rectangular region  with boundary 99Q. Here w = (u,v)” is the velocity
vector; p is the pressure; and f a known vector function of x,y,and ¢. The initial condition is
given as

wli—o =w® on Q (1.3)
satisfying (1.2). We are concerned mainly with the solid wall boundary condition

w=wpg on ) satisfying 7{ wprds =0 (1.4)
a0

The difficulty in the numerical solution of the above problem lies in that (1.1) and (1.2)
are partial differential equations with constraint; i.e., the system of equations is not entirely
evolutionary. The projection methods of Temam [23], Chorin [2], and van Kan [25] have been
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widely used and have proven to be most efficient for this type of problems. However, it is
not always well understood and many of its problems need further investigation and rigorous
analysis. Historically, Temam [23] gave the convergence proofs for the proposed methods with
full discretization, but only Chorin [2] gave the error estimate for his proposed method with full
discretization. Then with recent interest, great progress has been made in the study of errors of
projection methods; for example: the works of E and Liu [4, 5], Orszag, Israeli, and Deville [16],
Shen [20, 21], Rannacher [19], and Hou and Wetton [9, 26]. Significant as these mathematical
papers are, many analyses are done for the Stokes equations or for the semi-discrete INSE
(space continuous), and some with explicit approximation for convection. It is the author’s
opinion that much work is required before the error estimation of a projection method for a
fully discretized INSE become easily accessible to the computational community.

It has been the author’s attempt to contribute in this direction using simple mathematical
tools familiar to the computational fluid dynamics community. With spatial discretization on a
fized mesh, the INSE become a system of differential algebraic equations (DAE), for which the
local errors of a numerical method can be quite different from its counterpart for the ordinary
differential equation, see [7] for example. Further errors are introduced with the projection
method for the system derived from INSE. The authors [11, 12] defined discrete projection
with the minimum requirement as that needed for the projection step in numerical solution
of the system from INSE. With the projection operators, the derivation of local errors of the
velocity and the pressure gradient for projection methods becomes straightforward with Taylor
series. This paper studies in particular the fully implicit (for convection and viscosity) Crank
Nicholson (CN) schemes, mainly CN2 to be described below, and three projection methods:
pressure correction (PC) studied thoroughly by van Kan in [25], pressure (PR) of the earlier
projection papers and the present version here of Kim and Moin [15], and component-consistent
pressure correction (CCPC) proposed by the authors in [11] for its approximate preservation
of component-consistency under projection. This version has been used by Bell, Colella, and
Glaz with a different projection procedure in [1], and interpreted as the present version by [4].

The global errors on the fixed mesh follow from the local errors, as for the general DAE [11],
with correct interpretation of the assumption that the right hand side functions have bounded
derivatives in some closed region of our interest; but convergence for a finite time interval
is almost trivial, as it is for the ordinary differential equations, and gives little information
to problems of INSE as partial differential equations. To gain some insight into this type
of problems, the local errors are analyzed with approximate factorization (AF) of relevant
matrices as Yanenko [27], Perot [17, 18], and the author [10], with special attention to the
discrete approximation on points adjacent to the boundary. From our analysis we can see, for
example, the reason why an improvement in the numerical boundary condition (NBC) for the
auxiliary velocity over just (1.4) can lead to an increase of an order in the accuracy of the
velocity, e.g. the Kim and Moin method in [15]. Also several NBCs for the auxiliary velocity
and the discrete pressure Poisson equation frequently stated in literature will be investigated
and clarified in terms of discrete projection.

In Section 2, the discrete projection will be stated and two Crank Nicholson (CN) schemes
for the DAE formed from INSE will be given. Three projection methods based on these schemes:
PC, PR, and CCPC will be described and their local errors of the velocity and the pressure
gradient will be briefly derived in Section 3. Then these errors will be studied more carefully with
the AF method in Section 4. Several NBCs frequently stated in literature will be summarized
in terms of discrete projection in Section 5. Finally, in Section 6, the results of numerical
experiment with an analytic example, on the staggered mesh for simplicity, will be given.
These results confirm the conclusions of our analysis.

Here a word on the notation of this paper is in order: boldface (Z) denotes a “double”
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vector with components of vector (z = (z',2%)”) on discrete points of the computational
region, underline (Z) denotes a matrix or a linear operator, sans serif (Z, z) denotes known
quantities, and caligraphic (Z) denotes a “triple” vector with (Z) the associated matrix; other
symbols are as defined.

2. From INSE to DAE CN Schemes

Let the computational region be covered by a mesh with interior velocity points I, boundary
points B, and interior pressure points Iy. For the staggered mesh, I consists of I, and I, with
Ny = Ny + N, number of points, where the former are the interior u points and the latter the
interior v points; similarly for B. I consists of M number of points. Upon spatial discretization,
(1.1), (1.2), and (1.4) can be written as

dw + A(w)+Gp=f, onl (2.1)
dhdw o —0 on B (2.2)

a P '
Dw =0, onl (2.3)

where A is a nonlinear operator with A(w) approximating the convection and viscosity terms;
G and D are linear operators approximating respectively grad and div. On a fixed mesh, A is
a nonlinear vector function; G and D are linear functions; the independent variables are the
w’s and the p’s on the neighboring points. Then (2.1)—(2.3) form DAE

% +F(W,t)+GP =0 (2.4a)

DW =0 (2.4b)

The components of vector W = (W, Wg)T are the components of w’s on I and B points;
The components of vector P are the p’s on Ip; and F' is a nonlinear vector function, with
components A(w) —f on I and —w'y on B. In general

_( Gr _ Wi
QP—< i )P, QW—(&,@(WB)

where G is a No x M matrix, i.e. G'p on the boundary is not explicitly involved; and where
Dy is a M x N> matrix. (2.4) leads to

DGP = DiG;P = -DF(W,1) (2.5)

In terms of DAE, this is the consistency condition between the components of the solution
vector of (2.4), W and P.

We state here the discrete projection theorem of [12]. It’s proof is almost trivial, but it can
be applied to many practical situations, being based only on the condition for the solution of
the discrete Poisson equation in the projection method used.

Discrete Projection Theorem. Any vector V' of a vector space V can be uniquely de-
composed into

V=U+G? (2.6)
where DU = 0, if the system of linear algebraic equations

DG® = DV (2.7)
has a solution ®, with G® unique.
Indeed, D(2.6) yields (2.7); from the solution of the latter, G® is obtained and hence U =

V — G®; thus the existence of the decomposition. From the uniqueness of G®, results the
uniqueness of the decomposition.
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From the unique decomposition, we define projection P : V — V such that PV = U, and
Q=I1-P. So

PU = U; B(Q(}) =0 P
QU = 0, Q(G¥) = Go (P)

Let D denote the subspace of V of U with DU = 0, and G the subspace of V of form G®. P
is the projection of V on D along G; and () is the projection of V on G along D, see [8]. Now
let V be —F(W,t), U be 2~ and G® be GP, then (2.7) becomes (2.5). When W and ¢
are known, (2.5) is a system of linear algebraic equations; it is also called the discrete Poisson
equation (DPE) of the pressure, with DG the discrete Laplacian. For the following projection
methods, the DPEs (3.5¢), (3.6¢), and (3.7c) are also of this form. In Section 5, the validity of
the assumption of the Discrete Projection Theorem will be discussed. Here we simply assume
the existence of solution P, with G P unique, then the discrete projection holds. P (2.4) and @
(2.4) gives respectively, using (P),

‘Z—vf +PF(W,t) =0 (2.8)
GP = —QF(W,t) (2.9)

The CN time approximation of DAE (2.4) can be written as CN1:

Wn+1 _ Wn

1
A7 + HW", Wt gn gty 4 5 (@P" + GP"™ =0 (2.10a)

DW"™tt =0 (2.10b)

where H approximates A(w) —f on I and —z; (wp(t"™') —wp(t")) on B. If W" = Wp(t")
on B, then

Wt = W (1) (2.11)
The CN time approximation of DAE (2.4) can also be written as CN2:

n+1 _ n
% + H(W", Wt gn gntly L gprts = (2.12a)
DW"tt =0 (2.12b)
First we assume that H(W 1, W, t1,t2) is sufficiently differentiable “in the closed region
under consideration”, as generally done. Denote the Jacobian 8‘9—‘,{,11 as Hw,, 3‘9—‘,{}'2 as Hw,;
and vector % as Hy,, % as Hy,. Then we assume that
HW, W, t,t) = F(W,t) and
1
HWIZHW2:HW = ?FW whenW1:W2:W (A)
Ht1:Ht2:Ht = §Ft Whent1 =ta =1

For the Hessians and the various “second derivatives” of H, we consider the following cases,
for which the “mixed derivatives” in W and t are 0:

Case 1. F(W,t) = A(W) + F(t) and H(Wl, Wg,tl,tg) = %(A(Wl) +A(W2) + F(tl) +
F(t2)). We have
1 1
Hw,(Wi, Wa,t1,t2) = 5 Aw (W2), H, (W1, W, ti,t2) = EF'(tz)
1 1
Hw,w,(Wi, W, t1,t2) = §AWW(W2); Hiypy (Wi, W, ti,t) = gF”(h)
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Case 2. F(W,t) = A(W)+F(t) but H(W1, W, t1,t2) = AAW 1+ 3Wo)+F(3t, +its).
We have

1 1
HW2(W17W2;t17t2):§AW( W1+ WZ) th(WhW?;tl;tZ):_F,(2t1+itz)
1 1 1 1 1
Hw,w,(Wi,W, t1,t2) = ZAWW( W1 + - W2) Hiy, (Wi, Wa,ti,t2) = —F”( t1 + 2t2)
When F(W,t) = LW + F(t), L a linear funtion, then (2.4a) becomes
dW
W‘f‘LW'}‘F()-l-QP:O (2.13)

and Fy (W ,t) = L,F (W ,t) = F(t), Fww (W,t) =0, and Fy(W,t) = F'(t). If P and Q
commute with L, then in place of (2.8) and (2.9), we have

aw

— LW +PF(t) =0 (2.14)

GP = —QF(t) (2.15)
Then, parallel to Case 1 and Case 2, we consider respectively:
Case 1. H(W 1, Wy, t1,t5) = $(LW1 + LW3) + £(F(t1) + F(t2)). We have
1
Hw,(W1, W2 t1,t2) = 5L, He, (Wi, Wty t2) = —F'(tz)
Hw,w,(W1,Wa,t1,t2) =0, Hip,(Wi, Wa, th,t2) = —F"( 2)

Case 2. H(W, Wy, t,t5) = L(%W1 + %Wz) + F(%tl + %tg). We have

HW2 (W17 WQ:tht?) = L: th (le W2;t17t2) = F,(%tl + %tz)

%F”(%tl + %t2)

N | =
| N =

Hw,w,(W1,Ws,t1,t2) =0, Hiy, (W1, Wa,t1,t2)

3. Local Errors of CN Projection Methods

We start by discussing the local error of the basic CN1 and CN2 schemes. For CN1 and
Case 1, it is known that the local errors for both W and GP are O(At?) (i.e. second order
global error), e.g. see [7]-Lobatto IITA method for DAE with index 2. Here for DAE (2.4), let

W (t") and GP(t™) be the exact solution at t". From (2.8) and (2.9) we have

W'(t") = —PF(W(t"),t"), W"({t") = —P(Fw (W ("), t")W'({t") + F, (W (t"),t"))
GP(t") = —QF (W(t"),t"), GP'(t") = —Q(FW(W(t”) YW (") + Fy (W (t™), ”))
GP(t7) = —Q(FWW(W(t") ) (W (7)) + Fy (W (), ") W (t7) + Fyp (W (£7), )
F2F v (W (), 1) W'(t7))
(3.1)
For CN1, let the numerical solution W™ = W (t*) and GP" = GP(t"); W""! and GP™*! are

functions of At. Expand W (t" 4+ 7) and GP(t" + 7) by Taylor series at 7 = 0 and expand
W™t (At) and GP"+1(At) by Taylor series at At = 0. We then see that when

W) = W(m), W) =W, W (0) = W)

QP”'H (0) — Qp(tn), Qpn+1(0) — QPl(tn) Qpn+1(0) = QPI:(tn) (32)
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(with the top dot denoting differentiation with respect to At) the local errors of W and GP
are O(At3).
Now, P(2.10a) yields

Wt (At) — AtPH (W™, W™ (At), £, 1" + At)
W”“( )= W"=WI(t")

"“( At) = —B(H(W”, WL (AL), 7, " + At) + AtH)

(0) —PH(W" , W",t",t") = —PF (W (t"),t") = W'(t") (3.3)
"“( At) = —B(ZH + AtH)

)= —P(2HW, (W, Wt YW (0) + 2H,, (W, W”,t”,t”))

- _pP FW(W(t”),t”)W’(t”)+Ft(W(t”),t”)) - W@t

where H = Hw, (W™, W (AL), £, t" + AW (At) + Hyy (WP, WP (AL), £7, 8" + At). Up
to now, only Assumption (A) has been used, and the content of H has not mattered, as long
as it is bounded as At — 0. However, )(2.10a) results in

GP" (At) = —GP" - 2QH(W", W"TH(At),t",t" + At)
= GP"t'(0) = —GP" —2QF(W(t"),t") = GP(t")
GP"*'(At)= —2QH
= GP(0) = —Q(Fw (W), t")W'(t") + Fu(W(t"),1") ) = GP'(t")
GP"(At) = —2QH = —2Q (HW2W2 (W, W (A0, 47,47 + A) (W) G4

+Huy, (W, WAL, 1" + A)W" T (At
+H e, (W™, WP (AL), 71" + At)
+2Hw o (W, W (AL, ¢, " + AW (A1)

We note first that under Assumption (A), the local error for W is O(At?) and for GP is
O(At?). We also note that an additional O(At?) term in the first equation of CN1 will not
effect this result. This is due to the fact that W (At), w' (At), and W (At) will have
respectively an O(A#?), O(At?), and O(At) term; while GP" 1 (At) and GP" ! (At) will have
respectively an O(At?) and O(At) term; all reducing to 0 as At — 0. Now we observe the last

equation of (3.4), and see that the content of H is relevant to the order of accuracy of GP.
For Case 1,

GP"H0) = -Q(Fww (W), t") (W'(t"))" + Fw (W (t"),t")W" (") + Fue (W (t"),1") )
:Qpll(tn)

and the local errors for both W and GP are O(At?); this is in agreement with the known
result.

For CN2, under Assumption (A), P(2.12a) yields precisely (3.3), so the local error for W is
again O(A#?). Q(2.12a) yields GP™3 (At) = QH (W™, W™ (At),t",t" + At). Proceeding
as (3.4) and comparing the results with the terms in the expansion of GP(t" + 1), T = At/2,
we see that the local error for GP is again O(At?). However for Case 2’, it can be shown that
the local error for GP is O(At3); for details, see [13]. From the practical point of view, the
local error of G P itself is not important; since once W is known, GP can always be found from
the component consistency condition (2.5).

Now we consider the following three projection methods: CN1+PC (based on CN1 and the
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pressure correction projection method as [25]):
W’n+1

— Wn —~n+l
AL +H(W", W (At),t"t" + At) + GP" =0 (3.5a)
— nt1
wr _wt 1 . .
% +50%=0 whee® =P P (3.5b)
2 —~n+l
DW™' =0 = DGP=_ ow"" (3.5¢)
CN2+PR (based on CN2 and the pressure projection method as [15]):
—~n+1 n
W N W W, W A, A =0 (3.6a)
— n+t1
wrt W' 1
Ptz = .6b
X +GP"E =) (3.6b)
1 —~n+l
DW™ =0 = DGP"th- ow"" (3.6¢)

CN2+4CCPC (based on CN2 and the component-consistent pressure projection method as [11]):

—~n+l n
At_ W, H(W™", WAy, e e At) +GP"2 =0 (3.72)
n+l ~n+l
W AtW +G® =0 where ® =pP"ts — pr3 (3.7b)
1 —
DW™ =0 = DGP= pw" ! (3.7¢)

for n = 0, GP~= can be just GP(t°). Note that for all the above projection methods, on the
B points

—~—n+1
w - W%  Wpg(t") — Wg(t" ——n+l
B A7 B _ B( )At B( ) =0 = WZ = WB(tn+1) (383.)
n+l W/TH—l _ 1
W =W _o— wirt oW —wyuent) (3.8b)

At
thus satisfying (2.11).

The method of derivation of local errors for the projection methods is essentially the same
—~n+1
as for the basic schemes, and for CN2+CCPC it is given in detail in [11]. Briefly, w" (0),

o n+l1 _n+l 1 - n+l
W (0), and W  (0) are derived first from the (a) equations, then W™ (0), W ' (0),

and Wn+1(0), are obtained with W"*! = gv“i?”“, which results from applying P to the (b)

equations. The expression for GP" or GP"*2 are found by adding the (a) and (b) equations

and applying ). For details, see [13]. Here we simply state the results:

For CN14+PC, the local O(At?) and O(At?) errors of W and GP respectively are retained,

with no improvement for GP even in Caie 1.
— —~n+

For CN2+PR, W' (0) = W(t"), W (0)

n+1
- (FW (W(t"),t" )W (0)+F¢(W(t™),t") ). The local error of W is only O(A¢?) in general.
But if F(W,t) = LW + F(t) and P and @ commute with L, then with
W'(t") = —LW (") — PF(t"), W"(t")=—-LW'(t") — PF'(t")
GP(t") = —QF(t"), GP'(t") =-QF'(t"), GP"(t") = -QF"(t")

CR(W(), 1) £ W), and W (0) =

N——

(3.9)
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we get Wn+1(0) = —LW'(t") — PF'(t") = W"(t"). and so the local error of W is O(At?).
However, the local error of GP is only O(At). We note here that if F(W,t) = N(W)+ LW +
F(t), where IV is nonlinear, and N (W"*1/2) in (3.6a) is a known function with W"+Y/2(At) =
W (") + 5 W' (t") + O(A#?), then this term can be regarded as an F(¢" +5%) = F(1¢" + 3¢+
satisfying Assumption (A) and hence the local error of W is O(At?). That is, projection dealing
with only the linear part of H does not impair the accuracy of W.

—~n _n+l
For CN2+CCPC, W' (0) = W(t"), W (0) = —F(W(t"),t") — GP(t") = W'(t"), and

) - —(Fw (W), )W (1) + Fy (W (t"), 7)) +2GP'(t") = W' (0) = W" ().

Hence it has local error O(At?) and O(At?) respectively for W and GP.

4. Local Errors of Projection Methods with the AF Method

In this section we study the local errors of projection methods with more details using the
AF of the relevant matrices, see [17, 10]. Assuming the local errors of basic finite difference
schemes, the AF errors are simply the projection errors. Let H be linearized as

HW" W " " = HW" W™, t",t"T") + Hw,(W", W" ", t"THAW + O((AwW)?)

where AW = W' — W"(= O(At)). Let H(W™ W" 1" t"1) be denoted by H" and
Hy , (W™ W" t7 t"+1) be denoted by C". We direct our attention towards the CN2 scheme,
(2.12) becomes, upon neglecting the O(At?) linearization error term in (2.12a) and multiplying
by At,

[L+ AtCYW™ 4 AtGP™ 3 = [[ + AtC"|W" — AtH" (4.1a)
DW"tt =0 (4.1b)
or
(I + AtC"|AW + AtGAP = —At(H" + GP" %) (4.2a)
DAW =0 (4.2b)

in which AP = Pnt2—Pn=3_ The local errors of CN2 are not affected by the above linearization
error under Assumption (A). (4.2) can be written as

LI sl A@)-(1)

where RH S stand for the right hand side of (4.2a). This can be written as

[€ + AtR™ + AtS]AU = RHS (4.4)
n n 0 G A A . .
where £ = [ég],ﬂ = [% 0,8 = [QH] and AU = (AAVI‘;),RHS = (RHS). With AF of its
matrix, equation (4.4) is approximated by
[Z + AtR™[E + AtS]AU = RHS (4.5)

where 7 = [é g] From this we get the following fractional step method:

[Z + AtR"AU = RHS (4.6)

[€ + AtS]AU = AU '
T AW e AT ool S . .

where AU = (AA‘%/) with AW =W — W™, AP similarly. These give respectively

[L + AtC"]JAW = RHS, AP =0
AW + AtGAP = AW, AtDAW = AP
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which is just

—~—n+1
w -wn —=n
o W W) = —(H" 1 GP Y
~n+1
— + @GPtz —P3) =0
Qw"n+1 =0

which is the linearized version of CN2+CCPC.

From (4.5) we know that the AF error is AB?R"SAU = At? (Qn%AP), this adds an O(A#?)
error to (4.2a), which differs from A#(2.10a) by an AtO(At#?) term. No change in the local
errors are expected, i.e. for (4.7) W has an O(At?) local error and GP has an O(At?) local
error, in agreement with the result of the last section.

However, if the variable is taken to be &/ and not Al/, then the error of AF is A{?R"SU =
At?(£"EP), which adds an O(At?) error to (4.1a) which differs from A#(2.10a) by an AtO(At?)
term. An O(At) drop in the local errors is expected, i.e. W has an O(At?) local error and
GP has an O(At) local error for the linearized version of CN2+PR, derived from (4.1) as the
linearized version of CN2+CCPC from (4.2). These local errors are also in agreement with the
result of the last section.

Now we study the AF error with more details, especially for points adjacent to the boundary.
We first follow the analysis of [27] for NBCs of fractional step methods for parabolic equations.
For simplicity, suppose C" = —%L = —%ﬁ(dlﬁ + 6;) (A = Az = Ay) corresponds to the
element of C'" on the inner interior points (verses those adjacent to the boundary), where
(5%]" = fi—1 = 2f; + fi+1, 5§f similarly. Then

LG6 = 5 ((G9); 1k — 2(GO) + (GO)s1e + 5(G)n) (49)

On the boundary points there is no LG¢ since its equation is simply AW = W (1) —W(tn),
no problem is expected. We see from (3.8) also that the equations on the boundary points are
exact. But on points adjacent to the boundary, e.g. the left boundary,

LG = %( =2(G)ji + (Gh)j1k + 6,(GP)jk) (4.9)

because G¢ on the boundary is not explicitly involved, or G¢ = 0 in our formulation. On the

fixed mesh, both (4.8) and (4.9) are O(At) terms with ¢ = Ap. However, from the partial
2

differential equation point of view, on the inner interior points as A — 0, ‘k{ — %, thus

‘Ef = O(At), and the added error At?LG¢ = O(At?); while on the points adjacent to the

boundary, this is not so.

Suppose on the boundary G¢ = Gp is known, let the boundary condition be written as

wrt —wr W (") — Wp(t")
-z P =
Ar Tés At

with Gp and ®, or Gp®, suitably defined, and Gp the vector with components Gp. Change
(3.8) to

+ Gg

—~n+1

Wy —Wg  Wp("!) —Wg(t" =
B b We(t") —Ws(") ¢, _, W = Wpu(") + Aty (4.10a)
At At
—~n+1
Wittt —w
B B_ 1 Gp®d=0 = Wi =wWg@") (4.10b)

At
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We see that the boundary condition remains exact after projection. We see also that on points
adjacent to the boundary

LG6 = 15 (G0)j 11 — 2D + (G0)jo1s +5(G) ) (1.11)

Thus the added projection error is the same as that of the inner interior points, i.e. O(A#?).

The above discussion with ¢ = Ap holds for (4.7), the linearized version of CN2+CCPC.
For the linearized version of CN2+PR, (4.8) and (4.9) on the fixed mesh are O(1) terms with
¢ = p, and the added projection error is O(At?). But as the mesh size decreases, this is no
longer true for (4.9). Again, if (4.10) is employed as the NBC, (4.11) for ¢ = p is O(1) and the
added projection error is O(At?) on all interior points.

Now we come back to the fixed mesh and study the case of C" = —%L and
LG® = GY for some ¥ (4.12)
then (4.1a) with added PR projection error can be written as
wnrt — W 1 1
e TH - LW W) + @GPy — FAIGT =0 (4.13)
Applying P, we obtain
Wit —wn 1
-+ P(——H"+ L(W"™  —W")) =0
from which we can derive as (3.3) that the local error of W is O(A#*). Thus when (4.12)
2 2 2
approximates elementwise (;—; + 88_;)< GE >¢, — < o > (88_; + 85'_;)¢ = < CE >1/;7 for example,
oy oy oy

we expect the accuracy of W to increase approximately one order. And this commutativity of
operators will hold only with (4.11), i.e. the use of NBC (4.10). Such is also the case for the
Kim and Moin method [15] with projection dealing with only the linear part of H.

5. Numerical Boundary Conditions

In this section we discuss further the NBCs for the auxiliary velocity and DPE, with the
CN2+CCPC method as a specific example. For simplicity, we consider a left boundary point
L on a staggered mesh, see Fig. 1. On r, a, and b, (3.7b) are respectively

upt —a,  6p | _ 0
ét Az T h
U 6_¢ =0 5.1
- 1At Ayle (5.1) o o o
Ub — o + 5_¢ - 0 = aa
At Ay lp
here we have neglected the superscript n + 1 L o Ir P u o
for the auxiliary velocity. We list several NBCs
discussed frequently in literature: b
(1). Velocity NBC for w and DPE, i.e. (3.8).
On L, (3.8) is o o °
ur — uL(t”'H)
— =0 5.2
A7 (5.2a)
uitt —ay -0 (5.2b) Figure 1. Staggered Mesh

At Left Boundary
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|

and the DPE formed with (5.1) and (5.2b) is
1 <u;}+1 —ult! a,—aL> Lt {&p

At Az L AazN Az | Az (5.3)
N i(vg-i-l_vg“r _Ua_vb>+i|:6_¢ _ 09 }:
At Ay Ay Ay [Ayla  Ayle
ie.
L) L L[] )1 mowe nok)
Az | Azly Ay [Ayla  Ayls At Az Ay ’

where (5.2a) has been used for @y,. It is seen that %’s on the boundary point L do not appear;
and it can be regarded as zero, comparing (3.8b) and (3.7b). Because the equations for interior
points and for boundary points are different, @ and G'p can have numerical boundary layers,
especially if Re is large, i.e. there is not enough viscosity to smooth out the numerical solutions.
However, w itself, a projection of w on D along G, does not have numerical boundary layers,
see discussions in [4, 24, 19]. The right hand side of the DPE is of discrete divergence form
and satisfies > 1, Ths = 0, its solvability condition. This is because the sum reduces to a sum
of the normal component of the velocity on the boundary, which approximates the integral in
(1.4) and thus is approximately 0. We consider the mesh to be sufficiently fine such that the
solvability condition is guaranteed. The solvability condition can be derived in the following
way: Let Uy denote the base vector of the null space of the discrete Laplacian DG in the DPE;
it is known that ¥y = (1,1,---,1)?. The constraint condition for the DPE to have a solution
is ¥y - R = 0 where R is the vector with components rhs. It is also clear from ¥ that solution
¢ is unique up to a constant, hence G¢ is unique.

(2). Improved NBC for w and DPE, i.e. (4.10).

On L, (4.10) is

ar —ug (")

A7 -Gi =0 (5.5a)
’U’z—H — g T T z
A +G]p =0 where G} ¢ =G (5.5b)
The DPE formed with (5.1) and (5.5b) is
i[5_¢ _G%] +i{6_¢ _6_¢‘ ] :i<ar—aL _m—m)
Az |[Azlr TF Ay |Ayla  Ayls] — A\ Az Ay

Substituting (5.5a) into the above equation results again in (5.4), see also [6]. It is seen that if
the NBC for wp used in the computation of w is the same as the relation used in the formation
of the DPE , then the DPE is just (5.4). Because the equations for interior points and for
boundary points are the same (compare (4.10b) with (3.7b)), no numerical boundary layers are
expected for w and G¢.

(3). Improved NBC for w.

For @y, we have (5.5a). If (5.2b) were used for the formation of DPE, we would get (5.3), but
using (5.5a) for @y, results in

sl [l

Az | Az
and the solvability condition would involve not only w,, gz but also % | p on the boundary (see

5_(;5” 1<ﬂr—uL(t”+1)_ﬁa—ﬁb> 1,
b

Az a Ay N Az Ay Az F

below). However, we can simply use w/;t" = wg ("), see [10], here it is

ul T —up ()

X =0 (5.6)
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DPE formed with (5.1) and (5.6) is again (5.4). We will call this type of boundary conditions
KMNBC, implied by the method of [15] as interpreted by [4], in which the boundary condition
for ¢ (or p) is the homogeneous Neumann condition. We see that the NBC for w and the DPE
formed in (2) and (3) come down to the same thing.

(4). Velocity NBC for w, but improved NBC for DPE.

That is, use (5.2a) for the computation of the auxiliary velocity, but (5.5b) in the formation of

DPE;, this yields
1 [do 1 [0 o) 1 (- un (") B, — B 1
|: r :| * Ay {Ay a Ay‘b] a At( Az Ay + AJ:GL (5-7)

Az | Az
Thus the solvabililty condition involves not only w,p but also %| p on the boundary. We
will call this type of boundary conditions OIDNBC, again from the interpretation in [4], of
the method of [16]. In this method, %|B is given for the solution of the DPE, and one of
the @ and w™t! satisfies the boundary condition, while the other satisfies the divergence-free
condition. In the present version, w satisfies the boundary condition, and w™*t! satisfies the
divergence-free condition. On L, (5.2a) and (5.5b) implies u}* = ug (#"*1) — AtG%, which
means in general an O(At) error in w’éﬂ. The % | p and the constraint condition involved are

discussed in [16]; e.g. for the two-dimensional Stokes equations with time-independent boundary
conditions, 22 = —Ln . (88“; , —%)T where w, = 8¢ — g—’;, which satisfies §,, %|Bds =0;
with appropriate finite difference approximation on a sufficiently fine mesh, the solution of DPE
is guaranteed.

We summerize the projection methods associated with the NBCs discussed above in terms
of the Discrete Projection Theorem of Section 2. Here (2.6) and (2.7) become (neglecting factor

At)

W =W +d® (5.8)

DG® = DW (5.9)
Since the NBC for determining W’I can be different from that used in the formation of DPE,
we will use A g to denote the left hand side of (5.8) on B for projection. We have

(1). Velocity NBC:
For the computation of W, W g = Wg; for projection Ag = Wg, so the decomposition (5.8)

and (5.9) are respectively
W, W, G,®
= 1
<WB> (WB>+< 0 (5.10)

D,W;+DgzWg =0+D,GP (5.11)

(2). Improved NBC:
For the computation of W, W = Wpg + Gp; for projection Ag =Wpg + Gpg, so

( WBerIGB ) = ( vv\‘/f,; ) + < QGI;I) > (5.12)

D,W;+DgWg =0+D,GP (5.13)

(3). KMNBC:
For the computation of W, W = Wpg + Gp; for projection Ag = Wpg, so

(ﬁ;):(@%(%ﬂ (5.14)

D,W;+DyWp=0+D,G® (5.15)
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(4). OIDNBC:
For the computation of W, W g = Wp; for projection A = Wpg, but Gp is specified meeting

certain requirements, so
W[ WI Q[(I)
= 5.16
<WB> (WB>+<GB (310)

D,W;+DyWp=0+D,G®+D,Gg (5.17)

in which W g is to be determined.

6. Numerical Experiments

Consider INSE with exact solution
u=ec' sinz cosy v=—e' cosx siny p=e’ sinz siny (6.1)

on a square 0 < z < 7,0 <y < 7. The initial and boundary values for v and v (and %), as
well as the corresponding nonhomogeneous terms in the momentum equations, are taken from
(6.1); here Re = 1 unless stated otherwise. Note that the boundary values are time-dependent
with w, = 0 and % # 0.

In the numerical experiments, uniform staggered meshes were used for its simplicity, with
fineness 32 x 32, 64 x 64, and 128 x 128. Computations were carried out for 0 < ¢ < 1, with
total number of steps N = 10, 20, 40, 80, 160, and 320. Note that the numerical boundary
condition for % were exact in this numerical experiment, so as not to complicate matters with
further approximation and the possible related stability problems.

For the INSE, the following computation were performed:

CN2+CCPC method with UVNBC result in  Table Ia

as above KMNBC Table Ib
CN2+PR method UVNBC Table ITa
as above KMNBC Table IIb

Since u and wv, % and g—z have symmetries and the numerical solution showed the same

symmetries, only: adum =max(; x)ecru+Bu |u§\,[c — ue(xj,yg, 1)], dul2 :(Z(j,k)elu+Bu |u§\,[c -

: 1/2 sp\N—1/2  op. A
we (7, Yk, 1)[*Az; Ay) " = |[u” —uel|, and adpxm=max; peru| (25) ;" — B (@5, 9, 1-5)|
are shown in the tables of results; here u, and %”; are of the exact solution, and Ax; = % at

the left and right boundary. But the exact solution is for the space continuous problem and no
exact solution is available for the space discrete problem, i.e. for the DAE. So, as [25], the num-
ber k = ||u’N (At) — uN(2At)||/||uN(%) —u™N(At)]| is used to show the order of accuracy on the
fixed mesh. For first and second order accuracy, i.e. global error O(At) and O(At?), k — 2 and
4 respectively. Double precision was used throughout the computation to get the desired num-
ber of significant figures for this number. The DPEs were solved using the direct solvers from
FISHPACK, see [22], with the same precision, which produced max; e, |(Dw);i| < 10712
Before examining the table of results, we note that as we are dealing with partial differen-
tial equations, various errors of various terms of the equations interact, especially max |u|%
(max [v| L) and Rie% influence the accuracy of results. These aspects should be taken into
consideration, though they are difficult to account for specifically. In the tables of results, we
see first that for a particular mesh, errors adum, dul2, and adpxm decrease with the decrease of
At only up to a certain point. But from k we can infer the global error of w on the fixed mesh.
For CN2+CCPC, we see from Table I that it is O(A#?). From the partial differential equation
point of view, as At and A — 0, we expect O(At? +A?) global error for w, i.e. as At and A de-
crease by a factor of 2, the errors decrease by a factor of 4, and from Table Ia, ratios r(32,64)=
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dul2(At = 0.1, 32 x 32 mesh) / dul2(At = 0.05, 64 x 64 mesh) = 0.6808 x 1072/0.1920 x 102
= 3.546, r(64,128)= dul2(At = 0.05, 64 x 64 mesh) / dul2(At = 0.025, 128 x 128mesh)
=0.1920 x 1072/0.5064 x 10~3 = 3.791. From Table Ib, these ratios are r(32,64) = 3.736 and
(64, 128) = 3.889. Comparing Table Ia with Table Ib, we see little difference in the errors of w;
but for large At, adpxms for KMNBC are much smaller than those for UVNBC. The difference
in Gp can be easily observed from Fig. 2, in which the solid lines represent the profiles of
ue(z,y,1) and Ope (z,y,1— %) for 0 <z < % aty = 7, and the dots (small dots) represent the

oz
corresponding u”™¥ and (g—;’

g—;’ with the KMNBC. However, accuracy of this Gp may not be important for practical com-
putation, as once w is known, an accurate p can be obtained from the component-consistency
condition (2.5). The (g—;’)N (with 88’;6 (z,y,1)) in Fig. 2(b) was obtained in this way; there is

N
no numerical boundary layer. The corresponding sequence of k for g—;’ on the 64 x 64 mesh

for At = 0.1 to 0.003125 is 6.994, 6.154, 4.596, 4.150.

The computational results for the CN2+PR method for INSE are shown in Table II and
Fig. 3. In Table II, we see first that the errors adum and dul2 are much larger than those in
Table I, we infer from & that the global error of w is O(At) on the fixed mesh. Then as At and
A decrease by a factor of 2, we have for UVNBC r(32,64) = 1.681 and r(64,128) = 1.819, and
for KMNBC r(32,64) = 1.865 and r(64,128) = 1.926. In Table ITa and Table IIb, we again see
little difference in the global errors of w. As for the global errors of Gp, we state only that they
are much larger than those of Table I, and that again adpxm for KMNBC are much smaller
than those for UVNBC. Also compare Fig. 3 with Fig. 2.

In summary, results of the numerical experiments on the INSE show that for the fixed
mesh, the global error of w for the CN2+CCPC method is O(At#?), while it is one order less,
i.e. O(At), for the CN2+PR method. The global error of Gp for the former is also of higher
order than that for the latter. These results are in agreement with the local errors derived
under Assumption (A) in Section 3.

In order to verify the errors derived for the linear case in Section 3. and to study the effect
of NBC on the numerical solutions, the following computations were performed for the Stokes
equations:

)N=1/2 (and @). There is no appreciable numerical boundary layer in

CN2+4+PR method with UVNBC KMNBC OIDNBC

and periodic BC for comparison. Computations with UVNBC and KMNBC were carried out
on the 64 x 64 mesh, and with OIDNBC and the periodic boundary condition on the 128 x 128
mesh for the 0 < z < 27,0 < y < 27 square region, i.e. with the same A. The computational
results are shown in Table III and Fig.4-7, in which v" and (g—’;)N’l/2 (and @) are also shown,
againfor 0 <z < § aty = 7.

The most noticable thing in Table III is that with KMNBC, k ~ 4; while for INSE, with the
same method and the same NBC, k ~ 2 as shown in Table IIb. Also seen in Table III is that the
behavior of errors of w and Gp for KMNBC is very much like that for the periodic boundary
condition. We remark that Fig. 6 for KMNBC is almost identical to the corresponding figure
for the periodic BC (not shown). These results are in agreement with the analysis of Section 3
for the linear case with commutativity of P, () with L; and in accordance with the discussion
at the end of Section 4 for the linear case with KMNBC (4.10). It seems that in the linear
case, NBC (4.10) “makes” the formulation of the problem periodic; compare (3.6b) for the
interior points with (4.10b) (with P in place of ®) for the boundary points. With periodicity,
the commutativity of operators becomes likely. However, in practical computation % | p 1s not
available and needs approximation; the accuracy and stability involved are not studied in this

paper.
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The projection errors are dependent on Re, as seen from the AF errors —%RieAﬁmP of
Section 4, which decreases with increasing Re. With UVNBC, there are “numerical boundary
layers” in P, in agreement with the analyses in the literature cited in the Introduction. This
phenomenon is illustrated in Fig. 4 (Re = 1) and Fig. 5 (Re = 100).

Now we come to the OIDNBC as discussed in Section 5. It is seen that for CN2+PR with
this NBC, k ~ 2, i.e. the global error of w is O(At), This is to be expected by the O(At) error
in wi™ (wh™ = wp(t") — AtGg). With no boundary layer in w';™, this error is spread
into the interior, as shown in Fig. 7. This situation prevails for Re = 100. The original version
of the corresponding algorithm in [16] was also tested, resulting also in k ~ 2. However, with
the improved pressure boundary condition and higher order time differencing and time splitting
of [16], higher order accurate numerical results have been obtained, see [14].

7. Concluding Remarks

The INSE with spatial discretization on a fixed mesh is regarded as a system of DAE. The
local errors of projection methods for the system can be easily derived with the projection
operators defined by the discrete projection theorem. In this paper, local errors for two CN
schemes with PC, PR, and CCPC projection methods are studied. It is seen that local errors
of the velocity and the pressure gradient can be of different orders, and that these orders can
depend on the linearity and commutativity of certain operators, as also seen from similar results
in the literature.

Since time accuracy for the spatially discretized INSE on fixed meshes does not give the
whole picture of a numerical method for the INSE as partial differential equations, the projection
errors are also investigated as AF errors of relevant matrices. Special attention is paid to the
NBCs for the auxiliary velocity and the DPE; it is seen that the KMNBC may change the order
of accuracy of the entire method. Also, the NBCs are summarized in the context of discrete
projections. Results of numerical experiment with an analytic example confirm many of the
above conclusions. It is seen that time accuracy for the spatially discretized INSE as DAE is
also significant for the INSE as partial differential equations.

Among the methods studied in this paper, the author recommends the CN+CCPC method
for its accuracy and for its approximate preservation of component-consistency under projection.
Also, the UVNBC is the simplest, and suffices for practical purposes; since once the velocity
with a certain accuracy is known, another solution of pressure from the component-consistency
condition will produce pressure with the same accuracy. Mostly, the author hopes to contribute
to the understanding of the numerical solution for the INSE as partial differential equations with
constraint. It is shown here that with simple tools familiar to the computational fluid dynamic
community, many aspects of a general method can be analyzed. The conclusions, while not
completely rigorous, can give insight to the many perplexities of the projection methods for the
INSE.
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CN2+ At adum dul2 K adpxm
CCpC 0.1 0.5511E-2 | 0.6808E-2 0.6438E-0
UVNBC | 0.05 0.1970E-2 | 0.2556E-2 | 3.455 | 0.2754E-0
32x32 0.025 0.9646E-3 | 0.1345E-2 | 3.799 | 0.7965E-1
0.0125 0.7168E-3 | 0.1036E-2 | 3.921 | 0.1963E-1
0.00625 | 0.6585E-3 | 0.9592E-3 | 4.015 | 0.2078E-1
0.003125 | 0.6439E-3 | 0.9401E-3 0.2110E-1
0.1 0.5097E-2 | 0.6207E-2 0.1020E+1
0.05 0.1537E-2 | 0.1920E-2 | 3.420 | 0.6483E-0
64x64 0.025 0.5089E-3 | 0.6687E-3 | 3.775 | 0.2767E-0
0.0125 0.2432E-3 | 0.3412E-3 | 3.913 | 0.8218E-1
0.00625 | 0.1797E-3 | 0.2595E-3 | 4.011 | 0.2114E-1
0.003125 | 0.1646E-3 | 0.2395E-3 0.5224E-2
0.1 0.4994E-2 | 0.6061E-2 0.1291E+1
0.05 0.1432E-2 | 0.1768E-2 | 3.406 | 0.1040E+1
128x128 | 0.025 0.4010E-3 | 0.5064E-3 | 3.754 | 0.6547E-0
0.0125 0.1294E-3 | 0.1711E-3 | 3.900 | 0.2779E-0
0.00625 | 0.6118E-4 | 0.8605E-4 | 4.006 | 0.8260E-1
0.003125 | 0.4515E-4 | 0.6526E-4 0.2159E-1
Table Ia. INSE with CN2+CCPC and UVNBC
CN2+ At adum dul2 K adpxm
CCPC 0.1 0.5813E-2 | 0.7550E-2 0.8164E-1
KMNBC | 0.05 0.2030E-2 | 0.2722E-2 | 3.587 | 0.2088E-1
32x32 0.025 0.9812E-3 | 0.1388E-2 | 3.837 | 0.1532E-1
0.0125 0.7217E-3 | 0.1048E-2 | 3.932 | 0.1961E-1
0.00625 | 0.6597E-3 | 0.9620E-3 | 4.016 | 0.2077E-1
0.003125 | 0.6443E-3 | 0.9409E-3 0.2110E-1
0.1 0.5324E-2 | 0.6792E-2 0.1091E-0
0.05 0.1574E-2 | 0.2021E-2 | 3.582 | 0.3938E-1
64x64 0.025 0.5167E-3 | 0.6904E-3 | 3.836 | 0.9887E-2
0.0125 0.2453E-3 | 0.3467E-3 | 3.931 | 0.3891E-2
0.00625 | 0.1802E-3 | 0.2609E-3 | 4.015 | 0.4947E-2
0.003125 | 0.1648E-3 | 0.2399E-3 0.5223E-2
0.1 0.5204E-2 | 0.6600E-2 0.1276E-0
0.05 0.1462E-2 | 0.1848E-2 | 3.578 | 0.5637E-1
128x128 | 0.025 0.4056E-3 | 0.5197E-3 | 3.835 | 0.1940E-1
0.0125 0.1303E-3 | 0.1739E-3 | 3.931 | 0.4683E-2
0.00625 | 0.6144E-4 | 0.8675E-4 | 4.015 | 0.9808E-3
0.003125 | 0.4523E-4 | 0.6544E-4 0.1241E-2

Table Ib. INSE with CN2+CCPC and KMNBC

L.C. HUANG
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CN2+ At adum dul2 K adpxm
PR 0.1 0.5137E-1 | 0.6771E-1 0.1767E+1
UVNBC | 0.05 0.3073E-1 | 0.4067E-1 | 1.508 | 0.1497E+1
32x32 0.025 0.1701E-1 | 0.2270E-1 | 1.738 | 0.1179E+1
0.0125 0.9178E-2 | 0.1236E-1 | 1.857 | 0.8535E-0
0.00625 | 0.5004E-2 | 0.6796E-2 | 1.922 | 0.5635E-0
0.003125 | 0.2841E-2 | 0.3900E-2 0.3398E-0
0.1 0.5098E-1 | 0.6734E-1 0.2130E+1
0.05 0.3043E-1 | 0.4028E-1 | 1.504 | 0.1981E+1
64x64 0.025 0.1669E-1 | 0.2226E-1 | 1.733 | 0.1759E+1
0.0125 0.8811E-2 | 0.1185E-1 | 1.850 | 0.1479E+1
0.00625 | 0.4593E-2 | 0.6221E-2 | 1.913 | 0.1164E+1
0.003125 | 0.2404E-2 | 0.3280E-2 0.8441E-1
0.1 0.5094E-1 | 0.6725E-1 0.2345E+1
0.05 0.3034E-1 | 0.4019E-1 | 1.503 | 0.2289E+1
128x128 | 0.025 0.1661E-1 | 0.2215E-1 | 1.731 | 0.2169E+1
0.0125 0.8722E-2 | 0.1173E-1 | 1.848 | 0.1991E+1
0.00625 | 0.4494E-2 | 0.6087E-2 | 1.910 | 0.1758E+1
0.003125 | 0.2299E-2 | 0.3133E-2 0.1476E+1
Table ITa. INSE with CN2+PR and UVNBC
CN2+ At adum dul2 K adpxm
PR 0.1 0.6128E-1 | 0.8890E-1 0.3664E-0
KMNBC | 0.05 0.3437E-1 | 0.4851E-1 | 1.773 | 0.1977E-0
32x32 0.025 0.1834E-1 | 0.2571E-1 | 1.881 | 0.9578E-1
0.0125 0.9704E-2 | 0.1357E-1 | 1.938 | 0.4347E-1
0.00625 | 0.5220E-2 | 0.7316E-2 | 1.969 | 0.2140E-1
0.003125 | 0.2936E-2 | 0.4137E-2 0.1160E-1
0.1 0.6117E-1 | 0.8781E-1 0.3768E-0
0.05 0.3382E-1 | 0.4767E-1 | 1.770 | 0.2115E-0
64x64 0.025 0.1784E-1 | 0.2495E-1 | 1.879 | 0.1108E-0
0.0125 0.9222E-2 | 0.1285E-1 | 1.937 | 0.5493E-1
0.00625 | 0.4745E-2 | 0.6608E-2 | 1.968 | 0.2545E-1
0.003125 | 0.2464E-2 | 0.3436E-2 0.1200E-1
0.1 0.6100E-1 | 0.8749E-1 0.3816E-0
0.05 0.3367E-1 | 0.4744E-1 | 1.768 | 0.2150E-0
128x128 | 0.025 0.1771E-1 | 0.2475E-1 | 1.878 | 0.1145E-0
0.0125 0.9098E-2 | 0.1267E-1 | 1.937 | 0.5878E-1
0.00625 | 0.4626E-2 | 0.6432E-2 | 1.968 | 0.2934E-1
0.003125 | 0.2347E-2 | 0.3262E-2 0.1417E-1

Table IIb. INSE with CN24+PR and KMNBC

o1
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CN2+PR | At adum dul2 K adpxm
0.1 0.1221E-1 | 0.8983E-2 0.2112E+1
UVNBC | 0.05 0.5378E-2 | 0.3753E-2 | 2.342 | 0.1972E+1
64x64 0.025 0.2208E-2 | 0.1511E-2 | 2.437 | 0.1755E+1
0.0125 0.8673E-3 | 0.6146E-3 | 2.558 | 0.1479E+1
0.00625 | 0.3333E-3 | 0.3132E-3 | 2.648 | 0.1164E+1
0.003125 | 0.1613E-3 | 0.2447E-3 0.8447 -0
0.1 0.2017E-2 | 0.2994E-2 0.2032E-0
KMNBC | 0.05 0.3830E-3 | 0.5664E-3 | 4.043 | 0.1134E-0
64x64 0.025 0.2826E-4 | 0.4159E-4 | 4.052 | 0.6071E-1
0.0125 0.1264E-3 | 0.1846E-3 | 4.061 | 0.3168E-1
0.00625 | 0.1515E-3 | 0.2209E-3 | 4.090 | 0.1627E-1
0.003125 | 0.1578E-3 | 0.2289E-3 0.8287E-2
0.1 0.4310E-2 | 0.1354E-1 0.2403E-0
periodic | 0.05 0.8188E-3 | 0.2568E-2 | 3.996 | 0.1277E-0
128x128 | 0.025 0.5775E-4 | 0.1786E-3 | 3.995 | 0.6585E-1
0.0125 0.2764E-3 | 0.8655E-3 | 4.004 | 0.3344E-1
0.00625 | 0.3311E-3 | 0.1037E-2 | 3.974 | 0.1685E-1
0.003125 | 0.3448E-3 | 0.1080E-2 0.8462E-2
0.1 0.2577E-0 | 0.1050E+1 0.3584E-0
OIDNBC | 0.05 0.1322E-0 | 0.5431E-0 | 1.902 | 0.4812E-0
128x128 | 0.025 0.6696E-1 | 0.2764E-0 | 1.949 | 0.2565E-0
0.0125 0.3371E-1 | 0.1395E-0 | 1.973 | 0.1336E-0
0.00625 | 0.1691E-1 | 0.7005E-1 | 1.986 | 0.6849E-1
0.003125 | 0.8470E-2 | 0.2511E-1 0.3476E-1

Table III. The Stokes Equations with CN2+PR

INSE CN+CCPC 64x64 T=0.1x10 y=pi/4

(a) UVNBC-u (s)

0.25 0.5 0.75 1
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Fo—e o,
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Figure 2
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INSE CN+PR 64x64 T=0.1x10 y=pi/4

(b) UVNBC-gx
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Stokes Eg. CN+PR UVNBC 64x64 T=0.1x10 y=pi/4 Re=100
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(1]

Stokes Eg. CN+PR OIDNBC 128x128 T=0.1x10 y=pi/4
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