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Abstract

In this paper, we show the geometry meaning of the maxima of the CDT subproblem’s
dual function. We also studied the continuity of the global solution of the trust region
subproblem. Based on an approximation model, we prove that the global solution of the
CDT subproblem is given with the Hessian of Lagrangian positive semi-definite by some
specially-located dual maxima and by restricting the location region of the multipliers
which corresponding a global solution in other cases.
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1. Introduction
Consider the following the CDT problem P

1

in ®(d) = ~d"Bd + ¢g"d 1.1
nin ®(d) = 5 +g (1.1)

subject to
ldl] < A, (1.2)
|ATd + ]| <€, (1.3)
where g € R", B € R"™" A€ R"™™ ce R™, A >0,& >0, Bisasymmetric matrix not
necessary positive semi-definite, and throughout this paper, the norm ||-|| denotes the Euclidean

norm. For the convenient of our following discussion, let F be the feasible region of the CDT
subproblem,

Fo={d|||ATd +¢|| < &}, (1.4)

and
Fi=A{d ||| <A} (1.5)

Problem (1.1)—(1.3) arises in some trust region algorithms for equality constrained optimiza-
tion aiming to conquer the inconsistency between the trust region and the linearized constraints
of original problem in every iteration. Called the CDT subproblem, it was first proposed by
Celis, Dennis and Tapia (1985), and later it was applied in algorithms for equality constrained
optimization to achieve certain property of global convergence, for example, see Powell and
Yuan (1991).

The CDT subproblem is often required to compute the global solution or to satisfy some
kind of sufficient descent property in some algorithm for the equality constrained optimization,
for instance, see also Powell and Yuan (1991). If B is positive semi-definite, problem (1.1)—(1.3)
is a convex optimization. Several authors studied its properties and then proposed algorithms
to find its global minimizer respectively, for example, see Yuan (1991) and Zhang (1992). If B
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is not positive semi-definite, unlike the following trust region subproblem P; with single ball
constraint which is of form

. _ Ll T
nin ®(d) = 2d Bd+g'd (1.6)

subject to
ldl| < A, (1.7)

the CDT subproblem has still no satisfactory algorithm to find a global solution.
Now we introduce some notations about dual variables and dual function. Using the nota-
tions of Yuan (1991), we define the Hessian of Lagrangian

H(\pu) = B+ X + pAAT, (1.8)

where A > 0, 4 > 0 are the Lagrangian multipliers. If H(A, 1) is nonsingular, we define the
vector

d(\,p) = —H(A, 1) ™" (g + pAc) (1.9)
and the Lagrangian dual function
A . . . .
T = B(d) + S (I =A%) + BT+ ol - ), (1.10)

where d = d(\, ) is given above. Thus, the Lagrangian multipliers are also the dual variables.

It is well known that, without assuming the positive semi-definiteness of B, d(\, u) given
by (1.9) is the global solution of (1.1)—(1.3) if H (A, u) is positive definite at a maxima of the
dual function( for example, see Yuan (1990)). But if the maxima locates on the boundary of
the positive semi-definite region

Qo = {(\, ) € R | H(\, p) is positive semidefinite }, (1.11)

where, Ri = {A > 0, > 0}, what does the dual variables correspond? And what property
does it possess? In this paper, we discuss the geometry meaning of the maxima through the
insight of continuity of the global solution of the single ball constrained subproblem.

Without the assumption of the positive semi-definiteness of B, we will give the more detailed
properties of single-ball-constrained trust region subproblem and show the geometry meaning
of the dual maxima of the CDT problem on the region 2. And we extend the result of location
of multipliers which corresponding the global solution.

The paper is organized as follows: in section 2, we present some properties of trust region
subproblem (1.6)—(1.7). In section 3 and section 4, we construct an approximation of the feasible
region of the CDT problem, which forms a new trust region subproblem with a parameter w, and
then we discuss the relations between the CDT problem and the new trust region subproblem.
In section 5, we illustrate the geometry meaning of a certain parameter of the new trust region
subproblem, which we call it a jump. We also strengthen the result in Chen and Yuan (1998)
by further studying the dual maxima of the CDT problem in last section.

2. Properties of Trust Region Subproblem

In this section, we study the global solution of the trust region subproblem, which has the
form of (1.6)—(1.7) where B is a symmetric matrix. We first introduce a theorem which char-
acterizes the global solution of problem (1.6)—(1.7) which is given independently by Gay (1981)
and Sorensen (1982), see also Moré and Sorensen(1983).

Theorem 2.1. A feasible point d* € R"™ is the global solution to problem (1.6)—(1.7), if
and only if there exists a A\* > 0 such that

(B+A'Dd" =—g (2.1)
and
(|| = A) =0, (2.2)

where B + X*I is positive semidefinite.
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We now study the so-called hard case of problem Py, i.e., there is no A > 0 such that B + Al

is positive definite and
I(B+A)"hg| = A, (2.3)

for more details of known results, see Moré and Sorensen(1983). In the hard case, to find a
global minimizer of problem Pj is equivalent to find a unit vector z € N'(B—p;I) and determine
a scalar 7 such that

(B=pI)(p+72) = —y, (2.4)
and
lp+ 72| = A, (2.5)
where p solves
(B—pil)p=—g. (2.6)

Here, p; < 0 is the smallest eigenvalue of B and N (B) denotes the null space of B.

In the following, we denote dim/(-) the dimension of a space. Suppose that there isno A > 0
such that (2.3) holds with B + AI positive definite, i.e., the hard case holds, we can divide it
into following cases :

e case 1). if [[(B — p1I)tg|| = A, then the global solution is p = —(B — p;I)*g, the least
square solution of equation (2.6). Here B* means the Moore-Penrose general inverse of
B. So, in fact, we need not solve the equations (2.4)—(2.5), where 7 = 0. In further
studies, we will see that this is different to the other hard case.

e case 2). if dim(N(B — p1I)) = 1, then for a given vector z € N(B — piI), ||z]] = 1,
the equation (2.5) of 7 will have two solutions. The the global solutions are of form
—(B-p)tg+rz.

e case 3). if dim(N (B — p1I)) > 2, the global solutions have the form —(B — p1I)Tg + 72
with z € N(B—p1I) and ||z]| = 1. Since z € N(B—p1I) and —(B—p1I)T g € R(B—p11),
all the global solutions share the same value of 7. Here, R(-) denotes the range space of
a matrix. The set of global solutions actually is a lower dimensional sphere in R"™.

Since the global solution of problem P, is a single point when the corresponding Hessian is
positive definite or ||(B — p1I)"g|| = A in the so-called hard case, the set of global solutions is
a disconnected set when the second case holds. Hence we have

Theorem 2.2. The set of global solutions of problem Py is disconnect if and only if
i) there is no X > 0 with B + M positive definite such that (2.8) holds, and

I(B = pi)¥g] < A;
ii) p1 is the single-tuple eigenvalue of B.

In the following, we discuss the continuity of the global solution of problem P;. First, we
define the distance of a point x and a set S. Define that

dist(xz,S) = HelfS dist(x,y), (2.7)
y

where dist(x,y) = || — y||- We have the fact that the set of global solutions of problem P,
continuously depends on B and g, which can be stated as the following theorem.

Theorem 2.3. Suppose that S is the set of global solutions of problem Py, S is the set of
global solutions of following perturbed problem

min {&(d) | d € 71}, (2.8)
where ®(d) = 2d"Bd + §7d. Then, Ve >0, 36 > 0, such that for all B € R™"™ and § € R",

YT 2
if maz(||B — Bl|,[|g — gll) <9, we have
dist(d,S) < e, (2.9)

foralld € S.
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Proof. Let v* be the global optimal value of problem P;, d* is a global minimizer, hence
®(d*) = v*. From the continuity of problem P;, S is a closed set, and so is S. Then, for n > 0
sufficiently small,

Sy ={d [ ®(d) <v" +n, [|d|| <A} (2.10)
is an open neighborhood of S (set the feasible region of problem P; as the whole space). It is
easy to see that d* € S,,. Moreover, Ve > 0, 3 > 0, such that

dist(d,S) < e, Vd € S,,. (2.11)
Otherwise, we have, 3¢ > 0, V7 > 0, there exists a d,, € S, such that dist(d,, S) > . Because S
and S, are bounded closed sets, let n — 0 and dy be a cluster point of {d,}, then dist(dy,S) > 0

and ®(dy) = v*, this contradicts to the definition of S. There exists a § > 0, § < g(AQ +2A)7t
such that, if maxz(||B — B||,||§ — gl|) < J, then for all d € Fy,

b(d) - (@) =|d"(B-B)d+(G-9)Td
< 15A% 4+ 5A (2.12)
<7
=3
For all d € 1 \ S, since ®(d) > v* +1,
. 2
B(d) > v* +1— g ="+ 3 (2.13)

implied by (2.12). Denote o* the global optimal value of problem (2.8), for the same reason,
we have R

7 < B(d) < ®(d") + g = v+ g (2.14)
Then, SN (F,\ S,) = 0 implied by (2.13) and (2.14). Thus the optimal point of (2.8) d € S,,,
and dist(d,S) <e.

3. An Approximation of the CDT Feasible Region

In this section, we construct a kind of approximation of feasible region F of problem P;.
There are some other approaches to construct an approximation of the region F, for more de-
tail, see El-Alem and Tapia (1995) and Fu, Luo and Ye (1996). We now investigate the global
solution of the “scaled” problem P, which has the following form:

: _ 1o T
Jmin ®(d) = 2d Bd+g'd (3.1)
subject to
w(ld]* = A%) + (1 —w)([|[A"d + c||* - €%) <0, (3.2)

where, w € [0,1]. The feasible region of problem P, is Fo,F1 when w = 0,1 respectively. It is
also easy to show that for any w € [0, 1], F,,, the feasible region of P, includes F, the feasible
region of the CDT subproblem, and is included in F; U Fo, i.e.,

FNFo=FCFy, CFHFUF. (3.3)
Direct calculations show that problem (3.1)-(3.2) is equivalent to problem
. _ Ll T
nin ®(d) = 2d Bd+g°d (3.4)
subject to R }
I1DTd+¢| <€, (3.5)
where,

B = (wl + (1 - w)AAT),
¢=(1-w)D'Ac, (3.6)
£= e+ wA? — (1 -w)(& - o).

=
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For w € [0, 1], denote S(w) the set of global solutions of the scaled problem P,, with parameter
w, where S(0) may be an empty set. If AA” is nonsingular, or if w € (0,1], D is positive
definite and the problem P, is equivalent to the transformed problem

1 e ~ .
min —d'Bd + §¥d (3.7)
deR™
subject to 3
ld]l <1, (3.8)
where ~ . ~ . ~
B=&D'BD 1 and §g=¢D '(9g—BD to). (3.9)

Given a feasible point or a solution d of problem (3.7)—(3.8), the corresponding feasible point
or solution of problem (3.4)—(3.5) is

d=D"T(&d - ¢). (3.10)
Since (3.10) is a one-to-one continuous mapping d — d defined on the bounded closed set
{||d|| < 1}, the following lemma follows from Theorem 2.3:

Lemma 3.1. Let S(w) be the set of global solutions of Py, for all € > 0, there exists a
0 > 0, such that
dist(S(wy), S(w)) < &, (3.11)

for any wy,wy € (0,1], |wy — ws| < 4.

From the above analysis, if AAT is nonsingular, the interval (0, 1] can be extended to [0, 1].
But if AA” is singular, Py can not be transformed to problem of form (3.7)—(3.8), moreover,
it may even have no global solution, i.e., its global optimal objective value can be —oo. On
the other hand, for any fixed small w > 0, problem P, has a finite optimal objective value.
However, under this circumstance, we prove a property of problem P, i.e.,

min{®(d) | d € Fo}, (3.12)
which, roughly speaking, is weaker than the result of lemma 3.1.

Lemma 3.2. If S(0) N F; = 0, then for all w > 0 sufficiently small, S(w) N F; = 0.

Proof. S(0) N Fy = 0 means that for all global optimal solution d§ of problem Py, d & F;.
We prove the result by contradiction. Suppose the opposite case holds, then there exists a
sequence w — 0+, such that S(w) N F; # (0, which means there exists d,, € F; is a global
solution of problem P, i.e., d,, € S(w).

Let dy be a cluster point of {d,}, then dy € F;. Without loss of generality, we assume that
dy, — dp. Since d,, is a feasible point for problem P,, thus (3.2) holds. Let w — 0+, recalling
that d,, — do, {dw} is bounded, we have that

|ATdy + c|* < €2 (3.13)
Hence dy € Fp.

Since for all global solution dj of Fy, d§ € F1, and dy € F1,

O(d) < D(dp). (3.14)
However, in the neighborhood of df, for each w > 0 sufficiently small, there exists a point
dy € Fy, and di, — di. Now, dy,, dy, € Fy, with dy, € S(w) being global minimizer of problem
Py,

B(dy) > B(dy), (3.15)

taking w — 0+, we deduce an inequality (3.14) with an opposite inequality sign.

4. Relations Between the CDT Problem and P,

This section we show the relations between the CDT problem and problem P,. Recalling
that we divide into three cases for trust region subproblem, one may think problem P, will in
hard case 2) of the three cases if the CDT problem has no global solution with the Hessian of
Lagrangian positive semi-definite. We state the result as theorem 4.1.
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Theorem 4.1. If for any w € [0, 1], no global solution of problem P, is feasible to the CDT
problem, there ezxists a w € (0,1) such that the global solutions of problem P, is in the case 2)
of hard case.

Note that the result means the global solution set of problem P, includes two points, fur-
thermore, each of these two points is feasible to either one of Fy, F1 respectively.

Proof. If, for any w € [0,1] there exists no global solution of P, feasible to the CDT
problem, B can not be positive semi-definite. It is also easy to see that,

SO)NFr =0 and S(1)NFo =0, (4.1)
otherwise we obtain the global solution dy € S(0) (or di € S(1)) which is feasible to the CDT
problem and hence it is the desired global solution of the CDT subproblem with the Hessian of
Lagrangian positive semi-definite(another multiplier is 0).

Since for all d; € S(1), ||ATd; + ¢|| > &, there exists a w, 0 < w < 1 with 1 — w sufficiently
small, such that for all dg; € S(w), we also have ||ATdg + c|| > &, hence ||dg|| < A. We also
have, for all dy € S(0), ||do]| > A.

We claim the following result:

Sw)n{d|||d|| = A} =0, Vw € (0,w). (4.2)
If (4.2) is not true, then there exists w € (0,w) and d,, € S(w) such that ||dy|| = A, which
implies d,, € F. Thus d,, is also a global minimizer of the original CDT problem, and the
corresponding Hessian of Lagrangian H(\,pu) = B + 7*(wl + (1 — w)AAT) is positive semi-
definite, which contradicts our assumptions.

From Lemma 3.1, (4.2) and the facts that

|| > A, Vde S(w), (4.3)

Ild|| < A, Vde S(0), (4.4)
there is at least one @ € (0,@) such that there exist dy,d; € S(w) satisfying

ldull > A, [l <A. (4.5)

(4.5), (4.2) and Theorem 2.2 imply that the global solutions of problem Py is in the case 2) of
the hard case.

This lemma does not exclude the following circumstance: there exists w € (0,1) such that
case 2) of hard case holds and for all d € S(w), ||d|| < A or ||d|| > A.

Visually say, d,, € S(w) C F1 UFp is a “curve” when w variants form 0 to 1 continuously,
if there is a d,, € F, then we get the global solution of the CDT problem. Since dy € Fo \ Fi,
dy € F1\ Fo, and for all w € (0,1), dyy € F1 U Fp, there will be a “jump” form Fy \ F1 to
F1 \ Fo, if there is no global solution of the CDT problem with the Hessian of Lagrangian
positive semi-definite. This is what theorem 4.1 illustrates.

Corollary 4.1. If there is no global solution of the CDT problem with the Hessian of
Lagrangian positive semi-definite, then there exists at most one w € (0,1) such that case 2) of
hard case holds for problem P, and dyi,d> € S(w) satisfying (4.5).

Proof. By contradiction. Suppose that there exist wy,w2 € (0,1), w; < ws such that
S(wy) = {p1,p=2}, S(wa) = {ps,pa} satisfying the following equation:

willpsI? = A7) + (1 wi) (| A"p; + elf? ~ €) =0, (16)

where j € {1,2} ifi=1,j € {3,4}if i =2, and
Il < &, [ATp; +cll > € i =24, (4.7)
Ipill > A, [ATpi+cll <€ i=1,3. (4.8)

Since that
0 = wallpsll* = A%) + (1 — wa) (|| ATps + ¢l]* — €7)
— w; . . .

= T (wallpall — A7) + (L= w) (AT + el — €)) 49)

wz —w 2 2
- —A
U 2 — ),
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it follows from 0 < w; < ws < 1 and ||p3]| > A that
wi ([[ps]” = A%) + (1 = wi) (|| Aps + ¢l = €%) <0, (4.10)

which shows p; € F,,,. Remember that p, € S(w1) C Fy,, thus ®(p2) < ®(ps). Similarly, we
can prove that ps € Fy, and ®(p3) < ®(p2). Then ®(p3) = ®(p2), p3 is a global minimizer of
problem P, , which contradicts to S(w;y) = {p1,p2}. The contradiction completes our proof.

Since the “jump” is unique, we would ask what kind of properties the jump has. In the
following two sections, we give the geometry meaning of the jump, and study the maxima of
dual function of the CDT problem by the jump. However, if let d,ppro be a feasible point to the
CDT problem which lies on the line d = d; + t(d2 — dy), where dy, d» are defined in (4.5), one
natural question is whether dyppro is @ good approximation to the global solution of original
the CDT problem? Unfortunately we are not able to answer this question yet.

Theorem 4.2. If there exists a global solution d* of the CDT problem with the corresponding
Hessian of Lagrangian positive semi-definite, then there exists a w € [0,1] such that d* is also
a global solution of problem P, .

To prove this theorem, first we introduce optimality conditions for problem (3.12).

Theorem 4.3. Assume that problem (3.12) has finite global optimal value. A feasible point
d* is a global solution of problem (3.12) if and only if there exists u* > 0 such that

(B + p*AAT)d* = —(g + p* Ac), (4.11)
and .
(IATd 4+l - €) = 0 (4.12)
with the Hessian of Lagrangian B + p*AAT positive semidefinite.

Proof. If there exists u* such that (4.11) and (4.12) hold with B + u* AAT positive semidef-
inite, then d* is a global minimizer of

d(d) = %dT(B + p*AATYd + (9 + p* Ac). (4.13)
Hence . .
d(d*) < d(d), (4.14)
holds for all d € R™ and ~
O(d) = (d*) — 4 (|ATd" +c])* — [|cl?)
< ®(d) - L (| ATd + c|]® = ||l (4.15)
= ®(d)

holds for all d satisfying ||ATd + ¢|| < €. Therefore, d* is a global solution of problem (3.12).
On the other hand, if d* is a global minimizer of problem (3.12), by K-T theory, (4.11) and
(4.12) hold. If [|[ATd* + ¢|| < & pu* = 0 and Bd* = —g, hence B is positive semidefinite. If
|ATd* +¢|| = &, the second order necessary condition implies that for all v satisfying vTy* = 0,
we have,
v (B4 uAA v >0, (4.16)

where y* = A(ATd* +¢). If vTy* = vTA(ATd* + ¢) # 0, it is easy to see that ATv # 0. Since
for all d satisfying ||ATd + ¢|| = £, (4.15) holds, substitute g + p* Ac by (4.11), we have

%(d* _ AT (B + prAATY(d — d) > 0 (4.17)
holds for all d satisfying ||ATd + ¢|| = €. Let d = d* — 2tv, where
=T (118)
| Avf]> '
which implies that [|ATd + ¢|| = ¢ and (4.17) means by simple calculations that
v (B +p*AAT)y > 0. (4.19)

(4.16) and (4.19) complete our proof.
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Now, we are ready to prove theorem 4.2.

Proof of theorem 4.2. Suppose the corresponding multiplier of d* is (A*, u*). By the as-
sumption, H(\*, u*) is positive semi-definite.

If \* =0 and p* > 0, then (4.11) and (4.12) hold with B + u*AAT positive semidefinite,
then d* is a global solution to both the CDT problem and problem Py by theorem 4.4. If \* > 0
and p* = 0, Analogous considerations on (2.1)—(2.2) and theorem 2.1, we have the same result.

If A* > 0 and p* > 0, then both constraints of the CDT problem are active at d*, then
the constraints of problem P, is active at d* for all w € [0,1]. Consider problem PA*A* _, the

point d* and the Lagrangian multiplier 7 = A* + p*. It can be seen that d* is a global solution
of problem P_,+ with Lagrangian multiplier 7* = A* + p* and the Hessian of Lagrangian
XFfp*

B + X1 + p* AAT positive semidefinite by the equivalent transformed problem (3.4)(3.5).

5. Geometry Meaning of Jump

If there exists a global solution of the CDT problem with the Hessian of Lagrangian positive
semi-definite, a global minimizer can be found by the following two approaches:

1) to search the global solution of the CDT problem in the region Q¢ by the dual algorithm,
for example, see Yuan (1991);

2) to find a global solution of the scaled problem P, such that the solution is feasible to the
CDT problem.
However, if the above assumption fails, process 1) terminates at the maxima of dual function
U\, p), while process 2) will find a “jump”, i.e., case 2) of hard case of scaled problem occurs
with two solutions satisfying (4.5) respectively. In this section we consider the relation between
them.

First, we discuss the relations between the multiplier of problem P, and the multipliers of
the CDT problem. It can be shown that if there exists (7., d,,) satisfying

(B + 7 (wl + (1 — w)AAT)) dy = —(9 + 10(1 —w)Ac) (5.1)

with dy, € S(w), i.e., the solution of problem P,, then the triple (X, u, d(\, p)) = (T w, T (1 —
w),d,,) satisfies the first equation of KKT system of the CDT problem with the Hessian of

Lagrangian positive semi-definite. On the other hand, if there exists (A, u, d) # 0 satisfying
(B + M + pAATYd = — (g + pAc) (5.2)
with H (A, u) positive semi-definite and defect 1, then (A + u,d) satisfies the first equation of
KKT system of problem P,, with w = ﬁ
In the following, we consider the multipliers which are the maxima of the dual function
(1.10) on the region Q. First we give a definition as follow.

Definition 5.1. We call that the nonzero multipliers (A, ) have property J of problem
(1.1)~(1.3) if
i) H(A, 1) is positive semidefinite with defect 1;
ii) the scaled problem prr_” is in hard case 2) and its global solutions satisfy inequalities (4.5).

Thus by definition 5.1, multipliers (A, u) having property J iff the scaled problem Pﬁ of
u

problem P is in the case 2 of hard case. Thus, for all (), 1) satisfies property J, w = +2— has

peam
the same value.
We give the main result of this section as follow:

Theorem 5.1. If there is no global solution of the CDT problem with the Hessian of La-
grangian positive semi-definite, the multipliers (A, u) satisfying property J is identical to the
multipliers being a maxima of dual function in region Q.

Before we prove Theorem 5.2, we give some lemmas. Lemma 5.3 is about the invariant of
property J.
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Lemma 5.1. The multipliers (\, u) satisfies property J of problem (1.1)-(1.3) if and only
if, for all (60X, dp) € [0, ) X [0, i), the multipliers (\—0\, p—du) satisfies property J of problem
P

~ A 1 ~ A ~
min ®(d) = =d"Bd + j3"d (5.3)
dern 2

subject to (1.2)—(1.3) for d, where B =B+ 6\ + 6puAAT and § = g + SpAc.

Proof. Except for a constant, the objective function <i>(d) is the sum of the original objective
function ®(d) and a penalty term 1(SA||d||*> + &u||A%d + c||?). Moreover, there exists certain

relations between counterparts of both two problems, P and ﬁ, for example, the Hessian of
Lagrangian, the regions where the Hessian of Lagrangian has one negative eigenvalue, etc, for
more detail, see Chen and Yuan (1998).

The Hessian H (A, p) retains part i) of property J since
H(X + 0\, p+ 6p) = H(\, ), (5.4)
where H is the Hessian of Lagrangian of problem P. It means they possess the same null space.

Since we also have
g+ (u+dp)Ac = §+ pAc, (5.5)

and inequalities (4.5) are only related to original problem, except for the null space step which

is invariant by (5.4), part ii) of property J is satisfied for both problem P and P due to the
fact that

A+ 6X, p + 6p) = d(\, ), (5.6)
where d(A, 1) is given by
undefined, if (5.2) is inconsistent,
d(A, p) = . (5.7)
—H(A\ )t (g + pAc), otherwise

~

and d(\, p) is defined similarly. Hence (A, ) satisfies property J of P iff it satisfies property

A~

J of P.
We restate the definition of singular line on the dual plane Rﬁ_, also see Chen and Yuan
(1998). The line A = A; > 0 is called the singular line if

det(H(As,p)) =0, for all u > ps, (5.8)
with H (\s, 1) positive semidefinite, where p, is a scale. And we also define p,. as
e = arg min{y > 0| H(A,, p) is positive semidefinite}. (5.9)
We prove Theorem 5.2 by considering three cases:

e case 1: the multipliers (Ayuau, fhmaz) being a maxima of dual function is not on the singular
line, i.e., A # Ag;

e case 2: A\par = As and fmer > fie;
o case 3: Apar = As and fer = fe-

The following lemma deals with case 1.

Lemma 5.2. If there is no global solutions of problem (1.1)-(1.8) with the Hessian of
Lagrangian positive semi-definite, then the multipliers (X, u) not in the singular line satisfies
property J if and only if

A p)=arg max U\ u). 5.10
(A, 1) g max (A, ) (5.10)
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Proof. Suppose that (A1, 1) satisfying property J is not in the singular line. Let
(A1, 1) # (A2, p2) = arg o (A, p). (5.11)
K 0

It is easy to see that (A1, p1), (A2, u2) € 09 because there is no global solutions of problem
(1.1)—(1.3) with the Hessian positive semi-definite. By the structure of dual plane, please see
Chen and Yuan (1998) for more detail, for any two points (\;, ;) € 9,7 = 1,2, we have

(A = A2) (1 — p2) <0. (5.12)
If Ay = \a, our assumptions imply that det(H (A, 1)) = 0 for all u between p; and p2. Hence,
A1 = Ay is in the singular line, which is a contradiction. If p; = pe, then either Ay > Ay or
A2 > M. If Ay > Ao, one can see that H(\y, 1) is positive definite, which contradicts the fact
that (A1, p1) has property J. On the other hand, if Ao > Ay, H(A2, u2) is positive definite,
which contradicts the fact that there is no global solutions of problem (1.1)—(1.3) with a positive
semidefinite Hessian of Lagrangian. Thus we have proved that

(A1 = A2) (1 — p2) # 0, (5.13)
which, because of (5.12), implies that
AL < Ae or 1 < po. (514)

Without loss of generality, we suppose A1 < As. Consider the problem P with 6\ =
%(Al + A2) and 6 = 0. Then problem P has no point (Aj, ;) having property J, other-
wise, problem P has two points, (A1, 1) and (A; + 6, u; + dp) due to lemma 5.3, having

property J which contradicts Corollary 4.2. By Theorem 4.1, problem P has a global solution
with the Hessian of Lagrangian positive semi-definite, which shows its corresponding multiplier
is (A2 — 0\, pu2) implied by the assumption (5.11). Then, problem P also has a global solution
with corresponding multipliers (A2, u2) implied by the theorem 4.4 in Chen and Yuan (1998),
since 0 = 0 and Ay — 0A # 0. This contradicts to the assumption of this lemma.

Now we consider case 2.

Lemma 5.3. Let (s, hmaz) 8 a mazima of the dual function on Qo. If pmee > pe, then
there is a global solution of the CDT subproblem with the Hessian positive semidefinite, and
(As, timaz) ts the corresponding multipliers.

Proof. Since (As, maz) 1S @ maxima of the dual function onQy with gz > fie,
ldmael| <A and  ||ATdpae + || = €, (5.15)
Where; Amaz = d()‘sa ,umaaz)-
Due to (5.8), there exists a vector d € R" such that

ATd=0 (5.16)
and
(B + XoI + prnac AATYd = 0. (5.17)
Because (5.15) and (5.16), there exists a t € R such that
dmaz +td]| = A and  ||AT (dinas +td) + || = & (5.18)

Now it is easy to see that d;, 4, +1d is a global solution of the CDT subproblem with the Hessian
of Lagrangian H (A, tma.) positive semidefinite.

Lemma 5.5 shows that if the maxima of the dual function on €y locates on the singular line
with the Hessian defect 1 and e > e, there exists a global solution of the CDT problem
with a positive semidefinite Hessian. The following result shows that any point on the singular
line does not satisfy property .

Lemma 5.4. The multipliers (A, 1) € 0Qo does not satisfy property J for any u > p..

Proof. If (Ag, ) on the singular line satisfies property J, the Hessian of Lagrangian with
multipliers on singular line must have one multiple zero eigenvalue.
If (A, ) satisfies property J, H(As,p) has one multiple zero eigenvalue. For any v €
N(H (s, 1)), we have ATy = 0. Hence, for any fixed A = X, t > pc, for all d satisfying (5.2),
|AYd + ¢|| — & = const, (5.19)
thus (4.5) can not be satisfied at the same time.
Finally we study the case 3 when A4z = As and fyae = pe-
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Lemma 5.5. If Aoz = As and fimaz = fe, (Amaz, maz) 5 multipliers of a global solution
of the CDT problem.

Proof. If u. > 0, H(\s, pe) has at least two multiples of zero eigenvalue and (As, ) does
not satisfies property J. Hence it follows by Lemma 5.6 there is no multipliers on the singular
line satisfying property J. By lemma 5.4, if the assumption of Theorem 5.2 holds, it is also
impossible for any multipliers not on the singular line to satisfy property . Then there is no
multipliers on the dual plane satisfying property 7, and thus the CDT problem has a global
solution with the Hessian of Lagrangian positive semi-definite.

If . =0, for any (A, u) with A > A\ and p > 0, H(\, p) is positive definite. Hence property
J can only be satisfied in (A, u) = (As,0). In this case, problem P, is actually P; with the
global solutions satisfying (4.5). Let
6 can be chosen such that ||d(f)|| = A. Since ||[ATd; +¢|| < & i = 1,2, ||ATd(8) + ¢|| < €.
Therefore, d(#) is a global solution of the CDT problem with the Hessian of Lagrangian positive
semi-definite.

From Lemmas 5.4, 5.5, 5.6 and 5.7, we see that Theorem 5.2 is true. We present a new
proof of Theorem 4.1 in Chen and Yuan (1998).

Corollary 5.1. If the right hand side of (5.11) is a segment, then there exists a global
solution of the CDT subproblem with the Hessian positive semi-definite.

Proof. Suppose that the CDT subproblem has no global solution with the Hessian positive
semi-definite. It follows from Theorem 5.2 that each (A, u) € T satisfies property J, where T
is defined by

(AMp)eT=arg max T(A\ p). (5.21)
(A1) EQo
If T is a segment, then w = ﬁ, ((\, ) € T) is also a segment, which contradicts Corollary
4.2.

6. Further Study of Dual Maxima

We will extend the result about the location of global solutions of the CDT subproblem by
the existence and uniqueness of multipliers satisfying property J. For more detail about the
location of global solutions, please see Chen and Yuan (1998).

Theorem 6.1. If (\, p) € 0Q satisfies (5.21), and if either one of (a) - =0, and (b)
H(\ 1) has at least two multipliers of zero eigenvalue holds, then (X, u) corresponds a global
solution of the CDT subproblem with the Hessian H (X, u) positive semidefinite.

Proof. We need to prove that there exists no multipliers satisfying property [J, which
implies, by theorem 4.1, there exists a global solution with the Hessian positive semidefinite
and its corresponding multipliers must be (A, u).

Part (a) can be shown similarly as Lemma 5.7.

Suppose that (b) holds. Assume that there is no global solution with the Hessian positive
semidefinite, (A, u) satisfies property J since (A, u) is not on singular line. However, the first
condition of property J fails for (A, 1), which is a contradiction.

Now, we can conclude the result on the location of global solutions as following;:

Theorem 6.2. If for any (\,pn) € T = {(\,p)} satisfies (5.21) and either one of the
following conditions:
(a) there exists (A, pu) € T NintQy;
(b) T = {(A, )} is not a singleton;
(c) there exists (A, n) € T such that - p =0;
(d) there exists (A, u) € T such that the Hessian H (X, 1) has two multipliers zero eigenvalue;
(e) there exists (A, n) € T on the singular line,
then there is a global solution of the CDT subproblem with the Hessian H (X, u) positive semi-
definite.
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Recall the definitions of €y, Qi, Ixx and etc, on dual plane, please see Chen and Yuan
(1998), from Theorem 6.2, we can get the following result.

Corollary 6.1. For (A, p) € T = {(A\, )} satisfies (5.21), (A, ) does not correspond a
global solution only if
(a) T is a singleton and (\, p) is not on the singular line;
(b) there exists a certain connected branch Qi, such that

v < A<uxe and l“k < p < Upg- (6.1)
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