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Abstract

The Ritz vectors obtained by Arnoldi’s method may not be good approxima-
tions and even may not converge even if the corresponding Ritz values do. In
order to improve the quality of Ritz vectors and enhance the efficiency of Arnoldi
type algorithms, we propose a strategy that uses Ritz values obtained from an
m-dimensional Krylov subspace but chooses modified approximate eigenvectors in
an (m + 1)-dimensional Krylov subspace. Residual norm of each new approximate
eigenpair is minimal over the span of the Ritz vector and the (m +1)th basis vector,
which is awvailable when the m-step Arnoldi process is run. The resulting modi-
fied m-step Arnoldi method is better than the standard m-step one in theory and
cheaper than the standard (m + 1)-step one. Based on this strategy, we present a
modified m-step restarted Arnoldi algorithm. Numerical examples show that the
modified m-step restarted algorithm and its version with Chebyshev acceleration
are often considerably more efficient than the standard (m + 1)-step restarted ones.

Key words: Large unsymmetric, The m-step Arnoldi process, The m-step Arnoldi
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1. Introduction

Arnoldi’s method [1, 12] is used for computing a few selected eigenpairs of large
unsymmetric matrices. It has been investigated since the 1980s; see, e.g., [3—15].

It is well known that the m-step Arnoldi process, as described in detail in Section 2,
generates an orthonormal basis {v;}", of the Krylov subspace Ky, (v1, A) spanned by
vi, Avy, ..., A™ 1y, Here vy is an initial unit norm vector. The projected matrix of
A onto Iy, (v1, A) is represented by an m x m upper Hessenberg matrix H,,. Then the
m-step Arnoldi method uses the Ritz pairs A(™), (™) of A in K,, (v, A) to approximate
some eigenpairs A, ¢ of A.

The convergence analysis in [4,5,13] gives a necessary condition for the convergence
of Arnoldi’s method. It states that the distance between the wanted ¢ and IC,(v1, A)

must approach zero as m increases. However, it is not sufficient, since it is proved in
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[4,5] that Ritz vectors ©(™) may not be good approximations in theory for a general un-
symmetric matrix A even though these distances approach zero and the corresponding
A™) converge. For more details and numerical experiments we refer to [7].

This suggests that we seek new strategies to improve the quality of ¢ and to
enhance the efficiency of Arnoldi type algorithms. The first approach is to keep A(m)
but completely discard <p(m). Instead, the refined approximate eigenvector is chosen
in C;, (v1, A), such that it minimizes the norm of the residual formed with the Ritz
value. It can be computed relatively cheaply by solving an (m + 1) x m singular
value decomposition problem. It is shown in [4, 7] that the refined vectors converge if
the corresponding Ritz values A(™) do, so the possible non-convergence of eigenvectors
is ruled out in theory. Numerical experiments have demonstrated that the resulting
refined algorithms are much more efficient than the standard counterparts.

In this note, we follow a different approach. We observe that the m-step Arnoldi
process generates an orthonormal basis of ;11 (v1, A) rather than of K,,(v1, A), that
is, the (m 4+ 1)th basis vector vy,,11 of K,11(v1, A) is already available when the m-
step Arnoldi process is performed. However, although the basis vectors {vj}?ljll of
Km+1(vi, A) are available in this case, we have only obtained the m x m projected
matrix H,, of A onto Cp,(v1, A). Therefore, v,,11 contributes nothing to the wanted
eigenvectors and is wasted. It only indicates that residuals of A(™ (™) are in its
direction.

We want to exploit the available v,,;1 and propose a new strategy that uses the Ritz
values A(™) obtained from K,,(v1, A) but computes modified approximate eigenvectors
(™) in K,,41(v1, A). These new vectors are linear combinations of (™) and vy, 1, such

™) is minimal over the span of (™ and vy, 1.

that residual norm of each pair A(m),¢(
They can be calculated by solving a two-dimensional minimization problem for each
eigenvector. As a result, residual norms of the new approximate eigenpairs )\(m),@/}(m)
are at least as small as those of (™) go(m) and often dramatically smaller. The total
extra cost of this strategy is one matrix-vector multiplication plus only 27 inner prod-
ucts, where r is the number of wanted eigenpairs and it is typically much smaller than
m in practice. So the resulting modified m-step Arnoldi method is cheaper than the
standard (m + 1)-step one, which requires besides one matrix-vector multiplication at
least (m + 1) inner products.

In Section 2 we review the m-step Arnoldi process and method as well as a few well-
known properties for the motivation and use of our strategy; in Section 3 we describe
the new strategy that chooses modified approximate eigenvectors in K41 (vi, A). We
establish a relationship between residual norms of the modified approximate eigenpairs
and those of the Ritz pairs, and analyze it. We then present a modified m-step restarted
Arnoldi algorithm, and report some numerical experiments in Section 4. They show
that the modified m-step restarted algorithm and its version with Chebyshev acceler-
ation are often considerably more efficient than the standard (m + 1)-step restarted
ones.

Some notation is introduced now. Assume A to be an N x N real matrix with
eigenpairs \;, ;, where ||¢;|]| = 1,7 =1,2,..., N. Here the norm used is the Euclidean
norm. We denote by the superscript * the conjugate transpose of a matrix or vector
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and by the superscript — the complex conjugate of a number. We are concerned
with r eigenvalues A\ with largest (smallest) real or largest imaginary parts and the
corresponding eigenvectors ¢, where r < N.

2. The m-Step Arnoldi Process and Method

Given a real unit norm initial vector v;, the m-step Arnoldi process generates an
orthonormal basis {v;}7", of the Krylov subspace Ky, (v1, A) if dim(Kp, (v1, 4)) = m. In
this basis, the projected matrix of A onto /Cp,(v1, A) is represented by an m x m upper
Hessenberg matrix H,, with entries h;;. The basis {vj}gnzl and the h;; are computed
as follows:

Algorithm 1. The m-step Arnoldi process
1. v = ’Ul/“U1“.

2. Forj=1,2,...,m do

2.1. w = Avj;
2.2. fori=1,2,...,j do
hi]’ = U;"UJ;

w = w — hj;v;.
2.3. hjt1j = lwll,vjpr = w/hjta;.

Algorithm 1 can be written in matrix form
AV =V Hpy, + hm—l—lmvm—i—le:m (1)

where V,;, = (v1,v2,...,0,), and e,, is the mth coordinate vector of dimension m. It
follows immediately from (1) that H,, = V,; AV}, since vy, 1 Vi, = 0.

It is seen from Algorithm 1 or (1) that v,,41 is already available, so in fact we get
an orthonormal basis of Ky, 41(v1, A) when the m-step Arnoldi process is performed.
However, we only have H,, instead of H,,; at hand at this time.

Let Agm),y(m), i = 1,2,...,m denote the eigenpairs of H,, with Hyz(m)H =1, and

(m) '

compute ¢; 7,4 =1,2,...,m by

o™ = V™. (2)
Here )\Z(-m),goz(-m), i = 1,2,...,m are called the Ritz values and Ritz vectors of A in
Ko (v1, A). The m-step Arnoldi method then uses m Ritz pairs A™), (™) to approxi-
mate m eigenpairs of A.

Obviously, v,+1 plays no role in calculating go(m), so it contributes nothing to the
wanted ¢ and is wasted.

From (1) and (2), we get

™ = (A= N De™ = by imeiy™ v (3)
(m)
13
How good approximations are may be measured in terms of an a-posteriori bound

1™ = Bongim | efuy™ | - (4)

i

Therefore, residuals r;" are in the direction of vp,1.
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(4) can be used for a stopping criterion which cheaply checks sizes of the residuals

without computing (pl(m) explicitly by (2).
(m)

, ~ may be bad approximations and even

may not converge at all even if the corresponding )\Z(-m) have converged. In the next
section, we propose a modified strategy that exploits v+ for contributing information

to the eigenvectors of A.

As was explained in the introduction, ¢

3. New Strategy and a Modified Algorithm

3.1. New strategy
(m)
(3

¢§m) € Kmnt1(vi, A) of the form %(m) = aigoz(m) + Bivm+1 as modified approximate
eigenvectors, ¢+ = 1,2,...,m, where each pair «;, 3; is a solution to the minimization

problem

Rather than using ¢’ as approximate eigenvectors, we now choose unit norm vectors

1A = A" 1) (o™ + o). (5)

min
|a24]812=1

Define the modified residuals #{™ by

3

A = (A=A Dy, (6)
)H, i = 1,2,...,m, so the modified pairs
Agm),ngm) are better than the Ritz pairs )\Z(-m), gol(m)

Here note that the solution «;, 8; for each 4 is unique up to a scaling of a complex

number of unit length and depends on m, but we omit m without ambiguity. So we

™)
émz(%% >- 7)

Then ||fl(m)|| is at least as small as Hrgm

can take «; to be real.
Let us define the vectors

Bi
Then
"/)z(m) = Vm-l—lzz(m)a 1=1,2,...,m (8)
where V11 = (v1,v2,...,Um+1). Note that the resulting fl(m) are in KCp19(v1, A), but
unlike rl(m—H), they are not in the direction of v, 9. oy, G; are calculated in Theorem ?7?.

Theorem 1. Define the matriz By, ; = (’T‘Z(m), (A — )\Z(-m)I)va), and the numbers
& = (A= X" Do |2 7 =001 (A= N D,

m 2 m
3= (1™ 2 = &) + 4l 2

Then

(m) 2 ) )
- Tz' + fz - N
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where omin(Bm,i) is the smallest singular value of By, ;, and
& — WP+ |
V(&= 12 )+ 4™ 2
(m)

m
_ 2hmt1menY;

Bi =

(10)

o =

i,
Ir™12 - & =

Proof. Recall that rZ(m) =(A- A(m)I)goZ(-m). Then we have

(8
P ( 5)

It can then be verified that (9)-(11) hold by carefully inspecting the eigenproblem of
the 2 x 2 matrix By, ;B ;. O
Remarks

i (11)

177 =

i = Umin(Bm,i)-

min
lee]2+]B]2=1

1. From (4), (10) and (11), we have

Bil _ 2™ i
il &= I+

(12)

Bi

It can be verified that || is increasing in ||r§m) || for a fixed &; and it is decreasing

in &; for a fixed “’)"Z(m) I. Therefore, when either &; is small or “’)"Z(m) || is large, 5_1‘
is relatively large. It means that in either case v,,+; makes more contributions
to ;. Particularly, if ||rl(m)|| =0, then | ; |[=1and §; =0; if ¢ =0, then a; =0
|2, then | B |=| ai |= s,

make the same contribution to ;.

i

and | B; |= 1 since in this case n; = 0; if & = ||rl(
(m)

which means that vy,41 and ¢;

2. Tt can be derived from (9) that

+(m) I — * A— )\(m)I
A7) I ) AN Dol i sy

5 1(A =X Do |
It implies ||fz(m)|| = 0 when the columns of B,,; are dependent no matter how

||rl(m)]| is. 1/;Z(m) is an exact eigenvector in this case. We may expect from (13)

that the relative ratio ||fl(m)]|/]|rz(m)|| is small. This implies that Hfz(m)H may be
much smaller than ||rl(m)|| As an effect, the modified ¢§m) may be much better
Em) when <pz(-m) is a bad approximation to ; and )\Z(-m) is converging. From

Theorem 1, we may consider [3; to be a controlling coefficient in some sense. As

than ¢

a remedy, vy,41 pulls (pl(m) by adding a larger weight in the direction of v;,41

(m)

when )\Z(-m) is converging but <pz-m is getting bad. Conversely, it will put a smaller

weight on <pz(-m) if the pair )\Em)’ gogm) is good.

3. Assume that )\Em),wgm) and )\Z(m+1),%(m+1), 1 =1,2,...,r are used to approx-

imate the r selected eigenpairs of A. Then although it is impossible to prove
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, 1 = 1,2,...,r, it is often the case in practice, particularly
(m) (m+1)
13 13

I

and )\Emﬂ) are good approximations but ¢; " and ¢ are not.

3.2. A modified m-step restarted Arnoldi algorithm

After the above analysis, we can present the following algorithm.

Algorithm 2. The modified m-step restarted Arnoldi algorithm

1. Start: Given the number r of the wanted eigenpairs, choose the steps m of
Arnoldi’s process, a tolerance tol and an initial unit norm vector v;.

2. Construct the upper Hessenberg matrix H,, and V,,,+1 by performing the m-step
Arnoldi process.

3. Compute the eigenpairs Agm),ygm), 1 =1,2,...,m of Hy,. Then select r of the

)\Z(-m) as approximations to the r desired eigenvalues A;,i = 1,2,...,r.

4. If hpy1m < tol, then all the ||rl(m)|| < tol. We then take Ritz vectors go(m)

i
as approximations to ¢; and stop, else take 1/;Z(m) as approximations to ; and

calculate the residual norms of approximating )\Z(-m),q/;gm), i=1,2,...,7 by (9).

If they are all below tol, then stop and compute ¢§m) by (8), else continue.

5. Construct a new initial unit norm vector v; from 1/;Z(m), 1=1,2,...,r, and then
return to step 2.

For step 2, in order to get an orthonormal basis numerically, as done in [12, 15],
reorthogonalization is performed whenever severe cancellations occur. So, calculating
vj4+1 requires one matrix-vector multiplication and at least (j 4+ 1) inner products.

For step 5, we use a strategy adapted from Saad [12], where it is only necessary to
(m) (m) (m
(3 13 (3

replace the i,/ and Ritz vectors ¢~ by z ) and @bgm), 1=1,2,...,r, respectively.

The computation of ¢§m),i = 1,2,...,r can be easily designed so that the total
extra cost of the computations of ||fz(m)|| and «;,08;, 1 = 1,2,...,r is one matrix-
vector multiplication plus 2r inner products. So the modified m-step Arnoldi method
is cheaper than the standard (m 4+ 1)-step one. Compared with the total cost of the
standard m-step Arnoldi method, the latter requires not only one more matrix-vector
multiplication and at least (m + 1) inner products but also the solution of the eigen-
problem of a bigger H,, 1. If r < m and inner products are relatively expensive in
computations, the savings may be considerable at each restart. From a standpoint of
the computational cost at each restart, to be fairer we should compare Algorithm 2
and its version with Chebyshev acceleration with the standard (m + 1)-step restarted
counterparts. Numerical experiments will show the superiority of the former ones.

4. Numerical Experiments

We have tested Algorithm 2 and its version with Chebyshev acceleration, the stan-
dard restarted Arnoldi algorithm [12] and Arnoldi-Chebyshev algorithm [3, 14] using
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MATLAB4.2 on a DEC RISC workstation with the machine precision eps ~ 2.22x 10716,
The efficiency of these algorithms can thus be measured in terms of the number of
restarts (iterations) iter or matrix-vector multiplications m.v.

Example 1. This is a common test problem; see, e.g., [12, 15]. Consider the
convection diffusion differential equation

— Au(z,y) + puy = Au(z,y)

on a square region [0, 1] x [0, 1] with the boundary condition u(z,y) = 0.

Taking p = 1 and discretizing with centered differences yield the block tridiagonal
matrix A(n) = tri(—I, B, —I), where B, = tri(h,4,a), n is chosen the number of
interior mesh points on each side of the square, and a = -1+ 1/2(n + 1), b = -1 —
1/2(n +1).

Algorithm 2 and the standard restarted Arnoldi algorithm were run on the 576 x 576
matrix A(24) obtained by taking n = 24. We compute the three eigenvalues with largest
real parts and the associated eigenvectors. We require that both algorithms be stopped
as soon as all the residual norms of )\Em),goz(m) and )\Em),ipgm), 1 = 1,2,3 are below
tol = 108, Both algorithms used the same initial vector v; generated randomly in a
normal distribution. Table 1 shows the results obtained for different m.

Table 1: Example 1, A\ ~ 7.96806192, Ao ~ 7.92100825, A3 ~ 7.92099884. Left: the
standard restarted Arnoldi algorithm; Right: Algorithm 2.

m | iter | m.v | Max.Res.Norms || m | iter | m.v | Max.Res.Norms
66 | 102 | 6732 2.7TE —9 65 | 26 | 1716 8.6F —9
71 | 18 | 1278 49F -9 70 | 13 923 5.5FE — 9
76 | 11 836 5.6FE —9 75 6 456 5.F —10
81 6 486 5.5F — 10 80 | 4 324 1.7E -9

It is seen from Table 1 that Algorithm 2 with steps m was considerably more efficient
than the standard (m + 1)-step restarted Arnoldi algorithm, as shown by it or m.v.
This shows that vy, 11, at least at some restarts, indeed made essential contributions
to the wanted eigenvectors and thus greatly improved the overall performance of the
standard algorithm. Figures 1-2 depict the convergence curves of the standard restarted
Arnoldi algorithm with m = 66 and Algorithm 2 with m = 65, respectively. They show
that the standard restarted Arnoldi algorithm exhibited very irregular convergence
behavior, while, in contrast, Algorithm 2 converged much more smoothly. The irregular
convergence behavior may be explained by the theoretical analysis in [5,7.4]. So, to
some extent, our strategy has the effect of smoothing possible irregular behavior of the
standard algorithm.

As a by-product, we now report some results obtained by Algorithm 2 with Cheby-
shev acceleration and the standard restarted Arnoldi—-Chebyshev algorithm for various
m and n., where n, is the steps of Chebyshev acceleration. In the experiments, we used
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the same vy in the modified and standard restarted Arnoldi—-Chebyshev algorithms, and
the stopping requirement and the notation used were as before. Table 2 lists the results.

Residual norms

| 1 | 1 1
0 20 40 60 80 100 120
The number of iterations

Fig.1. Example 1, the standard restarted Arnoldi algorithm with m = 66. Solid line:

error of )\gm), <p§m), dashdot line: error of Aém), <pém) and dash line: error of )\:())m), <pgm).

Residual norms

0 5 10 15 20 25 30
The number of iterations

Fig.2 Example 1, Algorithm 2 with m = 65. Solid line: error of A{™, ™ dashdot
line: error of Agm),qpém) and dash line: error of )\gm),wém).

We can see from Table 2 that the Chebyshev acceleration had a remarkable effect on
both the standard and modified restarted Arnoldi-Chebyshev algorithms. As a result,
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the number of restarts has been reduced considerably. However, the modified m-step
restarted Arnoldi-Chebyshev algorithm was often considerably more efficient than the
standard (m + 1)-step restarted Arnoldi-Chebyshev algorithm. But we should mention
that the use of Chebyshev iteration has some limitations. For example, firstly, it can
only be used to compute the right-most or left-most eigenpairs; secondly, for many
non-normal matrices, it could gain little, e.g., [10]; thirdly, a robust and efficient choice
of n. is often difficult.

Table 2: Example 1, Left: the standard restarted Arnoldi-Chebyshev algorithm; Right:
Algorithm 2 with Chebyshev acceleration.

m | ne | iter | m.v | Max.Res.Norms || m | n. | ¢ter | m.v | Max.Res.Norms
31140 | 29 | 2019 3.2F — 11 30 | 40 | 23 | 1593 8.4F — 10
31|50 | 15 | 1165 3.2E — 12 30 | 50 | 10 760 3.5FE —10
31 | 60 6 486 87K —11 30 | 60 5 395 94F — 10
41 | 40 9 689 9.F — 11 40 | 40 6 440 6.4FE — 9
41 | 50 8 678 7.5FE — 10 40 | 50 ) 405 3.3E -9
41 | 60 5 445 5.9F — 10 40 | 60 4 344 78E —9
51 | 40 8 688 29F — 10 50 | 40 6 506 94F — 10
51 | 50 6 556 1.2FE -9 50 | 50 5 455 4.5FE — 9
51 | 60 5 495 1.1F - 11 50 | 60 4 435 3.7F — 11

Example 2. This example is the Tolosa matrix from aerodynamics related to the
stability analysis of a model of a plane in flight [2]. The interesting modes of this system
are described by complex eigenvalues whose imaginary parts lie in a frequency range
chosen by engineers. We are interested in a few eigenvalues with largest imaginary
parts and the associated eigenvectors. The matrix A here is sparse and highly non-
normal, and has order N greater than or equal to 90 and N is always a multiple of 5.
Since the eigenproblem of A is very ill conditioned, it can be very difficult to compute
a few eigenpairs of it. In the following experiments, we compute the three eigenvalues
with largest imaginary parts for N = 500,800. We require that Algorithm 2 and the
™) ™ and
Agm),ngm), i =1,2,3 are below tol = 1075, Since the wanted eigenvalues are complex,
we in fact get six eigenpairs as A is real. Tables 3—4 give the results obtained.

restarted Arnoldi algorithm be stopped as soon as residual norms of A

It can be seen from Tables 3—4 that Algorithm 2 with steps m had great improve-
ments on the standard (m+1)-step restarted Arnoldi algorithm in most cases, as shown
by it or m.v. This again shows that vn,,11, at least at some restarts, made significant
contributions to the wanted eigenvectors. As in Example 1, Algorithm 2 converged
considerably more smoothly than the restarted Arnoldi algorithm did. Only for quite
large m, the standard (m + 1) restarted Arnoldi algorithm was nearly as efficient as
the modified m-step restarted Arnoldi algorithm. Also, the standard restarted Arnoldi
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algorithm with a larger m does not necessarily result in fewer restarts than that with
a smaller m, as is seen from the tables. This is not surprising both in theory and
numerical computations; for a detailed analysis, see [5, 7, 4]. Figures 3—4 describe the
convergence processes of the standard restarted Arnoldi algorithm with m = 61 and
Algorithm 2 with m = 60 when N = 800.

Table 3: Tolosa matrix of N = 500, [|[AA* — A*A|lr ~ 8.46F + 11,|AA* —
A*Allr/||AllF 4.39F + 5. A = —190.25905 4 613.160257, Ay ~ —186.16185 +
608.144531, A3 —182.10841 + 603.10573¢. Left: the standard restarted Arnoldi al-
gorithm; Right: Algorithm 2.

~
~
~
~

m | iter | m.v | Max.Res.Norms || m | iter | m.v | Max.Res.Norms
46 | 42 | 1932 T3E -7 45 | 24 | 1104 6.6E — 7
51 | 60 | 3060 6.2FE — 7 50 | 17 | 867 12 -7
56 | 21 | 1176 53FE -7 55| 9 504 82F — 7
61 | 20 | 1220 14E — 7 60| 6 366 1.1E -7
66 | 5 330 1.1E -7 65| 4 264 34FE — 7
71 9 639 72E -9 0] 3 213 3.9F — 8

Table 4: Tolosa matrix of N = 800, [|[AA* — A*A|lr = 6.22F + 12,||AA* —
A*Allr/||Allr 1.O6E + 6. A\ ~ —298.49015 + 956.508047, A2 ~ —294.60558 +
951.432371, A3 —290.74627 + 946.34381:. Left: the standard restarted Arnoldi al-
gorithm; Right: Algorithm 2.

~
~
~
~

m | iter | m.v | Max.Res.Norms || m | ¢ter | m.v | Max.Res.Norms
56 | 238 | 13328 3.3E -7 55 | 29 | 1479 8IF -7
61 | 100 | 6100 7T7TE -8 60 | 21 | 1281 39FK — 7
66 | 27 1782 3.E — 17 65| 12 | 792 19E — 7
71| 28 1988 4.5F — 8 70 | 11 781 2.1FE — 8
76 | 17 1292 6.6F — 7 w9 684 1.6FE — 8
81 7 567 6.7TE — 7 80| 6 486 1.6E —9

A number of other matrices, e.g., the Clement matrix from the set of test matrices
in the netlib and a class of random walk matrices in Markov chains [12], have been
tested, showing that the modified m-step restarted algorithms often exhibit a remark-
able superiority to the standard (m + 1)-step restarted ones.
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Residual norms

| | 1 | | 1
0 10 20 30 40 50 60 70 80 90 100
The number of iterations

Fig.3. Tolosa matrix of N = 800, the standard restarted Arnoldi algorithm with

m = 61. Solid line: error of )\gm), @&m), dashdot line: error of )\gm), @ém) and dash line:

error of )\:())m)’ <p§m).

10 T T

Residual norms

-8 1 1 1
0 5 10 15 20 25
The number of iterations

Fig.4. Tolosa matrix of N = 800, Algorithm 2 with m = 60. Solid line: error of
)\gm), @bgm), dashdot line: error of Agm),@bém) and dash line: error of )\gm), @bgm).

5. Concluding Remarks

The standard restarted Arnoldi algorithm and its variants may not be efficient for
computing a few selected eigenpairs of large unsymmetric matrices. In order to im-
prove the overall performance of Arnoldi type algorithms, we have proposed the mod-
ified strategy that uses the Ritz values obtained from /Cp,(vi, A) but chooses modified
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approximate eigenvectors in K11 (v1, A), such that each modified residual is minimal
over the span of the Ritz vector and the (m + 1)th basis vector. The numerical ex-
periments have demonstrated that the modified m-step restarted algorithms are often
much more efficient than the standard (m + 1)-step restarted ones.

We point out that the strategy presented in the paper can be applied to other
variants of Arnoldi’s method as well. A similar strategy could be extended to the block
Arnoldi method [8] and its incomplete version [6]. Also, this strategy may be used
in some Krylov subspace type methods for the solution of large unsymmetric linear
systems, e.g., Arnoldi’s method or FOM and the GMRES method, where the available
(m + 1)th basis vector can be used to improve the quality of an approximate solution
in IC;, (v1, A). In a proper way, a modified approximate solution will lie in /C,, 1 (v1, A)
and have a smaller residual norm than that of the original one.
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