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Abstract

In this paper, a new superlinearly convergent algorithm of sequential systems of lin-
ear equations (SSLE) for nonlinear optimization problems with inequality constraints is
proposed. Since the new algorithm only needs to solve several systems of linear equations
having a same coefficient matrix per iteration, the computation amount of the algorithm is
much less than that of the existing SQP algorithms per iteration. Moreover, for the SQP
type algorithms, there exist so-called inconsistent problems, i.e., quadratic programming
subproblems of the SQP algorithms may not have a solution at some iterations, but this
phenomenon will not occur with the SSLE algorithms because the related systems of linear
equations always have solutions. Some numerical results are reported.
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1. Introduction

In this paper, we consider the following nonlinear programming problem with inequality
constraints:

min flz)

(IP) s.t. gi(z) <0, j=1,2,--- ,m.
where z = (z1,-++ ,2,)7 € E™, the index set I = {1,2,--- ,m} and f: E" - E and g;: E" —
E (j=1,---,m) are all real-valued functions.

Since the algorithms of Sequential Quadratic Programming (i.e. SQP) generally have good
superlinear convergence properties, they are currently considered to be one of the most effective
approaches for solving nonlinear programming problems with nonlinear constraints, and have
been widely studied by many authors. (See, e.g. [5-8]). However, most of the SQP algorithms
have two serious shortcomings: (1) In order to obtain a search direction, one must solve one
or more quadratic programming subproblems per iteration, general speaking, the computation
amount of this type of algorithms is very large. In addition, it is difficult to use some good
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sparse and symmetric properties in solving quadratic programming subproblems, this may
restrict the application of the SQP type algorithms, especially for large scale problems; (2) The
SQP algorithms require that the related quadratic programming subproblems must be solvable
per iteration, however, it is difficult to be satisfied in general. So it is desirable to design some
algorithms which can avoid these shortcomings for nonlinear optimization problems.

In Ref.[3], E.R. Panier, A,L.Tits and J.N. Herskovits gave a feasible algorithm which is two-
step superlinear convergent. They try to replace quadratic programming problems by systems of
linear equations for overcoming the difficulties encountered in the SQP methods. The algorithm
in Ref.[3] needs to solve two linear systems and a quadratic subproblem at each iteration, and
the initial point of the algorithm must be an interior point. Particularly, in order to obtain the
global convergence, Ref.[3] needs two strong assumptions ( i.e. an interior point is assumed,
and the number of stationary points is finite.). In addition, the algorithm of Ref.[3] can not be
used to deal with problems having equality constraints.

In order to overcome these shortcomings just mentioned for the SQP algorithms for solving
constrained optimization problems, through improving the algorithm in Ref.[3], a new super-
linearly convergent algorithm of sequential systems of linear equations (SSLE) for inequality
constrained optimization problems is proposed in this paper. Comparing with the SQP algo-
rithms recently suggested, the new algorithm has three main advantages: (1) The new algorithm
is completely QP-free, more precisely, the algorithm only needs to solve four systems of lin-
ear equations having a same coefficient matrix per iteration, the computation amount of the
algorithm is much less than that of the existing SQP algorithms per iteration; (2) The iter-
ating points generated by the algorithm are feasible; (3) The rate of convergence is one-step
superlinear under much milder assumptions than that in Ref.[3].

The proposed method is based on the following observation. Let {d}} be a sequence gener-
ated by the following linear system in (d, \):

Hyd} + V f(xx) + YAV, (wx) =0, (1.1)
j=1
Vg () ) + A jgi(xk) =0, (G €T, (1.2)

where Hj, is an estimate of the Hessian of L(z, A) = f(z) + Z;nﬂ Ajgj(x), xp the current
estimate of a solution z*, zj + d} the next estimate, u; the current estimate of the Kuhn-
Tucker multiplier vector associated with z*, and A) the next estimate of this vector. Locally,
the system (1.1)-(1.2) is a higher order perturbation of the following quadratic programming
(SQP):

min %dTde + Vi(xe)'d

st.  gj(z) + Vgj(zr)d <0, j=1,--,m,

according to the theorem 4.6 of Ref.[3], we know that the sequence defined by wj41= x), + dY
have superlinear convergence. Thus, d? is obtained as first direction. However, dj is not entirely
suitable as a search direction. Indeed, although df is a descent direction, it may be zero at
some iterates which are not K-T point of (IP). This effect can be avoided if one substitutes in
each right-hand side of (1.2) a negative number v;, (j € I), but v; must tend to zero faster
than d9 in order for the convergence properties of {;} to be preserved, we let v; be ()\27 j)
or (=X} ;)gj(zi)||dR|]>. Thus, after dj is obtained, a new direction dj would be computed by
solving the linear system

Hydj, + V f(xx) + > M Vgi(ar) =0,
j=1 (1.3)

1k Vg5 (wn)Tdy, + A j95(Tk) = fr 0k 5, (jel,
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Lemma 3.4 below shows that d}, is a strict descent direction of the objective function f(z).
Unfortunately, if any g;(z)) becomes very close to 0, (1.3) forces d}, to tend to a direction tangent
to the feasible set X = {x|g;(x) <0 (j € I)}. Since feasibility of all iterates is required, this
may result in a collapse of the step length, and convergence can not be guaranteed. We thus
propose to use a search direction dj, which is solution of the following linear system:

Hy(dy — di)) + Y _(Akj — M) Vgs(@r) =0,
j=1 (1.4)

pur, iV g (k)" (di — di) + (kg — Ak j)gi(xn) = —plldi ]|, (5 € 1),

where py, is a positive quantity carefully chosen and i > 2. It turns out that, with such a search
direction, the basic convergence properties of the iteration sequence {z} are preserved.

Maratos [4] pointed out that, in the case of the SQP iteration with line search based on the
decrease of an exact penalty function, the unit step may not be accepted close to a solution.
To prevent such occurrence, a new linear system as following has to be solved, its solution dj
can be viewed as a second order correction of dj:

m
Hi(dy —di) + Y Ar;Vgi(er) =0,
]2:: 7 (1.5)

~

Mk, iV G; (xk) (d dlc) + >\k ]g](xk) =~ + ,Ufk,jhk,j: (.7 € I):

where hy ; = gj(xr + di) or hy,; =0, and the positive quantity ¢ is chosen to make a further
"bending” of the search direction dk in order for obtaining the feasibility of x + dk

A careful implementation of the ideas just put forth dose indeed allow achievement of the
properties claimed. The proposed algorithm is stated in section 2. In section 3, the global
convergence is established. The superlinear convergence of the new algorithm is analyzed in
section 4. Implementation issues are discussed in section 5. Some numerical experiments are
reported in section 6.

2. Algorithm A

Throughout this paper, we will use the following notations X = {z|g(z) < 0 (j =

L2, m)}, G = G(z) = diag(g1(z), -, gm(2)), A = A(z) = (Vg (), -+, Vgm()),
=(1,1,---,1)T € E™. The set of active indices at a point z is defined as

I(x) ={jlgj(x) =0,  1<j<m} (2.1)

The Euclidean norm of any vector v will be denoted by ||v||, the corresponding induced
norm of a matrix M by ||M]|, and the cardinality of any finite set I by |I|. A point x € X is
said to be stationary for (IP) if it is feasible and the equalities

Vi(z)+ Alz)A =0
G(m)dlag ()‘17 e 7)‘m) =0
hold for some multiplier vector A = (A1, -+, Ay)%. If, moreover, the multipliers are all non-
negative, the point € X is said to be a Kuhn-Tucker (K-T) point of problem (IP) and the
multiplier vector A is called the Lagrange multiplier vector associated with the K-T point x.
Throughout this paper, the following two assumptions are assumed:

A1l. The set X is not empty.
A2. The functions f and g; (j =1, 2,--- ,m) are all continuously differentiable.
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Now, Algorithm for the solution of (IP) can be stated as follows.

ALGORITHM A.

Parameters. a € (0, 1), 3€(0,1),0 € (0,1),n>2,7€(2,3),7€(0,1),>0.

Data. zy € X, Hy € E"*" is a positive definite matrix; 0 < po; <@ (j =1,2,---,m).
Step 0. Initializatin. Set £ = 0.

Step 1. Computation of a search direction.

(1) Let (d?, AY) be the unique solution of the following system of linear equations in (d, A):

d Vf(z
sy e e () = (V)
H .A . . 0 0
where F(x, H, u) = MAT ) and M = diag(p1, --+ ,pm). if &) = 0 and A} > 0, then
stop.
(2) Let (di, A,) be the unique solution of the following system of linear equations in (d, \):
d\ _ (=Vf(z)
w2y Pt (y) = (00
0. f 0' < 0:
where vy = (Vg1, =+ ,Vkm)? and vg; = A’”O’ ol 1 A’gj <0
—Aij 95 (@e) [ dyll®, if Ag; > 0.

(3) Let (di, Ax) be the unique solution of the following system of linear equations in (d, A):

d—dk 0
LS3 F(xzy, Hy, k>:_ d1’7< >
(LS3) (zk, Hi “’“)<>\—>\k P ldl s

(0 —1) Vi) dy
S ]+ 1
(4) Let (dy, Ar) be the unique solution of the following system of linear equations in (d, A):

(LS4) F(xy, Hy, i) (d _Adk> = <¢ke(iu hk>

where py, =

where hy = (hg1,- 5 hiem)?,

I e A A e A < giler)}
77 o, if j &I,

. FY ~
fﬂ—ﬂwmw}na=¢mwrwm>wmwt

and ¢ = max {||dk||7, mMax jer,
A #0 Ak]

kj

dy = dy.

Step 2. Line Search. Set t, to be the first number ¢ of the sequence {1, 3, 8%,---}
satisfying f(zy + tdi + t2(dp — di,)) < flzk) + atV f(zp)lde, gj(zp + tdy, + t2(d — di,)) <
07 (]:]—7 27 7m)‘

Step 3. Updates. Let Hpy1 be a new positive definite approximation of the Hessian
matrix (see Section 5). Set ppi1,; = min{max (A% ||dk||),ﬁ} (G =1,2,---,m),Tpr1 =

Ty + tpdy, + t,zc(cfk —dg), k:=k+1then return back to Step 1.

3. Global Convergence

In this section, we will first give some lemmas about several matrices related to the common
coefficient matrix F'(zy, Hy, pi) of (LS1) to (LS4), then we will show that Algorithm A is well
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defined, i.e., the line search can be completed successfully. Thirdly, we will give the global
convergence of Algorithm A.

In order to establish the global convergence of Algorithm A, in addition to A1 and A2, we
need the following three assumptions furthermore.

A3. The set X N{xz| f(z) < f(xo)} is compact.

A4. For any « € X, the vectors {Vg;(z)|j € I(z)} are linearly independent.

A5. There exist two positive constants ks > k; > 0 such that s1||yl|?> < yT Hry < ka|yl|?
holds for all k£ and for all y € E™.

From Algorithm A and the assumptions above, we can obtain:

Lemma 3.1. Given any ¢ € X, any non-negative vector p € E™ such that p; > 0 (Vj €
I(z)). If H is positive definite on the subspace {y|yTVg;(x) =0 (Vj € I(z))}, i.e., y Hy >
0 (V nonzero y € {y|yTVg;(x) =0 (Vj € I(z))}) then F(z, H, ) is non-singular.

Lemma 3.2. Let © € X be a feasible point, H be a positive definite matriz.

(i) If u > 0, then M~*D = ATH-YA — MG is positive definite.

(ii) If p > 0, then F(x, H, p)~' = ( P B ) where D = MATH™'A -G, B =

MBT -D-!

H'AD™', P=H'-H 'AMB".

(iii) If p > 0 and satisfies lemma 3.1, then P is positive semi-definite, more precisely
yTPy > ||H'ZPy|?, (vy € E").

From the last three equations we have d} = —P,Vf(zr), A} = —MBL Vf(z), di =
&) + BiMyor, A, = X — D Mywg, di = d — pulldbi"Bun, M = AL+ pilldl "Dy s,
where py is given by (2.4) and n > 2 is a given parameter.

From (LS1) to (LS3) and lemma 3.1 and 3.2, we can get the following conclusions.

Lemma 3.3. If Algorithm A stops at a point xj with dg =0 and )\2 >0, then xy is a K-T
point of (IP), and X} is the Lagrange multiplier vector associated with xy,.

Lemma 3.4. If z, € X and is not a K-T point of (IP), then d}, satisfies

() Vgy(e)Tdb <0 (V] € I(wn);

(i) V(@) d} < - |11, *dp)*

2
= D)= D0 () (—gilm))lIdRl”® < 0; (3.1)
JEI JEI
Agjgo A2j>0

(iii) dt # 0.

Lemma 3.5. If x;, € X and is not a K-T point of (IP), then dy satisfies (1) V f(zx)Tdp <
0. V‘f(l'k)Td,lc < 05 (i) ng(:ck)Tdk <0 (Vg5 € I(xy)); (iii) di, # 0 and pgy1 > 0.

It follows that

Theorem 3.6. Algorithm A is well defined.

Lemma 3.7. (i) The sequences {xy} and {d)} are bounded. (i) If {zx}x — z*, then
{\2} i is bounded.

Lemma 3.8. Let z* be a limit point of the point sequence {zy} generated by Algorithm A
and {zx}k — z*. If {dp}x — 0, then z* is a K-T point of (IP) and {\}}x — \*, where \*
is the unique Lagrange multiplier vector associated with x*. Moreover, if \; < for all j, then
{ritr = A"

Lemma 3.9. Let z* be a limit point of the sequence {1} generated by Algorithm A, and
suppose {xp Yk — x*. If inf{||dr_1]|}x = 0, then z* is a K-T point of (IP).

Lemma 3.10. If {zr}kx = 2%, {px}x — p*, and pj >0 (Vj € I(z¥)), then there exists a
positive constant C > 0 such that for all k € K,

i = Rl < Clloell, N = ARI < Clluell, (3.2)

ldk —dill < ClldRll”, NI\ = Xkl < Clld|”, (3.3)
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Lemma 3.11. Let z* be a limit point of the sequence {1} generated by Algorithm A and
suppose {z}x — x*. If inf{||dr_1|]}x > 0, then (i) {dr}x — 0; (ii) * is o K-T point of
(IP).

Proof. Suppose by contradiction that there exists a subset K' C K such that {||d||}x —
¢ > 0. From the boundness of ||H|| and pg, we can suppose without loss of generality that
{Hy}k — H* and {pr}x — p*. From the definition of pj41 and from the assumption
of d_; in this lemma, we can see that all components of u* are strictly positive.

From (3.2), Lemma 3.7, {||d}]|} k', {||di||} x+ and hence {pj} k' are all bounded. Again, we
can suppose without loss of generality that {pi}x — p*.

Now, we are going to prove that the sequences {V f(z))Td}} k+ and {||d}||} k- are bounded
away from zero. In fact, if{V f(z))Tdk}x — 0 for some subset k' C K', then from (3.1), we

have {||dY||}k+ — 0 and { > jer (/\gj)2 — 0 which implies that {vg } — 0 and {d} },+ —
AQ; <0

KII
0, and hence from Lemma 3.10, we have {di}r+ — 0 which contradicts the hypothesis that

{lldk||}x+ = ¢ > 0. Thus, there exists a positive number & > 0 such that V f(z)Td} < -& <
0, ||di|l > & >0, pr > & >0, hold for all k € K'.
Since (dg, Ar) and (di, AL) are solutions of (LS3) and (LS2) respectively, we have

Afdy = Al d), — MyGr(\, = Ay) = prlldil|"e = o, — My Gidy, — pilldi]| e,
and hence Vg;(zi)Tdy = vg; — /l,;jlgj(xk)Akj — pelldi||", V4 € I. From lemma 3.7 and the

definition of vy, we know {v;}k+ is bounded. Suppose that {vi}k — v*,from the definition
of vg, it follows that v; <0, Vi € I(z*). Thus, from the definition of v, and py, there exists
a positive number & > 0 such that Vf(zg)Td, < —& <0, Vgj(zp)Td, < & <0 (V) €
I(z*)), gj(zr) < =& <0 (Vj & I(z*)) hold for all sufficiently large k € K'.

Now, from the identity f(zy, + tdy + t2(dy — di,)) = f(ax) + fol tV f (g + tEdy + t2€2(dy, —
di)T (dp, + 2tE(dy, — dy,))dE, it follows that, for k € K’ large enough,

Flag + tdy + £ (di — di)) — f(ax) — otV f(zx) T dy
=t {/Ol[vf(fﬂk +tedy + 126 (di — di))” (di, + 2tE(di — di))
— V f(zx) " dild + (1 - a)Vf(a:k)Tdk}
<t{ e, [V (n + tedy + 26 (d, — di)) = V£ ()| - 1de]
+2t sup || Vf(ai + tedy + € — )| - i - dull - (1 - )62 .

0<e<1

Since dj, and (fk —dy, are bounded and f € C, this ensures that there exists t, > 0, independent
of k, such that for ¢ € [0, to], k € K', k large enough,

Flap + tdy + 2 (di — di)) — f () — otV f(zy) " djy <0
Similarly, for k € K', k large enough, ¢t > 0 and j € I(z*), it holds

g (xy, + tdy, + t3(di — di)) — gj (k)
<t{ Oiugl 1V g; (s, + tedy, + 26> (dy, — dy,)) — Vs (x|l - ||dx||
<t<

+ 2t05<1£1 |V g;(ap + t&dy, + 23 (di — di))|| - |ldx — di ] — &2},
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so that there exists t; > 0, independent of k, such that, for ¢ € [0, t;], k € K', k large enough,
gj(zp+tdy, +2 (dy —dy,)) < 0. Also, since g;(z) is continuous, there exists ¢; > 0, independent of
k, such that, for ¢ € [0, ¢;], k € K', k large enough, and j & I(z*) g;(zk + tdy, + 152(dA1c —dg)) <
—&/2 < 0. Thus, if we let ¢t = min(tg, 1, ,tm), then step2 holds for ¢t > gt, k € K' k
large enough. Now, for k € K', k large enough, we have f(zr11) < f(zr) + atp Vf(zp)Tdp <
f(zr) — atés, which contradicts the fact that {f(zx)}k — f(z*) and our lemma is proved.

Now we come to the folowing global convergence theorem

Theorem 3.12. Algorithm A either stops at a K-T point or generates an infinite sequence
whose limit points are all K-T points of (IP).

Proof. Tt is only a combination of Lemmas 3.3, 3.9 and 3.11.

4. Rate of Convergence

Now we turn our attention to the convergence rate of Algorithm A. For this purpose, we
now strengthen the regularity assumptions on the functions involved.

A2'. The functions f,9;(j=1,2,---,m) are twicely continuously differentiable.

AG6. The sequence {z},} generated by Algorithm A possesses a limit point z* (in view of The-
orem 3.12, a K-T point) at which (i) second order sufficient conditions and strict complementary
slackness hold, i.e., the Lagrange multiplier vector \* € E™ satisfies A7 > 0, (Vj € I(z")) and
the Hessian matrix V2, L(z*, \*) of the Lagrange function L(z, \) = f(z) + Z;nzl Ajgj(x) is
positive definite on the subspace {h|h!'Vg;(z*) = 0, (Vj € I(z*))}; and (ii) the multiplier
vector \* satisfies A} <7 (j =1, 2,---,m).

Lemma 4.1. The point * in A6 is an isolated K-T point, i.e., there is a positive constant
€ > 0 such that there aren’t any other K-T points in the ball B(x*,¢) except x* itself.

Then, similar to Ref. [3], we have

Lemma 4.2. If there ezists a subset of indices K such that {xp_1}x — =* and {z}x — =¥,
where ©* is defined as in A6, then {dr}x — 0.

Theorem 4.3. We have (i) {z} — z*, i.e., the whole point sequence {x} converges to
the K-T point x*; (ii) {dr} = 0, {\2} = X\* and {u} — X\*; (iil) Iy = I(z*) for all sufficiently
large k.

Lemma 4.4. We have A}, = X\*, Xy = X%, d) =0, di =0 (k — 00).

Lemma 4.5. We have |d} —d]| = o(d2]),  lde — ]| = o(l[a)])-

Now set R* = (Vg;(z*)|j € I(z*)), Q* =I—-R*(R*"R*)™'R*T, Ry = (Vgj(zs)|j €
I(z*)), Qr=1—-Re(RLRy)™R], pp=d}—Qud},

Lemma 4.6. We have

\0 o\ 1/2
sl =0 | > (#9;’(%))
jel(er) \FMki
Lemma 4.7. We have
i = dill =0 (o { P, max %42 1] il } ) = ol

I(z~) kj

: 0

) = 0 (imax {delP, o ‘ﬂ— ‘ jaul}) = o,

Lemma 4.8. We have ||dj, — d}|| = o(||dx]|) = o([|d2])).

We are now ready to show that the use of correction cik — dj, on the search direction causes
the line search to accept a unit step (¢ = 1) when k is sufficiently large. Thus any Maratos-like
effect will not happen. For this purpose, as Ref.[3], we will make the follwing asssumption.
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A7. The matrices Hy are positive definite and satisfy

po 1Qu(HL = V3, L@, \) )|
s a7

0,

where L(z, A) = f(z) + >°72, Ajg;(2) is the Lagrangian function.

Lemma 4.9. t; =1 for all k large enough.

Proof. Under the state of assumptions, the conlusion can be deduced from Theroem 4.3 and
Lemma 4.4-4.8. The detail of the proof can be founded in Ref.[16].

Theorem 4.10. Under the stated assumptions, the rate of convergence is one-step super-
linear, i.e., the following relation holds

Zrer — 27| _

lim = 0. (4.1)

k—oo ||wp — x*]|

Proof. In view of Lemma 4.9, the line search gives a step t;, = 1 for k large enough. Two

successive iterates are thus related by zp+1 — zr = dj. Obviously, we have from Lemma 4.6
Tp1 — o = dy + o(||d}]]). Let us consider the quadratic programming in d:

1
min  f(xg) + Vf(:ck)Td+ §dTde

st. Vgilep)Td+ gj(zy) <0 j=12--- m.

In Ref.[7], the one step superlinear convergence of sequence defined by zpy1 — zp = df,
where df, solves (4.2) is proved under assumptions wholly similar to those of this theorem. In
Ref.[3], it has been proved that, if zg41 — xr = df + o(||d]|), this result will still hold. Thus,
it is enough to show that df = d + o(||d}]|). But from Theorem 4.6 in Ref.[3], we can easily
know df = dj) + o(||d}]]). Thus, we have (4.1).

(4.2)

5. Implementation Issues

The first issue to be addressed is to select an updating procedure for Hy (in Step 3 of
Algorithm A ). The most widely choice is to use the BFGS updating formula with Powell’s
modification described in Ref.[6] to ensure positive definiteness. But, only two-step superlinear
convergence has been proved for this procedure. An alternative version of the BFGS procedure
which has some advantages over that described in Ref.[6] has been given in Ref.[8]. Here, we give
a version of the BFGS procedure which is similar to that described in Ref.[8]. This procedure
is simipler than that described in Ref.[8] on computation. Our procedure is

Hyopdi Hi | vy

Hyy1 = Hy —

where 0 = Tp+1 — x, and
Uk = VaLl(zhi1, M) = Ve L(r, M) Uk = Uk + anlexdy, + by Ry Ry, 6.
er = min{[|di[|?, €}, €€ (0,1); ar=0,by=0, if 6lyr > exlldkll;
ap =1,b, =0, if 0<05yr < exl|0kl’;
ar=1+1,b,=0, if 0> yr>—lex||0k]|*,(I is a positive constant.)
|10 11* — 05y
exl|0|? + 0F R R 01’

From the procedure described above, we can see that 5,{3,1% > 0 at all iterations, hence
positive definiteness is preserved. Moreover, we have the following important theorem.

ap = br = 1, otherwise.
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Theorem 5.1. Let the previous assumptions (A1-A6) be satisfied and there exists a matriz
H* such that H, — H*, as k — oo. Then the matriz sequence {Hy} generated by the
procedure described above satisfies Assumption A7.

The next question is that how we can efficiently solve (LS1)-(LS4) in Algorithm A. A key
is given by Theorem 5.2 below.

Theorem 5.2. Dy = (MyAFH; 7' Ay — Gy,) is invertible and the solutions of (LS1)-(LS4)
can be expressed as follows.

Ay = =D "My AL H' 7 fae); dyy = —Hi ' (7 f(zk) + ArAp)
AL =X — _1Mkvk; di =d) — H7 " A\ — AY)

e = N + | Lok Dy ey di = di — Hi " A — Ap)

X = D [pre + hy); dy = df) — Hl:lAka

From Theorem 5.2, we know that, for the computation of the search direction dj, and
correction dg, the main task is to compute the matrix D; and its inverse. Since, from the
BFGS update, the Cholesky factor associated with Hy, is known, matrix Dy can be evaluated.
Its inverse is not computed explicitly, or rather, a LU decomposition is performed. Thus, the
total work per iteration ( in addtion to function evaluations ) is essentially that associated with
one Cholesky factorization of size m, the number of constraints. Therfore, the total work per
iteration of our algorithm is much less than that of the algorithm proposed in Ref.[3] which
essentially associated with two Cholesky factorizations of size m.

6. Numerical Experiments

In order to test the given algorithm, an efficient implementation of the algorithm has been
completed. In this implementation, we select « = 0.2, § = 0.5, § = 0.99, n = 2.0001, 7 =
299, v = 09 and Hy = I (an n x n unit matrix). Hy is updated by means of the BFGS
formula with some modifications as described in section 5. The following minor modifications
with respect to the algorithm as described in section 2 were found to be beneficial and were
implemented.

(i) Concerning the line search, similar to Ref.[13], the order in which the functions ( objective
and constraints ) are evaluated will be alternated according to the computation results at the
previous trial step. For ¢ = 1, the constraints are evaluated before the objective and in the
order of their indices, except that all constraints for which the multiplier in (LS;) is nonzero
are evaluated first ( and the tests are terminated as soon as a violation is detected ); For ¢ < 1,
the same rule is used, except that the function whose violation led to test termination at the
previous trial step is evaluated first.

(ii) The stopping criterion in Step 1 (1) is unsuitable for implementation. Instead, execution
is terminated if the norm of dY is less than a constant e > 0 and /\0 >0,75=12,-
Generally, we take € = 1.0D — 8. In addition, if the norm of gradient of the Lagrange functlon
at the current point with the multipliers obtained in solving (LS1) is less than ¢, the execution
is also terminated.

(iii) Since the systems of linear equations (LS1)-(LS4) have the same coefficient matrix
F(z,H,u), only one LU-decomposition is required. In the computation of L matrix and U
matrix, we use the technique of column principal element decomposition. In addition, when we
compute the solutions of the systems of linear equations, some correction steps will be used.
That is, for a system of linear equations, if we denote its first approximation solution by w1,
then we can compute the residual of y; by r1 = b — F(x, H, u)y1, where b is the right side of
the system of linear equations .

Using 71, we compute the solution of the system of linear equations F'(z, H, 1)z = r1. Denote
its solution by 2z, and set y2 = y; +21, then, generally, y, is more accurate than y;. Similarly, we
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can compute the residual of yo by ro = b— F(z, H, u)y2, and compute a more accurate solution
Y3 = Ya + 22, where z» is the solution of the system of linear equations F(z, H, )z = rs.

The above correction step should be performed in at most 5 times, then we can obtain a sat-
isfactory solution. Considering that these linear systems have the same decomposed coefficient
matrix, the total computation amount is not large.

Table 1.

No Code Size |NF|NG|NIT FV EPS vc
12 | VF02AD 2,1 11 | 11 9 | -0.300000000E+402 | 0.10E-05 0.0
A 7 18 7 1 -0.300000000E+02 | 0.10E-05 0.0
FSQP 7 14 7 1 -0.300000000E+02 | 0.10E-05 0.0
SSLE 10 | 12 7 | -0.299976845E+02 | 0.10E-05 0.0

29 | VF02AD 3,1 12 | 12 11 | -0.226274177E+02 | 0.10E-04 | 0.19E-09
A 14 | 24 10 |-0.226274177E+02 | 0.10E-04 0.0
FSQP 11 | 20 10 | -0.226274177E+02 | 0.10E-04 0.0
SSLE 16 | 18 11 | -0.226272698E+02 | 0.10E-06 0.0

30 | VF02AD | 3,1(6) 13 | 13 13 | 0.1000000000E+01 | 0.10E-06 | 0.73E-11
A 14 | 44 13 | 0.1000000000E+01 | 0.10E-06 0.0
FSQP 13 | 25 13 | 0.1000000000E+01 | 0.10E-06 0.0
SSLE 23 | 31 20 | 0.1000000000E+01 | 0.10E-06 0.0
33 | VF02AD | 3,2(4) 5 10 5 | -0.400000000E+01 | 0.10E-07 0.0
A 4 17 4 | -0.400000000E4-01 | 0.10E-07 0.0
FSQP 4 11 4 | -0.400000000E4-01 | 0.10E-07 0.0
SSLE 12 | 23 11 | -0.400000000E+01 | 0.10E-07 0.0

43 | VF02AD 43 13 | 39 9 | -0.440000000E+4-02 | 0.10E-04 | 0.15E-08
A 10 | 67 10 | -0.440000000E+02 | 0.10E-04 0.0
FSQP 11 | 51 9 | -0.440000000E+02 | 0.10E-04 0.0
SSLE 34 | 54 12 | -0.449998623E+02 | 0.10E-05 0.0

100 | VF02AD 7,4 20 | 80 13 | 0.680630057E+03 | 0.10E-03 | 0.58E-10
A 43 (240 | 15 | 0.680630057E+03 | 0.10E-03 0.0
FSQP 23 | 114 | 16 | 0.680630057E+03 | 0.10E-03 0.0
SSLE 58 | 74 16 | 0.680630099E+03 | 0.10E-04 0.0

113 | VF02AD 10,8 15 | 120 | 12 | 0.243065532E+02 | 0.10E-02 | 0.78E-08
A 15 | 324 | 14 | 0.243065532E+02 | 0.10E-02 0.0
FSQP 12 | 108 | 12 | 0.243065532E+02 | 0.10E-02 0.0
SSLE 21 | 105 | 13 | 0.243064487E+02 | 0.10E-06 0.0

117 | VF02AD | 15,5(15) | 16 | 89 16 | 0.323468790E+02 | 0.10E-03 | 0.45E-04
A 28 | 741 | 22 | 0.323468790E+02 | 0.10E-03 0.0
FSQP 20 | 219 | 19 | 0.323468790E+02 | 0.10E-03 0.0
SSLE 71 {179 | 29 | 0.323486790E+02 | 0.10E-05 0.0
278 | NLPQL | 6,6(6) 15 | 90 5 0.745414E+-01 0.10E-06 0.4
SSLE 17 | 40 10 0.784127E+01 0.10E-06 0.0

285 | NLPQL | 15,10 55 | 550 | 20 -0.825200E4+04 | 0.10E-06 | 0.4E-07
SSLE 11 | 277 11 -0.825056E+04 | 0.10E-06 0.0

38| NLPQL | 15,11 75 | 825 | 34 -0.816437E+04 | 0.10E-06 | 0.9E-08
SSLE 39 | 684 | 37 -0.816437E+04 | 0.10E-06 0.0

Experiments were conducted on all test problems from Ref.[11-12], where a feasible initial
point is provided for each problem except Problem 278 and no equality constraints are present.
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We compared five algorithms on those problems, namely: VF02AD of [15], A of [1], FSQP of
[13], NLPQL of [14], and Algorithm A as implemented in SSLE. The results are summarized
in Table 1. In that table, No is the number of the test problem in Ref.[11-12], Size represents
the number of variables and the number of constraints, where number in the bracket is the
number of all upper and lower bounds of the variables, VF' is the number of evaluations of
the objective function, NG the number of evaluations of scalar constraint functions, NIT the
number of iterations, F'V the final value of the objective function, V'C' the final constraint
violation and EPS the stopping criterion threshold. Some datums for Algorithms VF02AD, A
and FSQP are quoted from Ref.[13], and some datums for Algorithm NLPQL are quoted from
Ref.[12].

From the table, we can see that the number of iterations for the algorithms are about the
same except for Problems 30, 33. For most of problems, the number of nonlinear constraint
evaluations in SSLE is a little less, especially for larger size problems, but the number of
objective evaluations in SSLE is a little more than other algorithms.

The computation work per iteration in SSLE is much lower than other algorithms, since
only four systems of linear equations having the same coefficient matrix need to be solved.
We only have to make a LU factorization per iteration. Obviously, for large scale problems,
SSLE algorithm will be one of the best available ”feasible iterate” algorithm. Finally, SSLE is
very stable. It can efficiently solve some ”ill-condition” problems, for example, Problem 278.
The final constraint violation value achieved by VF02AD is larger than 0.4. Such undersirable
phenomena will not occur with SSLE.
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