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Abstract

An interior trust-region-based algorithm for linearly constrained minimization prob-
lems is proposed and analyzed. This algorithm is similar to trust region algorithms for
unconstrained minimization: a trust region subproblem on a subspace is solved in each
iteration. We establish that the proposed algorithm has convergence properties analogous
to those of the trust region algorithms for unconstrained minimization. Namely, every limit
point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and
at least one limit point satisfies second order necessary optimality conditions. In addition,
if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a
neighborhood of that point, then the generated sequence converges globally to that point
in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical prop-
erties of the algorithm in this paper. Implementation issues and adaptation to large-scale
problems will be addressed in a future report.

Key words: Nonlinear programming, Linear constraints, Trust region algorithms, Newton
methods, Interior algorithms, Quadratic convergence.

1. Introduction

Consider the following linearly constrained minimization problem:

wneléiRI}L flx): R =R (1.1)

subject to Az =b and x > 0,

where f is assumed to be twice continuously differentiable, A € £™*" and b € R™. We are
interested in locating a local minimizer and call such a minimizer a solution to (1.1).

We propose an interior trust region based algorithm. Starting from a strictly feasible point
2% (or, interior point, i.e., Az’ = b and 2° > 0), a sequence {z*} is generated and every z*
remains interior. In each iteration, a trust region subproblem is solved and the iterate z* is
updated. A projected gradient is used as a watch dog to guarantee global convergence. Under
certain assumptions, we establish that the algorithm has convergence properties analogous to
those of the trust region algorithms for unconstrained minimization (see, e.g., [28]). Namely,
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every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions
and at least one limit point satisfies second order necessary optimality conditions. In addition,
if one limit point is a strong local minimizer and the Hessian of f is Lipschitz continuous in a
neighborhood of that point, then the sequence converges globally to that point and the rate of
convergence is at least 2-step quadratic.

Trust region algorithms for unconstrained minimization have been studied by many authors
(see, e.g., [14], [21], [23], [27], and [28]). A trust region algorithm can be briefly described as
follows.

Let & be the current approximation to a solution of min, f(z) and let § > 0 be the current
trust region radius. A solution to the model trust region subproblem

HAlin {q(Az) = f+ VfTAz + %AwTVZfA:U ||Az]] < 4§} (1.2)

is computed. If the actual reduction on the objective function, f(x) — f(x+ Ax), is satisfactory
comparing with f(z) — ¢(Az), the reduction predicted by the quadratic model ¢ in (1.2),
x 4+ Ax is taken as the next approximation, and the trust region radius ¢ is updated for the
next iteration. Otherwise the trust region radius is reduced and a new trust region subproblem
is solved. A reduction is satisfactory if

f(z) - f(z + Ax)
f@ —qda) ="

where n € (0, 1) is a given constant.

Excellent global convergence properties of the trust region algorithms for unconstrained
minimization have been established. In [28] for example, it is shown that every limit point
of the generated sequence satisfies first order conditions and at least one limit point satisfies
second order necessary optimality conditions. In addition, if there is one limit point which is a
strong local minimizer, then the whole sequence converges globally to this point and the rate
of convergence is quadratic. In [27], it is proved that if a reasonable strategy for increasing the
trust region radius is imposed, then every limit point satisfies second order necessary conditions.

Trust region algorithms have also been applied to minimization problems with simple bounds
(see, e.g., [6] and [10]), to equality constrained minimization (see, e.g., [2], [4], [24], and [29]),
and to linearly constrained minimization (see, e.g., [5], [11], and [15]). Similar convergence
results are also obtained.

Among the algorithms for linearly constrained minimization, many are based on the active
set method, such as [3], [12], [13], [16], [18], [19], [22], [25], [26], and [30]. But some are of
interior point type, e.g., [11] and [15].

Interior algorithms have been extensively studied and applied to many optimization prob-
lems, including linear programming, linear complementarity problems, and quadratic program-
ming. A main feature of the interior algorithms is that the number of iterations is not very
sensitive to problem dimension. For references, see, e.g., [20], [31], and [32].

This paper is organized as follows. In Section 2, we first give the optimality conditions for
(1.1) and then motivate and define our algorithm. Convergence properties are established in
Section 3 and 4. Finally, we have some concluding remarks in Section 5.

We use V f(z) to denote the gradient of f(x) and V2 f(x) to denote the Hessian. Given z*
and 2%, we write f* = f(z*), f¥ = f(2*), and use similar notations for Vf and V*f. We use

superscripts to denote the iteration counts and use subscripts to indicate the indices of vector
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components. We occasionally drop the superscripts when there is no confusion. The norm || - ||
used in this paper is I3 norm unless otherwise specified. Sets will be denoted by calligraphic
capital letters. Given a vector € R™, the notation x > 0 means z; > 0 for every 1 < i < n and
x> 0 means x; > 0 for every 1 < i <n. We call z a feasible point if Az = b and x > 0. We call
x an interior point if © is feasible and z > 0, and we call z a boundary point if x is feasible and
z; = 0 for some 1 < i <n. When M € R**" is a square matrix, the notation M > 0 indicates
that M is positive definite and the notation M > 0 indicates that M is positive semidefinite. If
x denotes a vector, then the corresponding capital letter X = diag(x) will denote the diagonal
matrix whose diagonal entries are the components of x. Finally, if x = [z1, 2, -+, z,]T and
M = (mi;) € R, then |z = [|z1], 2], -+, [eal]" and [M] = (jmy;]) € R

2. The Algorithm IPTR

In this section, we first introduce the optimality conditions for (1.1). Then we describe how
to compute the updating steps and give the motivation. Finally, we define the algorithm.

Conditions for a point € R™ to be a local minimizer of (1.1) are well-known and a set
of numerically verifiable conditions can be phrased as follows (see for example [18]): if z* is a
solution to (1.1), then there exists w* € R™ such that

feasibility: Az* =band z* >0, (2.1)
complementarity: ~ X*(Vf*+ ATw*) =0, (2.2)
sign condition: 2 =0= (Vf*+ATw"); >0 (1<i<n), (2.3)
positive semidefiniteness: pIV2f*p > 0 for every p € N(z*), (2.4)

where for a given feasible point x,

N(z)={peR": Ap=0 and p; =0 for every i € A(z) },
and

Ay ={i: z; =0}. (2.5)

Conditions (2.1) — (2.3) are first order necessary conditions and are known as the Karush-
Kuhn-Tucker (KKT) conditions. Conditions (2.1) — (2.4) are called the second order necessary
conditions. Second-order sufficiency conditions for optimality are obtained by replacing “>”
with “>” in (2.3) and (2.4). A point z* is called a strong local minimizer if z* satisfies these
second order sufficiency conditions.

The two equations in the KKT conditions form a nonlinear system

X(Vf(x)+ ATw)

Fla,w) = Az —b

=0 (2.6)

which will be useful in the proof of quadratic convergence.

2.1. Projected Trust Region Subproblem and Projected Gradient

In our algorithm, each updating step involves two vectors: the solution of a projected
trust region subproblem and a projected gradient. The projected trust region subproblem is
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motivated by the Newton system of (2.6): its solution is ultimately the Newton direction (with
respect to x) of (2.6) (see Section 4). More specifically, for given z, we define

g = Vf(z)+ ATw, (where w is defined later in (2.21)) (2.7)
M = Vf(z) + XH|G], (where |G| = diag(lgil,|g2], -, gnl)) (2.8)

and solve
min {¢)(Az) = %A:UTMA@“ +A2TVf(z) : AAz =0, || X 2Az| < 6}, (2.9)

where for some given d,, > 0, 6 € (0, d,] is updated in each iteration subject to a ratio test
similar to one used in trust region algorithms for unconstrained minimization (e.g., [21]) and
for minimization with simple bounds (e.g., [6]).

Let Az, denote the solution of (2.9) (the subscript tr stands for trust region). Due to the
choices of M in (2.8) and the scaling in (2.9), the solution Az, has two important properties.
First, it is a feasible descent direction for f subject to the constraints (i.e., AAz;, = 0 and
Vf(z)T Azy < 0, see next section for the proof). This is important for global convergence.
Second, Az, is ultimately the Newton direction (with respect to x) for system (2.6). Therefore,
local quadratic convergence can be expected.

Problem (2.9) can be described in a different way. Let

=

D=X3, A=AD, M =DMD, and g= Dy. (2.10)

We may write Az, as
A:Utr = DZAZI_?“-, (211)

where Z = Z(x) is a matrix whose columns form an orthonormal basis for the null space of A
and AZ;. denotes the solution to

HAliin {Y(Az) = %A:ETZTMZAQ_: +Az1ZT5 . ||Az| < 6). (2.12)

Clearly,

Y(Azy) = P(AZy). (2.13)
From the results in [14] and [28], there exists A > 0 such that

(ZTM 7 + Ao 1) AZsr = — 275, (2.14)
ZTMZ 4+ Mo I > 0, (2.15)
Atr (0 — ||AZy|]) = 0, (2.16)
and
lall
Ao < 100 1. (2.17)

By the definition of Z, there exists Awy, such that

(M + Xy 1) ZAZ4, + § + AT Awy,. = 0. (2.18)
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Or equivalently,
(M 4+ Mo X DAz + g+ ATAwy, =0 and AAz,, = 0. (2.19)
When AA? is nonsingular,
Awyyp = —(AAT) YA (M 4+ Ny ) ZATy + 7). (2.20)

In our algorithm, Aw;, will not be computed but it will be useful in the convergence analysis.

The matrix Z in (2.12) is not specified. In this paper we assume Z(z) is continuous in an
appropriate region. This may not be true for an arbitrary choice of Z. For discussions on this
regard see [1], [9], and [17].

The step Az, will be calculated by (2.11) and (2.12) instead of (2.9) since some entries of
the matrix M may approach infinity as some diagonal components of X go to zero. The matrix
M does not have this disturbing property.

In order to ensure that Az, converges to the Newton step (with respect to x) of system
(2.6), we need to update w appropriately. A reasonable way to update w is based on condition
(2.2), i.e., at a local minimizer

X (Vf(z)+ ATw) = 0.

Therefore, if AX AT is nonsingular, we may compute w by
w=—(AXAT)TAX Vf(x). (2.21)

When w is computed by (2.21), it is a function of z.

Trust region algorithms have strong convergence properties and have exhibited robust per-
formance in unconstrained minimization (see [14], [21], [27], and [28]). In our case, however,
Aux, may not always be a good choice for updating step due to the constraints. Similar to the
dogleg algorithm [23] and the algorithms in [6] and [8], we follow a hybrid strategy. We choose
the step by combining Az, with a projected gradient defined by

9
T gl

where p, is the solution to the following one-dimensional problem:

2 =T - T
. w g =g g _
min{y,(p) = ——=M-—"— +pu-—g : |p| <d}. 2.23
V00 = 5 g M gl g <0 22)
The solution p4 is given by
-4 if gTMg <0,
1y = i 7§ = (2.24)
g _s _ &l
max(—0, ASYE ) otherwise.

In addition, similar to (2.14) — (2.16), there exists A, > 0 such that
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and

A, < 190y (2.28)

(7]

It is easy to verify that if w is defined by (2.21) then

V(Azg) = Pg(pg), Alzy =0, (2.29)

and Az, is a projection of V f(x) onto the null space of A. Moreover, Az, is a feasible descent
direction for f subject to the constraints (i.e., AAz, = 0 and Vf(z)T Az, < 0). We describe in
Section 2.3 how to combine Az, and Az, to form the updating step. The motivation is that
the projected gradient will be used in a way as a watch dog to guarantee global convergence.

2.2. Maintaining Feasibility

Let z* be the current iterate, an interior point, and let Az be a feasible descent direction
for f at 2* subject to the constraints, i.e., AAz = 0 and V f(2*)T Az < 0. When moving in the
direction Az from z*, a variable may reach a bound, i.e., (zF + aAz); = 0 for some 1 <i <n
and for some a > 0. Therefore, to maintain strict feasibility and yet allow the solution (which
may have some of the variables at their bounds #} = 0) to be approached asymptotically and
sufficiently fast, we define the step length as follows.

For each k, let

Tk gk k( Ak
L+ [[XFkgk| + [k (Azf,)|
where ¥ is a function of z* defined as follows: for each i =1,2,---,n,
G=1 T if g; Z.O or z; > ||gll, (2.31)
—max(1, z;) otherwise.

It is clear that X g = 0 if and only if the KKT conditions are satisfied with (z, w). In addition,
Z = x in a small neighborhood of a nondegenerate solution of (1.1) (see Section 3).
Let

of = max(r,,1—6*) for some given 7, € (0, 1), (2.32)
k
Bt = 1r§ni1£n{_ (Ax%r)i > 0}, ((z% + BE.AzF); = 0 for some 1 <i < n) (2.33)
af. = min(r,, o"BE) for some given 7, € (1, 2), (2.34)
and

k xy

M _ [}
/69 1ISniléln{ (A:L_]gc)l > 0}7 (235)
a’; = min (74, U’“ﬁf). (2.36)

The step lengths for Azf, and Azk will be of, and o¥, respectively. In Theorem 4.6, we show
that 6% > 0 unless z"* satisfies the second order necessary conditions (2.1) — (2.4). Therefore,
if ¥ is an interior feasible point not satisfying (2.1) — (2.4), then both z* + of Azk and
z* + a’;Aaz’g“ are interior feasible points. In addition, Theorem 4.6 shows that #* will not
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be very small unless z* is sufficiently close to optimality. Hence components of z* will be
prevented from prematurely getting too close to zero. Moreover, in Theorem 4.4, we will show
that 0¥ — 0 and af, — 1 as * converges to a solution of (1.1), thus the sequence {z*} will
be allowed to approach a solution sufficiently fast.

2.3. The Algorithm

We can now state our algorithm.

Algorithm. IPTR

Let 2° be an interior feasible point. Let &, > 0.

Let 75, €5 € (0, 1) and 6° € (0, &,] be given.

For £k =0,1,2,--- until “convergence”
1). Let D¥ = (X*)2 and compute wk = —(AX*AT)=LAXFk v fk.
2). Let g* = Vf* + ATwk and g* = D* gk;

k= g(xk, wk) (see (2.31)) and let ’“:M;
(%, w?) (see (2.31) TR

4). Compute Azk ok Aaz’g“, a’; and 6**1 by Procedure TR (defined next)

3). Determine &

k k_k k
5). If % > 7, and #F = zF for every zF < e,
g g

s* = sp, = Yrag Axf;
else
sk = s’; = 7ka’g“Am§;
6). Update z*+1 = zF + s*.
Procedure TR.
Let 0<m <m<land0< 7 <7 <1< 73 be given.
a). Compute Az, = Az¥ (6%) (see (2.11)) and of,. (see (2.34)); Let
st, = v*af, Az,

F@*tst)—f @)+ 3 (550 (XP) THGH |sp,
Pr(sk) '

c). If p¥ < my then 6% := § € [r1 6%, ™0*] and go to a);
d). If p¥ < mp then 0¥+ € [k, §%] else 0%+ € [6%, min (8, T36%)];
e). Compute Az} = Azk(6%) (see (2.22)) and af (see (2.36)); Let

b). Compute pf. =

s’; = 7ka’;A:c’g“.

Note that the trust region radius §* is updated in Step a) through Step d). Step e) uses
the radius 6% that is determined in Step a) through Step d). The ratio tests are similar to the
one used in [6]. In the next two sections, we consider the convergence properties of Algorithm
IPTR.

3. Convergence Properties of Algorithm IPTR

In this section we establish the convergence properties of Algorithm IPTR. These conver-
gence properties are proved under the following assumptions:
(A1) The level set £ = {x : z is feasible and f(x) < f(2°)} is compact and f(z) is twice
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continuously differentiable on L.
(A2) AXAT is nonsingular for every x € L.
(A3) For every feasible point  satisfying X (V f(z) + ATw) = 0 for some w € R™,
r;=0= (Vf(z) + ATw); #0 (1 <i <n).

Assumption (A2) is known as primal nondegeneracy. Assumption (A3) says that for every
feasible point satisfying the complementarity condition, strict complementarity holds. Note that
assumptions (A2) and (A3) are different from the primal and dual nondegeneracy assumptions
for linear programming in that (A2) and (A3) do not restrict a feasible point z satisfying the
complementarity condition to be a vertex. That is important since for a nonlinear problem,
solutions are not necessarily vertices.

By (A1) and (A2), there exists Cy > 0 such that

I(AXAT)=Y| < Oy for every z € L. (3.1)

Recall that in each iteration,
5% € (0, 04, (3.2)

where 6, > 0 is a given scalar.

The first lemma shows that Procedure TR will terminate in finitely many iterations for
every k.

Lemma 3.1. For every k, Procedure TR terminates in finitely many iterations.

Proof. By (2.31), it is clear that v¥ < 1 for every k. By (A1) and the fact that af. < 2 and
a¥ <2, we have |laf, Azt (6%)|| < Ca 6% and |lafAzk(6%)|] < Cy 6% for some Cy > 0. Moreover,
by Taylor’s Theorem,

flx+s)— f(x)+ %STX_1|G|S =(s) + %ST(V2f($ +ts) — V2f(z))s (3.3)

for some t € (0, 1) where 1(s) is defined in (2.9). Therefore, when §* is sufficiently small, the
inequality pf. > n; will be satisfied since f is assumed to be twice continuously differentiable.
Then Procedure TR will terminate.

The following lemma defines a few basic equalities used throughout the remainder of this
paper.

Lemma 3.2. Let each Az}, and Azt be defined by (2.11) and (2.22). Let s* be defined as
in Algorithm IPTR. Then

Fla®) = Ft 4 55) > oy (s5) 4+ (5T (0 G (3.4)
Yh( Ak) = 3 A (33)
= (- by k)29 2+ st - S Iagb ) <o

Vt € [0, min(2, 85));

P(t Awy) = oy (t py) (3.6)
t FLAVARES =k ) t2 )
— (1= ) (Dt T b d)? - 5 )2 <0

Vt € [0, min(2, 8})].
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Proof. The relation (3.4) is a direct consequence of Lemma 3.1 and the ratio test in Proce-
dure TR, while (3.5) and (3.6) follow by (2.14), (2.15), (2.25), and (2.26).

Lemma 3.3. For any subsequence {k;} such that {||gh ||} is bounded away from zero, the
subsequence {a’;j} must be bounded away from zero.

Proof. Suppose ||gF|| > € > 0. If {o/g“j} is not bounded away from zero then there is
a subsequence, still denoted by {algj}, that converges to zero. It follows from (2.36) that
,ng — 0. Since n is finite, from the definition of 8§ (see (2.35)), we may (without loss of

k
Then by (2.22),

_ Lk
generality) assume that ,35’ = ik B
(Awg])l

=k; k;
[l | N (3.7)

k; k; k;
Mg’ g1’ (Axg])l

Therefore, we must have ||ghi|| — 0 since |uy’| < 6, for every k; and by (A1) {|gi’|} is
bounded above. The assumption that {o/gcj} is not bounded away from zero has led to a
contradiction.

The next two theorems are similar to Theorem 4.1 and Theorem 4.5 in [28] and our proofs
follow quite similarly to the proofs of those two results.

Theorem 3.4. Let {z*} be generated by Algorithm IPTR. Then {f(z*)} converges and

lim inf{g* := D¥(Vf* + ATw*)} = 0. (3.8)
—00
Proof. Since z*t! = zF 4+ s* by (3.4) and the definition of s® in Algorithm IPTR,

F@®) = f@ ) > = p* (g Aak) > 0, (3.9)

where 7, 75, and 7* are given in Algorithm IPTR. Hence {f(z*)} is monotonically decreasing.
Therefore, {f(z*)} converges by (A1).

The proof of (3.8) is by contradiction. Suppose (3.8) is false, then there exists € > 0 such
that

15" > e. (3.10)
Using (3.9), (3.6), and letting y* = II?JZII’ we have
k. k oy ENT w7k, ko yky(, kY2
vrag (1= —=) (") MPy" + Xg) ()™ — 0. (3.11)
From (2.25),
()T M " + 20y = —llg"I (3.12)

By Lemma 3.3, {aF} is bounded away from zero. Therefore it follows from (3.11) and (3.12)
that —p[|g*|| = ((y*)T M*y* + X¥)(uk)? — 0. That would give & — 0 which, by (3.12),
(3.10), and Assumption (A1), implies that {A¥} is unbounded above. Using (2.27), we see that

k_ _ k
6" = —py = 0. (3.13)
By (2.14), we have

Il
ZR TR Z5] + X,

§F > ||az) | >
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Therefore we must have either ||(Z*)Tg*|| — 0 or Ak, — oc0.

Suppose [|(Z*)Tg*|] — 0 and assume z* — z, (or we may consider a subsequence). Then
Zrg. = Z(2.)Tg(z+) = 0. Since g. = D.(Vf. + ATw,) = D.Vf. + ATw, and A, Z, = 0,
we have ZI' D,V f. = 0. In other words, D.Vf. € null(Z]) = range(AT) which implies that
AT+ = D,V f. for some 1w € R™. By Assumption (A2) and the definition of w in Algorithm
IPTR, @ = —w,. Therefore, g* — g. = 0 which is a contradiction to (3.10).

Now suppose A¥. — co. Then by (3.5) and the fact that af < 2, we have

kok Agk )| = — kok Ak >(7kafr)2)\k AZF (12 14
|1/)(7 Ay xtr)| - 1/}(7 Ay xtr) - 2 tr” wtr” . (3 )

It follows from the definition of p¢. in Procedure TR, (3.3), (2.11), Assumption (A1), and
(3.14) that |pf. — 1| — 0. Therefore, there exists an K > 0 such that pf. > 1, for all k > K.
The updating rule for 6* in Procedure TR would give 6* > §, > 0. That is a contradiction to
5k — 0.

Therefore, (3.8) must be true. That completes the proof.

Theorem 3.5. Let {z*} be generated by Algorithm IPTR. Then

g" = DF(Vfk+ ATwh) — 0. (3.15)
Consequently, every limit point * of {x*} satisfies
X*(Vf* 4+ ATw*) = 0 where w* = —(AX*AT)LAX*V f*. (3.16)

Proof. Suppose there is a subsequence {z*i} C {z*} such that ||ghi|| > € > 0 for all

j=1,2,---. Due to Theorem 3.5, we may select an integer [; corresponding to each j such that
. € i
lj = maz{l € [kj, kj1) [llg'l 2 5, ky <0 <1} (3.17)
and
7" | < % (otherwise we may consider a subsequence of {z*i}). (3.18)

Using the same arguments from (3.10) to (3.13) and Lemma 3.3, we have
al, > e >0 and & = —pl, -0 (as j = o00) forall k;j <1<, j=1,2,--. (3.19)
Therefore, for all k; <1 <1, j=1,2,--,

(7o)

fi=frn 2 mrs—— X, (1g)? (by (3.9) and (3.6)) (3.20)
_ (7l0‘lg)2_—l L INT gl 0y L
= mTs—— — (=lIg1l =y (y)" My )y (by (3.12))

> €0 for some € >0 (Assumption (A1) is used).
From (3.20) and the convergence of {f*} it follows that

fkj — flj+1 = E;]:k] (fl — fl+1) > €y E;]:k] 5l — 0 as ] — 0Q. (321)
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From (3.21) it follows that ||z* —2'i*1|| - 0 as j — co. By Assumption (A1) and (A2), §(z)
is uniformly continuous on £ and it follows that ||ghi — glit!|| < 5 for all j sufficiently large.

Therefore
€

2
for all j sufficiently large. The assumption that ||g¥i|| > € has led to a contradiction and we
must conclude that g*¥ — 0.

Next, we show that every limit point of {z*} satisfies the KKT conditions. We break the
proofs into several lemmas. The first lemma says that any two limit points of {z*} have the
same zero components.

Lemma 3.6. Let 2* and y* be any two limit points of {z*}. Then A(x*) = A(y*), where
the set A is defined in (2.5).

Proof. Let S be the set of all limit points of {z*}. For each z € S, define

_ks ks 1 I €
g™ 1l < llg™ = g" I+ llg" I < 5 + 5 =

Ex) ={yes: Aly) = Alz) }.

We first show that each £ () is a closed set. Suppose {y*} C £(z) and y* — y. It is easy to
see that y € S. Fori € A(z), y¥ = 0 for every ksoy; = 0. Fori & A(z), (Vf(y*)+ATw(y*)); =
0 for every k. Hence (Vf(y) + ATw(y)); = 0 and therefore, Y (Vf(y) + ATw(y)) = 0. Then
(A3) implies that y; # 0 for every i ¢ A(z). Therefore y € £(x) and £(z) is closed.

It is clear that if y € £(x), then £(y) = £(x). Therefore, the number of distinct elements in
the set {£(x) : © € S} is finite since n is finite. Using the closedness of each £(z) (z € S), we
see that

e =inf{|lz—vyl : z,y €S, E(x) #E(y)} > 0. (3.22)

Now let z* be any limit point of {z*}. By (3.22), there exists € € (0, 1) and k; > 0 such
that for every k > kq,
either (z¥)z <

F(3a5,) for every i € A(z*), or zf > Ze for some i € A(z*). (3.23)

Since x* is a limit point, there exists ks > k; such that

(a:i.”)% < ?)(TG%U) for every i € A(z™). (3.24)
Notice that for every k, [|[(D*) "t Azt || < 6y, [[(D*) T Azf]| < 64, 7" <1, af, < 2, and of < 2,
hence

|(D*)~tsk|| < 26, for every k, (3.25)
which implies that
sk < 24, (xi.”)% for every i € A(z*). (3.26)
Then (3.24) and (3.26) yield
et < (14 25u)(a:f2)% < % for every i € A(z"). (3.27)

Therefore, by (3.23),

ko+1y1 €
x; 2
(i) <

: 30120 for every i € A(z"). (3.28)
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By induction, we have that for every k > ks,

€
o} < (@) <3

<
(1+265,) ~

g < %1 for every i € A(z®). (3.29)
Thus A(z*) C A(z) for every x € S. Since z* is an arbitrary limit point, the proof is complete.

Again, let S be the set of all limit points of {z*}. Let sign(t) denotes the sign of t € ®. For
each z € S, define

T(x)={y €S : sign(gi(y)) = sign(g;(x)) for every i € A(zx) }, (3.30)

where g(z) = Vf(z) + ATw(z) with w(z) = —(AXAT)"1AX Vf(z), and g(y) is similarly
defined. Then we have the following result.

Lemma 3.7. The number of distinct elements in the set { T (z) : © € S} is finite. Conse-
quently,

e =inf{|lz -yl : z,yeS, T(x)#T(y)}>0. (3.31)
Proof. Similar to the proof of Lemma 3.6, we can first show that each 7(z) (x € S) is
closed. It is clear that 7 (y) = T (z) if y € T (x). Then the lemma follows.
Theoram 3.8. Let {z*} be generated by Algorithm IPTR. Then every limit point x* of
{2*} satisfies the KKT conditions.
Proof. First, by (A1), (2.11), and (2.22), there exists Cs > 0 such that for every £,

Is*]| < Cs~*. (3.32)

Let z* be a limit point of {z*}. By (3.16), X*g* = 0 where g* = V f(z*) + ATw*. It suffices
to show that g7 > 0 for every i € A(z*).
Assume the contrary, that is, g < 0 for some i € A(z*). Fix i and let

€ =min{ |g;(z)| : z € T(z") }, (3.33)

which is well-defined since 7 (z*) is compact. By (A3), ¢* > 0.
By Lemma 3.7 and Theorem 3.5, there exists € € (0, €2) (€2 is defined in (3.31)) and k; > 0
such that for every k > k1,

either ||z* — z|| < £ for some z € T (z*) or ||z — || > 2 for every z € T(z*), (3.34)

and "
€EE

g*|| < :

191 < 5

Since i € A(x*), by Lemma 3.6 and the definition of €* (3.33), there exists ko > k; such that if
k > ko and [|z* — z|| < £ for some x € T (¢*), then

(3.35)

gk <-5, @hHi< <e (3.36)

For such k, using (2.31) and the first two inequalities in (3.36), we have #¥ = —1. Then using

the third inequality in (3.36) and the definitions of 4% and s* in Algorithm IPTR, we have

sk = 7ka’;Aaz’; and v < ° (3.37)

~—6C3
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for every k > ky such that [|z* — || < £ for some = € T (z*).
Let k3 > ky such that [|z%s — 2*|| < & (such k3 exists since z* is a limit point). Then

[[s*2]] < & by (3.32) and the fact that v** < z&-. Hence

lla"h — x| < Jla*e — ol + [Is™] < (3.38)

€
5
Then (3.34) yields

||lahstt — 2| < % for some z € T (z*).

By induction, we have for every k > ks,

||l* — z|| < % < %2 for some x € T (z).

Therefore, T (x) = T (z*) for every x € S which implies that 7 (z*) = S. Then g¥ < 0 for every
k sufficiently large. Noticing that u¥ < 0 by (2.23), we have (Az}); > 0 by (2.22). Hence (3.37)
implies that s¥ > 0 for every k sufficiently large. Therefore, {¥} is bounded away from zero,
which contradicts the fact that i € A(z*). Hence z* satisfies the KKT conditions.

Corollary 3.9. For every k sufficiently large,

i =a% and vF =1, (3.39)
where v* is defined in Algorithm IPTR.

Proof. It is a direct consequence of Lemma 3.6, (A3), and Theorem 3.8.

Next, we turn to second order optimality conditions. We show that the sequence {z*}
generated by Algorithm IPTR has a limit point satisfying the second order necessary optimality
conditions.

Lemma 3.10. There exists & > 0 such that of, > & for every k.

Proof. If the lemma is false, then there exists a subsequence {k;} such that

kj
Ay 07

which by (2.34) implies 3/ — 0. Since n is finite, from the definition of ¥, (see (2.33)), we
kj
may (without loss of generality) assume that ,Bf,f = (A_x,jj) . Since ||AzE || < §,]|D¥|| by (2.11),
Tep )1

we see by (A1) and (2.11) that {||AzF ||} is bounded above. So x’fj — 0.

Let z* be a limit point of {z*i}. To simplify notations, assume z*i — z*. Then wki —
w* = —(AX*AT)1AX* Vf(z*) and 7 = 0. By (A3), |g;| > 0. Now multiplying the first
equation of (2.19) with X* gives

XEV2 R Azl 4+ |GR Ak + M Ak + XFgh + XPAT Awl =0, (3.40)
which yields
k; k; k;
92" [ + A _ T4 _ 557{ _.0.

(V2fk5 Azii)y + gy + (ATAw ) (Aapi),

But this is impossible since gfj — g7 > 0and by (A1), (2.20), and (3.1), there exist Cy, C5 > 0
such that |(V2f5 Az7), + g7 + (AT Aw}?),| < Cy + Cs A} for every kj. Therefore, the lemma
holds.



238 J.G. LIU

The following lemma reveals the relationship between the positive definiteness of V2 f* in
N* and that of (Z*)T M*Z*. The proof can be found in [7].

Lemma 3.11. Let z* be any feasible point satisfying the complementarity condition (2.2).
Then

(G) (Z9)TM*Z* > 0 if and only if p" V2 f*p > 0 for every p € N* and p # 0.
(i) (Z*)'M*Z* > 0 if and only if p"' V2 f*p > 0 for every p € N'*.

The next result is motivated by and similar to Theorem 4.7 in [21].

Theorem 3.12. The sequence {x*} generated by Algorithm IPTR has a limit point x*
which satisfies the second order necessary conditions (2.1) — (2.4).

Proof. By Theorem 3.8, it suffices the show that {z*} has a limit point #* which satisfies
(2.4).

Clearly, if there exists a subsequence {)\f,i} — 0, then by (2.15), there exists a limit point
x* such that (Z7*)TM*Z* > 0, and the desired result follows by Lemma, 3.11.

We can show that {\F.} is not bounded away from zero by contradiction. Suppose Af. >
€ > 0 for every k sufficiently large. By (3.4), (3.5), (3.39), and the convergence of {f(z*)},

akr 2 -
F) = ) 2 - o o k) 2 DN gk 0

Then Lemma 3.10 implies ||AZ¥.|| — 0. Using (2.16), we have 6* — 0. By (A1) and (2.11),
there exists Cg > 0 such that ||Azf || < Cg ||AzZE.|| for every k. So by (3.5),

k2 =2
Q e ‘e
( L ) )‘kHAlfTHZ >

[* (o, Azf, )| > 2r > @

1A, |2,

Now, the definition of pf. in Algorithm IPTR and a standard estimate give (letting sf. =
o At

Lok

b =11 = IR+ sh) — )+ (b)) GH st — wh () /[ (sh)] (341)
el
< bk, V7 k) - P2 S()]
< % max ||V?f(z" + &sp) — V(2|
= @2e 0<£<1 tr ’

where we used the fact that af. < 2. Therefore, the uniform continuity of V2 f on £ and the fact
that ||AzF || < Cs ||AZE.|| — 0 imply pk. > n, for all k sufficiently large. Then the updating
rules for 6% yield that {0*} is bounded away from zero which is a contradiction to the fact that
§% — 0. That completes the proof.

Following the proof of Theorem 4.11 in [21], we can easily obtain the next result.

Theorem 3.13. FEvery isolated limit point of {z*} satisfies the second order necessary
conditions (2.1) — (2.4). Therefore, if {z*} converges to x* say, then x* satisfies the second
order necessary conditions.

As remarked in [28], failure of convergence of {z*} will require an extremely pathological
situation. It is easy to see that f must have the same value at each of the limit points of
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{z*}. Moreover, at least one of the limit points satisfies the second order necessary optimality
conditions.

4. Quadratic Convergence of Algorithm IPTR

In this section we consider the local convergence rate properties of Algorithm IPTR: we
establish superlinear and quadratic convergence results when there exists a limit point which is
a strong local minimizer. Recall that under assumptions (A1), (A2), and (A3), a limit point
x* is a strong local minimizer if the following holds:

pI'V2f(x*)p > 0 for every p € N(z*) and p # 0. (4.1)

We first give some preliminary results.
Lemma 4.1. Let z* be any limit point of {z*}. Then

vIVf* =0 for every v e N(z*). (4.2)

Proof. By (3.16), X*(Vf* + ATw*) = 0. Then by (A3), we may define y* € R" by y =1
if i € A(z*) and y} = 1/z} otherwise. Thus v Y*X* = v” for every v € N'(z*), which implies
that

VIV =0T (VF + ATw*) = oTY*X*(VF* + ATw*) = 0.

Lemma 4.2. Every limit point x* satisfying (4.1) is an isolated limit point.

Proof. We prove the lemma by contradiction. Assume there is a sequence of limit points
{2'} which converges to z* and z! # x* for every . By Lemma 3.6, A(z') = A(z*) for every [
where A is defined in (2.5). Then A'(z!) = N(z*) and z! — z* € A(z*) for every I. Therefore,
by Lemma 4.1, (z! — 2*)T(Vf! — Vf*) = 0. But on the other hand,

1
Vi -V = / V2f(z* +t(z! — 2*)) (' — 2*) dt,
0
and for [ sufficiently large, by (4.1) and the continuity of V2f(z),
1
(at —2) (V= V[ ) = / [(a! = 2*)TV2f(a* + t(a! — 2*)) (2! — z*)]dt > 0.
0

This is a contradiction to that (z! — 2*)T(Vf! — Vf*) = 0. Therefore, z* is an isolated limit
point.
Theorem 4.3. Suppose there exists a limit point x* which satisfies (4.1). Then z* — x*.
Proof. We first establish that

g | + Azl + |AZE || + | Az || — 0. (4.3)

In fact, by (4.1) and Lemma 3.11, there exists € > 0 such that the least eigenvalue of (Z¥)T M* Z*
is greater than or equal to € for every k sufficiently large. Moreover, since A*g* = 0, there exists
y* with ||y¥|| = 1 such that % = Z*y* for every k. It follows from (2.25) and (3.15) that
pf — 0. Hence Azt — 0 by (A1) and (2.22). Similarly, we can show that Az}, — 0 and
AzF. — 0. So (4.3) holds. Therefore, s* — 0 and the theorem follows by Lemma 4.2.

Lemma 4.4. Suppose there exists a limit point x* which satisfies (4.1). Then each of the
following holds.
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There exists 6; > 0 such that ¥ > &, for every k.

(i
(ii) AF. =0 for every k sufficiently large.

(iil) Awf, — 0.

)
)
)
(iv) 9% — 0.
(v) af — 1.
i) s

= ok Azl for every k sufficiently large.

(v

Proof. Proof of (i). By (4.1) and Lemma 3.11, there exists € > 0 such that the least
eigenvalue of (Z%)T M*Z* is greater than or equal to € for every k sufficiently large. It follows
from (3.5), Lemma 3.10, (A1), and (2.11) that |[)*(af Azk)| > C7||AzF.||? for some C7 > 0
and for every k sufficiently large. Therefore, similar to (3.41), we have

|pfr - ]‘| — 07

which and the updating rules for §* imply that 0¥ > §; for some 6; > 0 and for every k.
Proof of (ii). It follows from (2.16), (4.3) (particularly, ||AZF || — 0), and (i) of this lemma.
Proof of (iii). It follows from (2.20), (3.15), (4.3), and (ii) of this lemma.
Proof of (iv). It follows from (2.30), (3.5), (4.3), (3.15), and (3.39).
Proof of (v). By definition, z} > 0 for every ¢ ¢ A(z*). So by (4.3)

:Uk

— oo for every i € A
@), o

By (A3) and Theorem 3.8, g7 > 0 for every i € A(z*). Using (3.40), (4.3), (ii) and (iii) of this
lemma, and the convergence of {z*}, we have

oy 97| + A,

(3

_(Awfr)l a (HA;U?T)Z +gz,'c + (ATAwfr)i

— 1 for every i € A(z*). (4.4)

Therefore, by (2.32), (2.33), (2.34), and (iv) of this lemma, we have 8f. — 1, p¥. — 1, and
af. — 1.
Proof of (vi). By Corollary 3.9 and the definition of s* in Algorithm IPTR, we need only
to show that
’l/}k(atrAwtr)
JF(afAdk)
In fact, let py(d) be the solution to (2.23). Then 9y(1g(61)) < Yg(pg(d2)) if 61 > da.
Therefore, if for each k we let 6% be the trust region radius determined by steps a) to d), and
65 be the trust region radius determined by steps e) to g) in Algorithm IPTR, then

Wy (g (6%)) < by (g (87)) (4.6)

> 15 for every k sufficiently large. (4.5)

since 6% > ok
On the other hand, similar to (i) and (ii) of this lemma, it can be shown that {d%} is bounded
away from zero and )\’g“ = 0 for every k sufficiently large. Hence by (3.6),

vy (1 (84)) < g (g pg (95)) = v* (g Axy). (4.7)
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Moreover, since AZf, solves (2.12) (with 6%) and uf(6%) solves (2.23), we have
DM (AT < 9y (g (8°)). (4.8)
It follows from (4.6), (4.7), and (4.8) that
O (AF,) < ¢F(ag Azy).

Therefore, by (v) of this lemma and (3.5), (notice that 1" (af Azk) < 0)

@sz(af,,Aa:f,,) afr(2 — afr)’l/_}k(Aifr) k k
= > 2 — — 1.
JF (b Axk) F(akAzE)  © o (2 = or)

Since 75 < 1, we see that (4.5) is true.

It is clear that F'(z*, w*) = 0 where F is defined by (2.6). Similar to the results established
in [8] (Theorem 4.4 to Theorem 4.11 in [8]), we can show that Azf is ultimately the Newton
direction (with respect to z) for (2.6), and consequently, we can establish the rate of convergence
for Algorithm IPTR as follows.

Theorem 4.5. Suppose there exists a limit point z* which satisfies (4.1). Suppose V? f(x)
is Lipschitz continuous in a neighborhood of x*. Then there exists Cg > 0 such that for every
k sufficiently large,

et = 2*[] < Cs ||l — 2| [|l2* — 2*]], (4.9)
@+ W) — (@, w)l| < Cs [|(&* 1 whh) — (@, w) [ (&%, w*) = (@, w*)||.  (4.10)
In other words, the sequences {#*} and {(z*, w*)} converge to #* and (z*, w*) in the rate

of at least 2-step quadratic, respectively. Moreover, similar to Theorem 4.9 in [8], We can show
that the sequence {(z*, w*)} converges to (z*, w*) quadratically, where {w@*} is defined by

WF = wht + Awft (k> 1), (4.11)

and {Aw!.} is defined by (2.20).
To conclude this section, we justify the statement about #* given at the end of Section 2.2.
Theorem 4.6. Let 0% be defined by (2.30). Let v* denote the least eigenvalue of (Z*)T M*Z*.
Then

1) | X*g*| < 26* and —4—;;; < V¥ for every k such that 0% < 1, where 6; > 0 is the constant

given in (i) of Lemma 4.4.
(ii) 8% =0 if and only if x* satisfies the second order necessary conditions (2.1) — (2.4).

Proof. Proof of (i). By (2.30), it is clear that || X*g*|| < 26*. In addition,
[W*(Az,)| = [WF(Axy,)| < 267,

which by (3.5) implies that

1
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If ||AzZE.|| < 6%, then (2.16) yields AF. = 0 which implies that v* > 0 > —%k. Otherwise,
l
IAZE || = 6% > &, and

46*
k
Atr S ?
Therefore, by (2.15),
46*
P> - > -
0;

Proof of (ii). Assume first that #¥ = 0. Then it follows from Part (i) that * satisfies the
second order conditions (2.1) — (2.4).
Now we assume that z* satisfies conditions (2.1) — (2.4). Then X*g* = 0 and g* = D*¢* =
0. So (2.14) implies
(ATE )T (Z%)T M 24 ATk, + A | ATE 2 = 0. (4.12)

On the other hand, by Lemma 3.11, condition (2.4) implies that (Azk )T (Z¥)T M*ZkAzE. > 0.
Then, by (4.12) and (2.16), Ak, = 0. Therefore, using (2.14) and the fact that g* = 0, we have

_ 1 _ _
PF(Ack) = 9 (Aah) = S(ATh)! (24 i 2 Ak, = 0.
Then 6% = 0.

5. Concluding Remarks

We have proposed an interior projected trust region algorithm for linearly constrained op-
timization. Under compactness of the level set and nondegeneracy assumptions, convergence
results analogous to trust region algorithms for unconstrained minimization are obtained. Pre-
liminary numerical experiments indicate that the algorithm works well for problems with small
number of variables. However, as it stands, the algorithm is not suitable for large-scale problems
since it requires full-dimensional trust region computations and several matrix factorizations in
each major iteration. In response to this we are currently investigating a modification to this
approach involving iterative and approximate linear solvers. This will be the topic of a future
report.
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