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BIVARIATE RATIONAL INTERPOLANTS WITH
RECTANGLE-HOLE-STRUCTURE*!

Jie-qing Tan
(Institute of Applied Mathematics, Hefei University of Technology, Hefei 230009, China)

Abstract

Bivariate vector valued rational interpolants are established by means of Thiele-
type branched continued fractions and Samelson inverse over rectangular grids with
holes, characterisation theorem with topologic structure is brought in light and
uniqueness theorem in some sense is obtained.
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1. Introduction

Given a set of distinct real points {z;, i = 0,1,2,---, n : z; € R} and a set of
complex vector data {7(), i =0,1,2,---, n: 5 € C4}, Graves-Morris showed®! that
the vector valued Thiele type continued fraction

5(0) .Z’: o .Z’: I r—Tp-1
0 4+ 30 4.y ®

can serve to interpolate the given vectors. The construction process is closely ralated
to the adoption of the Samelson inverse for vectors

v = (1.1)

where 7* denotes the complex conjugate of vector o. It was proved that 5"(:1:) is a vector
valued rational function with numerator being a d-dimensional polynomial of degree n
and denominator being a polynomial of degree 2[n/2|, here and in the sequel of this
paper, [z] represents the integer function.

Let points (z;,y;) € R? (i =0,1,---, n;5 = 0,1,---,m) be given and be arranged
in the following table

(o,90)  (z1,90) -+ (Tn,Y0)
(JL“U,-y1) (l"la.yl) (Iﬁn,yl) (1_2)
(x[]aym) (-Tlaym) (mnaym)
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which we call rectangular point-grid and denote by II"™"™. Suppose d-dimensional vector
;5 is associated with the point (z;,y;) in II™"™ and let these ¥;;’s be arranged as follows

Voo V10 Uno
,17[]1 1711 17711
Vom VUlm Unm

which is called vector-grid and is denoted by ymm,
Definition 1.1. A d—dimensional vector valued polynomial

N(:E, y) = (Nl(xu y)7 NQ(xu y)7 T 7Nd($7 y))
is said to be of degree n and denoted by ON =n if ON;(z,y) <n fori=1,2,---,d and
ONj(z,y) = n for some j(1 < j <d).
Definition 1.2. Denote by H,, the collection of all bivariate polynomials with total
degree not exceeding n and by H, the collection of d dimensional bivariate vector valued
polynomials of degree n, then

ﬁn,m = {N(l‘,y)/M(l‘,y)‘N(T,y) € I—_jnvM(Tay) € Hm}

is called the collection of bivariate vector valued rational functions of type (n/m).
Making use of Samelson inverse and inverse differences, Zhu et al constructed the
following Thiele-type branched continued fraction!”

= r — T r — Tp-1

R(z,y) = 5y(y) + ——2 _ 1.4
where
o - Y —Yo Y—Ym—1
1(y) =bio(wo, -+, x390)+—= = )
) ( )+ bii(zo, - o3y, 1)+t bym(Tos - T3 y0, 0, Ym)
(1.5)

and gi,j(:vo, “-+, %Yo, -+, y;) are computed through the following recursive process

EO,U(xuyj) :17137 'LZO,l,,n, j:(],l,,m (16)

Yj —Yj—1

bU,j(mo;y()u T 7y]) ==

boj—1(z03 Y0, s Yj—2,Y5) — go,j,l(:z;o; Yos - Yj 2 Yj 1) )
bio(wo, . i3 o) == Ti ~ Ti1
bi-t0(zo, @i i yo) = bicro(zo, - Tina, Tiig) (1 g)
gi,j(xo, s Yg) = (Y — yjf1)/[5i,j,1(;v0, T Y0, Y2, )
o giajfl(xﬂa"'aivi;yoa"'ayj—Q,yj—l)] (1.9)

It was shown in [9] that R(z,y) € ﬁnm+n+m’2[(nm+n+m)/2} and

R(zi,y;) = 4,

i=0,1,--,

n; 3 =0,1,---,m.
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which surely extends the results obtained by Graves-Morris® in univariate vector case
and by Siemaszkol®! in bivariate scalar case. But it does not include Cuyt and Verdonk’s
results!’?!, where a kind of symmetric branched continued fractions is considered.

The motivation for us to study irregular structures is based on such a recognization
that for some scattered data set of points (see Fig. 1.1), whatever a new numbering of
(xi,y;) is made, the obtained picture of the points always looks irregular, and therefore
the method of general order multivariate rational Hermite interpolants cannot be used
to deal with this situation since the data set of points in this case does not satisfy
the inclusion property?, a very important property dominating whether the rational
Hermite interpolants exist or not. In this paper, we consider the bivariate vector
valued rational interpolants over rectangular mesh with rectangular holes (this long
terminology is cited as BVRIHs in the sequel of the text). For scalar case we refer to
[4].

rg T1 T2 T3 T4

Yo *x K Kk Kk *

Yy x * ok

ya x * *

ys x  x *

Yysg kK Kk Kk K
Fig.1.1

2. Characterisation of BVRIHs

Suppose the set of points is IT = II™™ — [1¢0€2"02 - where TT160C2072 = {4 q -
Tey 1} X{Yr 41, Yry—1}, and the set of vector data is V = {vi; € V”’m|(:1:i,yj) e I1}.
The structure of II, as shown in Fig.2.1, looks as if a subrectangular block had been
moved outside of I[1™" and it may also be regarded as a left-over resulting from covering
I[1™™ with a empty mesh of the same size as I[I¢1°2"1:"2, The latter desciption about
the structure of I, as is to be seen, provides us with better and more understanding
for the characterisation of interpolant over II.

To Tey Tey In

y[] * * * *

y’rl * ES * *
: B

yr2 * ES * *

ym * * * *
Fig.2.1

In Fig.2.1 B (for “block”) is a sub-rectangle size of which is (co —¢; —1) x (rg —r1—1)
(here by size we mean the number of contained points) and on which no interpolation
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is taken into consideration. Now we may construct a bivariate vector valued rational

interpolant on II by means of the following branched continued fraction

Tr — I r—Tp-1

R(z,y) = 50(y) +W +--+  Su(y)

3

where for 1 =0,1,---,¢1,¢c0,c0+1,---,mn

Y— Y Y~ Ym—1
bin +-t+ bim

3

5i(y) = gi,O +

and fori =c¢; +1,---,c0 — 1
5i(y) = bio
+y*y0 Y=—Yri—1 Y=Yy Y —Yry Y —Ym-1
bin +-+ biy A+ bigy + b, o+ b
Let .
= A1(5L’=y) T — T, T — Tp-1

Ry (IL’,y) = = 562 (y) +

3

Bl(zay) §02+1(y) +eee gn(y)

from the characterisation theorem in [9] we know that

‘gl(xuy)|2 - Bl(xvy)Dl(xvy)

and
- M -1 M
O\ (w,y) = M ~ 1, 0By(z,y) = 2| |, oD1(@.y) = 2| %],
where
M=(m+1)(n+1-cy).
Let
z‘E(%ZJ) - T — Tey—1
Ry(z,y) = =S¢y + =
) =By~ YT Ry
e ily) | (o= e )Ai(w)
bey—1(y) Dr(z,y) ’

by Graves-Morris’ characterisation theorem we have

‘A.Q(xu y)|2 - BQ(xvy)DQ(xvy)

and
M + N, M - N is even
8A2:L‘y ]
M+ N-—-1, M-N isodd
0By (z,y) = 2[M /2] + 2[N/2]

2[ALEL] 4 2 ML

5 ], M - N is even
2[AEL) 4+ 2[XH] — 2, M- N is odd

(2.5)

(2.6)
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where
N=m+1+4+mr —ry. (2.7)
Let
7y) - xr — 'ICQ*Q
R3(7,y) = =80 2(y) + =
(:L“,y) . Ry(z,y)
acz 2(9) ( — c,—2)As(z,y) (2.8)
c2 2(y) DZ(Iay) ’

then it follows
‘A3(Iay)|2 = Bg(l‘,y)Dg(l‘,y)

and
. M+2N+1, M- N iseven
8A3($7y) = :
M + 2N, M - N is odd
2[N/2] + M + N, M + N is even
8B3($7y) = 3
2[N/2]| + M+ N +1, M + N is odd
M +2N +2, M is even
0Ds3(z,y) = .
M+2N +1, M is odd.
Similarly if we let
= 1‘1'4(1579) - T —Tey—3
Ry(z,y) = ——~ = 80, 3(y) + —2— 2.9
4( ) B4(£E,y) c2 3( ) R3($,y) ( )
and o
= As(z,y) L= Tey—4
Rs(z,y) = = 8oy a(y) + 57— —, (2.10)
B5($7y) “ R4(1’,y)
then
M+3N+2, M-N is even
8A4 (z,y) .
M+3N+1, M-N isodd
0By(z,y) = 2[M/2] + 2[3N /2] + 2
M+4N +3, M- N is even
8A5 (x,y) .
M+ 4N +2, M- N is odd
2[N/2] + M +3N +2, M+ N is even
0B5(z,y) .
2[N/2]+ M +3N +3, M+ N is odd.
Let
. - Ay ey (z,) T~ Teyt1
To(z,y) = Rey ¢, (#,y) = 25 = 8o 11(y) + 37— (2.11)
ara Bcg c1($7y) at Rczfclfl(xuy)
and

M* =M+ (¢cs—c1 —1)(N 4+1) — 1, (2.12)
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then it can be shown by induction that

|Acy— e (xay)‘Q = Bey ey (7,Y)Dey—¢; (2, y)
where
M*, M - N is even

Ierei (@,y) = { M*—1, M-Nisodd

M c—c —1)N
B o) —a[ 2] oY)
if co — ¢ is even,

2[N/2]+ M+ (c2 —c1 —2)(N+1)—1, M+ N iseven

0B, . ) =

if co — ¢7 is odd, and

0D, (o) = 2(M" = [F1]).

For any interger k, define

0, ifk=2[k/2]
modak = . (2.13)
1, ifk=2[k/2] + 1.
Let
m = modom, M* = modoM*, N =modyN (2.14)
and let .
= Ul(l',y) - T — Tey
Ty(z,y) = DY) 2 )+ 2 , 2.15
o) = Gy = S+ (2.15)

then there exists a polynomial W7 (xz,y) such that

‘ﬁl ('Ta y)|2 = ‘/1($,y)W1(ZL',y)

and
. {M*+m+1, if (m, M*,N) € {(0,0,0), (*,1,)}
Uy (m,y) = e o :
M* +m, if (m, M*,N) € {(0,0,1),(1,0,%)}
M*+m+1, if (m,M*,N) € {(0,1,%)}
Vi(z,y) ={ M*+m, if (m, M*,N) € {(0,0,%),(1,1,%)} ,
M*+m —1, if (m,M*,N) € {(1,0,%)}
M*+m+2, if (m,M*,N) € {(0,0,0),(1,1,%)}
OWi(z,y) =< M*+m+1, if (m, M* ,N) e {(0,1,%),(1,0,%)} ,
M* +m, if (m, M*,N) € {(0,0,1)}

where “x” stands for 0 and 1, for example, (0,1, *) means (0,1,0) and (0,1,1). Let

- Us(, . T — Ty —
Tole,y) = 20V _ g () ¢ BTt (2.16)
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then there exists a polynomial Wy(z,y)

Hole-Structure

such that

‘ﬁQ(Ia y)|2 = %(may)WQ(may)

and
. M* +2m +2, if (m, M*,N) € {(0,0,0), (+,1,%)}
OUs(z,y) = \ I :
M*+2m+1, if (m,M*,N) e {(0,0,1),(1,0,%)}
M* +2m +2, if (m,M*,N) € {(0,0,0)}
8172(:1:,34): M* +2m +1, if (m, M*,N) € {(x,1,%)} ,
M*+2m’ if (m’M*7N) E {(0’07 1)7(170’ *)}
- M* +2m+3, if (m, M*,N) € {(*,1,%)}
oW (z,y) = \ e e :
M*+2m+2, if (m,M* N) e {(x0,x%)}
Let .
= s(zy) L T — Tey—2
T3 T,Y) = =Se—20Y) + —=
(#.9) Vs(z,y) r=2(y) Ty (x,y)
and .
= Us(z, T — Te-3
T, xr,y) = =Sei—3Y) + — )
= ) T )
similarly one gets
. M* +3m+ 3, if (m, M*,N) € {(0,0,0), (x,1,*)}
8U3(Tay) = % . _ 2k N g
M* +3m +3, if (m,M*,N) € {(0,1,%)}
WVs(z,y) =& M*+3m+2, if (m, M*,N) € {(0,0,%),(1,1,%)},
M* +3m+1, if (m, M*,N) € {(1,0,%)}
M* +4m + 4, if (m, M*,N) € {(0,0,0), (+,1,%)}
OU4(z,y) = \ e o :
M*+4m+3, if (m,M*,N) € {(0,0,1),(1,0,%)}
M* +4m + 4, if (m,M*,N) € {(0,0,0)}
OVa(z,y) = § M* +4m+3, if (m, M*,N) € {(x,1,%)}
One finally sees
= = ﬁc +1 .r,y) - T — Xo
R(z,y) = Te,11(2,y) = =So(y) + =
“ Verv1(z,y) T, (z,y)
and derives by induction that
- M* + (er +1)(m + 1), if (m, M*, N) € {(0,0,0), (
OUc, y1(z,y) = « P
M*+ (e1+1)(m+1)—1, if (m,M*,N) € {

(2.17)

(2.18)

(2.19)
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M* + (1 + 1)(m + 1), if (m, M*,N) € {(0,1,%)}
Ve 1(z,y) =4 M*+ (c1 + D)(m+1) — 1, if (m, M*,N) € {(0,0,%),(1,1,%)} ,
M* + (e1 +1)(m +1) =2, if (m, M*,N) € {(1,0,%)}
if ¢1 is even, and

M* + (1 +1)(m +1), if (m, M*,N) € {(0,0,0)}
WVesr(z,y) =4 M*+ (1 + D)(m+1) =1, if (m, M*,N) € {(x,1,%)}
M*+ (c1 +1)(m +1) =2, if(m, M*,N) € {(0,0,1),(1,0,%)}
if ¢; is odd. Let
B=M"+(c; +1)(m+1). (2.20)
Noticing that

M*=M+(cs—c; —1)(N +1) =1
=(m+1)n+l-c)+(ca—c1—1)(m+2+r —ry) —1,

we have

B=m+1)(n+2+c—ca)+(co—c1—1)(m+2+4+r, —ry) —1
=(m+1)(n+1)+(m+1)(1+c1 —c2)
— (14 —c)m+1)—(1+c —c2)(1+r —1g) — 1
=m+1)(n+1)—(ca—c1 —1)(rg —rm — 1) —1

which is only one less than the number of interpolation points contained in II. Therefore

Hg B, lf(m M* ,N) € {(0,0,0)}
R(z,y) €{ Hpp 1, if( ’) € {(x,1,%)} . (2.21)
HB,LB,Q, lf( ) S {(0 0, 1) (1,0,*)}

S I

S I

if ¢1 is odd, and

HB,B; (m M* N) € {(0, 1,*)}

— ﬁB,Bfla (m M N) € {(1717*)7(07070)}

BV EN Fipypr, it tm, 317, N) € {(0,0,1)) 222
ﬁBfl,be f(m,M*,N) € {(1,0,%)}

if ¢; is even. In order to find out the direct relation between the characterisation of
R(z,y) and the given size parameters m,n, ¢y, co, 71,79, we define

(pl(maﬁaélaéQaTQ - Tl) =1m,
wg(m,ﬁ,él,@,m *T‘l) (m+ 1)(’FL+ 1 *62) + (62 —C1 — 1)(m+2 —T9 *7‘1) — 1,

@3(m,n,c1,¢a,m9 —11) =m +1—T9 — 17, (2.23)

where

m = modym, n = modayn, ¢; = modscy, ¢y = modace, r9 — r1 = mody(ry — 1),
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and we call (m,n, ¢y, o, 9 — r1) the parameter class equivalent to the set {(m,n,c1, ¢,

T9 — Tl)}. Let

@; = modap;, 1=1,2,3 (2.24)

and establish the following mapping

P

(m,n,c1,C,m9 — 1) — (@1, P2, P3)- (2.25)

As a matter of fact, the mapping 1 bridges between (1, 71, ¢, €2, 79 — 1) and (7, M*, N),

and the following tables can be obtained by careful computation and classification

(1,1,0,1,1
(1,0,0,1,1
(1,1,0,0,1
(1,0,0,0,1
(1,1,0,1,0
(1,0,0,1,0
(0,0,0,1,0
(0,1,0,0,0
(1,1,1,1,1)
(1,1,1,0,1)
(1,0,1,1,1)
(1,0,1,0,1)
(1,1,1,0,0)
(1,0,1,0,0)
(0,1,1,0,0)
(0,0,1,1,0)

Hence we have

— — O N~ e

Table 2.1 ¢; =0

— (1,1,1) (1,1,0,0,0) +— (1,0,0)
—  (1,1,1) (1,0,0,0,0) — (1,0,0)
—  (1,1,1) (0,0,0,1,1) +— (0,1,0)
—  (1,1,1) (0,0,0,0,1) +~— (0,1,0)
—  (1,1,0) (0,1,0,1,0) +— (0,0,1)
—  (1,1,0) (0,0,0,0,0) +— (0,0,1)
— (0,1,1) (0,1,0,1,1) +~—— (0,0,0)
—  (0,1,1) (0,1,0,0,1) +— (0,0,0)
Table 2.2 ¢, =1
—  (1,1,1) (1,1,1,1,0) — (1,0,0)
—  (1,1,1) (1,0,1,1,0) ~— (1,0,0)
— (1,1,1) (0,1,1,1,1) +— (0,1,0)
—  (1,1,1) (0,1,1,0,1) +~— (0,1,0)
—  (1,1,0) (0,1,1,1,0) +— (0,0,1)
— (1,1,0) (0,0,1,0,0) ~— (0,0,1)
—  (0,1,1) (0,0,1,1,1) +— (0,0,0)
—  (0,1,1) (0,0,1,0,1) +— (0,0,0)

Theorem 2.1 (Characterisation Theorem.) Suppose R(x,v) is given by (2.1)—(2.3),
then

\

Hp 1,51,

Hp_1,B_2,

for (m,n,c1,ca,r9 —11) € {(0,0,%,%,1),
(0,0,0,1,0),(0,1,0,0,0)}
for (m,n, ¢, ¢, 9 —11) €
(0,1, %,%,1), (1,%,%,%,1), (1,%,1,0,0)
{(1,*,0,1,0), (0,1,1,0,0), (0,0,1,1,0)
for (m,n, ¢y, ¢9,m79 — 1) € {(0,1,0,1,0),(0,0,0,0,0)}
), (1,%,0,0,0)
), (0,0,1,0,0)}'

for (17, 7,1, ) (1,%,1,1,0
or (m,n,cy,C2,m2 —11) €
P o0

From the theorem it can easily be seen that the characterisation of R(:L‘, y) is inde-

pendent of r; and r9 as long as ro —r is fixed, but it depends on the parameters ¢; and
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co to a large extent even if ¢y — ¢ is fixed. In other words, if one keeps the geometric
shape of the block B unchanged by fixing r9 — 1 and ¢ — ¢1, then Theorem 2.1 illus-
trates that moving the block B up or down within the range of II""™ does not affect
the characterisation of R(z,v), but a horizontal movement of the block B may result
in a change of the characterisation of ]5;(:1:, y). However if the movement is assumed to
be carried out once a row vertically or once a column horizontally, then a horizontal
movement by even times does not destroy the characterization.

Example 2.1. Let m = n = 10,¢; = 3,¢c0 = 7,71 = 2,79 = 8, then B = 105
and R(.’E,y) € H105 ,104, but m =
B = 105 and R(:I: y) € H104 104- However choosing m = n = 10, = = 1,c0 =5 (or
1 =5,c0 =9),r1 = 2,79 = 8 leads back to B = 105 and R(:L“ y) € H105 104

Example 2.2. Let m =8,n =6,¢c1 = 2,¢c0 = 5,r1 = 1,79 = 5, then B = 56 and
(z,y) € 1:::[56756, but m =8,n=6,c; =1,c0 =4,71 = 1,79 = 5 results in B = 56 and
(z,y) € Hss 54.

Furthermore from all 32 equivalent parameter classes regarding (m,n, ¢1, ¢, r9 — 1)

nlecl:402:8r1—2r2:8resultsin

R
R

one may pick out those which are prone to changing the characterisation of interpolant
R(z,y) once some certain block movement yields, they are

(0,0,0,1,0), (0,1,0,0,0) for type (B/B)

(0,1,1,0,0), (0,0,1,1,0) for type (B/B — 1) 2.26)
(0,1,0,1,0), (0,0,0,0,0) fortype (B—1/B—1) '
(0,1,1,1,0, (0,0,1,0,0) for type (B —1/B —2)

It is not difficult to observe that if the parameters of the interpolation set of points II is
associated with one of the above classes, then a horizontal movement of the block by a
column causes the exchanges of the characterisation of R(z,y) between type (B/B — 1)
and type (B —1/B — 1) (as illustrated by Example 2.1) or between type (B/B) and
type (B —1/B —2) (as illustrated by Example 2.2). A more careful observation reveals
that only the classes with both m = 0 and 7 — r{ = 0 appear in equation (2.26), which
implies that the characterisation of interpolant R(:I;,y) over Il has some property of
topological invariance, provided that at least one of the parameters m and ro — ry is
odd. Based on this ground, each of all other 24 equivalent paremeter classes of the forms
(1, %, %,%,%) and (0, %, *,*,1) is said to be topologically invariable class with respect to
block movements.

We point out that the characterisation theorem applies to the case where interpo-
lation is considered over rectangular grids without block. In fact, it may be regarded
as the special block structure with ¢y = n,co =n+1, and r9 —r; = 0. Then there exist
only four possible equivalent classes regarding the parameters m,n, cy, ca, 79 — 11, i€,

(170707 170)7 (07 1717070)7 (17 1717070)7 (070707170)'
We see ﬁ(:r:, y) € 1713734 for the first three classes and R(:v, y) € I;TB,B for the last class,
where B = (m +1)(n+ 1) — 1, therefore R(z,y) € H(m+1)(n—l—l)71,2[((m+1)(n+1)71)/2}a as

asserted in [7] and [9].
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3. Uniqueness of BVRIHs

For the mesh shown in Fig.2.1, we can also construct another type of BVRIH

DR(.y) =fole) +=5ei= | T (3.1)
where for i =0,1,---,7r1,79,---, M
R e e (3.2)
and fori =r; +1,---,r9 — 1
tz(x)—(ji,o
T — I T—Tey—1 X —Tey T — Tey T — Ty 1

_ - - —_— 3.3
dig +-t diey + die, *digpp Tt dip (33)

)

As a direct consequence of Theorem 2.1 we immediately have
Theorem 3.1. Suppose DR(x,y) is given by (3.1) (3.3), then

( Hp p, for (@, m, 71,72, ¢ — ¢1) € {(0,0, %,%,1),
(0,0,0,1,0),(0,1,0,0,0)}
I;TB,B,l, for (n,m,r1,79,c0 — 1) €
D_'R(.T,y) . { (0,1,%,%,1), (1,%,%,%,1), (1,%,1,0,0) }
(1,%,0,1,0), (0,1,1,0,0), (0,0,1,1,0)
Hp 1p 1, for (n,m,i i, —¢1) € {(0,1,0,1,0),(0,0,0,0,0)}
Hp 1p.o for (@,m,m, s, c3 — 1) € { (1,%,1,1,0), (1’*’0’0’0) }
{ ’ (0,1,1,1,0), (0,0,1,0,0)

where 71 = modyry, 79 = modsery and ¢y — ¢1 = moda(cy — ¢1).

Although both ﬁ(m,y) and D_'R(:L",y) interpolate V over II, they may belong to
different rational types owing to the geometric structure of the block. To find out
the common characterisation of ]5;(:1:, y) and D-R($, y) we extend the equivalent classes
(m,n,c1,¢a,79 —11) to (mM,n,ép,C2,71,72). From Theorem 2.1 and Theorem 3.1 it is
not difficult to prove

Theorem 3.2. Suppose R(z,y) and DR(z,y) are given by (2.1) (2.3) and (3.1)
(3.3) respectively and they interpolate V over 11, then both R(z,y) and DR(z,vy) are
normally of the same type (B/B) if

(0,0,0,1,%,%), (0,0,1,0,0,1), (0,0,1,0,1,0)}.

(m, 7, 1czaﬁﬂ“z)e{(o,o,o,o,o,l), (0,0,1,1,0,1)

ﬁ(r,y) and D_'R(:L",y) are normally of the same type (B/B — 1) if

(m ’FL C1, 627T17r2) €
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(1,0,0,1,%,%), (1,0,1,0,%,%), (%, 1,1,0,%,%), (*,1,0,0,1,0)
(x,1,1,1,1,0), (%,1,0,0,0,1), (*,1,1,1,0,1), (1,1,0,1,x%,x*) .
(1,0,0,0,1,0), (1,0,1,1,1,0), (0,0,1,1,1,1), (0,1,0,1,0,1) [’
(0,1,0,1,1,0)

R(z,y) and DR(z,y) are normally of the same type (B —1/B —1) if
(ma ﬁa 617 EQ; 7:17 7:2) € {(07 07 07 07 07 0)}

and é(r,y) and D_'R(.r,y) are normally of the same type (B — 1/B — 2) if

)

(+,1,1,1,0,0), (+1,1,1,1,1), (1,*,0,0,1,1)}
1,1,1

(m,n,¢1,C2,71,72) € {(17170000) (1,0,1,1,1,1)

where B = (m +1)(n+1) = (c2 —c1 = 1)(rg = — 1) = L.

Theorem 3.3. Suppose R(z,y) and DR(z,y) are given by (2.1) (23) and (3.1)
(3 3) respectively and they interpolate V over 11, then R(z,y) € Hp .B while DR(z,y) €
Hp_1p if

(’ﬁL 1, C?aTla'r?) € {(0 0 0 0,1,0) (ana1a1alao)a(Oa1a0a0a0a0)7(0a1a0a0a1a1)};

—

R(x,y) € I;TB,B,l while D_R(:I:,y) € 1?137173,1 if

B

,m,C1,C2,71,72) € {(1,0,0,0,0,1),(0,0,1,1,0,0),(1,0,1,1,0,1) };
ﬁ(r,y) € ﬁB,l’B,l while D_R(:L“,y) € ﬁB,B,l if
(m,n,cp,c0,7,72) € {(0,1,0,1,0,0),(0,0,0,0,1,1),(0,1,0,1,1,1)}
and é(r,y) € ﬁB,l’B,Q while D_'R(:L“,y) € ﬁB,B if
(m,n,c1,c2,m,72) € {(0,0,1,0,0,0),(0,0,1,0,1,1),(1,0,0,0,0,0),(1,0,1,1,0,0) },

where B=(m+1)(n+1) = (co —c1 —1)(rg —r — 1) — 1.

Theorem 3.2 and Theorem 3.3 show that among all 64 equivalent classes with regard
to (m,n,cy,ce,71,72) there are 50 allowing R(:v,y) and D?%(:v,y) to possess the same
rational type (i.e., 8 classes for (B/B) type, 33 classes for (B/B — 1) type, one class
for (B —1/B — 1) type and 8 classes for (B — 1/B — 2) type) and the left 14 classes
are divided into four groups switching the characterisation of R(z,y) and DR(z,y)
either between (B/B) type and (B — 1/B — 2) type or between (B/B — 1) type and
(B—1/B — 1) type.

Even if ﬁ(r,y) and D_R(:L“,y) are of the same rational type, we can by no means
come to the conclusion R(:v, y) = D_.R(ZE, y). However there holds the following

Theorem 3.4. suppose B(z,y) and DR(z,y) are defined in (2.1) (2.3) and (3.1)
(3.3) respectively and they interpolate V over I1. If the block appears neither on the left
boun_(jary nor on_'the upper boundary, then R(:v,y) and D_'R(:I:,y) satisfy
() Blz0,y) = DR(z0,1)

(b) R(:an()) = DR(xayO)
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Proof. From (2.1) (2.3) and (3.1) (3.3) we have

Y — Yo Y —Ym—1
b[]:l + T + EO,m

R(z0,y) = 50(y) = boo +

and

Y g Y — Yo Y —Ym—1
DR(zo,y) = to(zo) +—£*1($—0) bt Do)
therefore from R(mo,yj) = D_'R(:vo, yj), g =0,1,---,m, it follows R(.’Eg, y) = D_'R(:vo,y).
One can similarly prove (b).

Theorem 3.5. Suppose R(z,y) and DR(z,y) are given by (2.1) (2.3) and (3.1)
(3.3) respectively and they both interpolate V over the mesh 11, then ﬁ(:r:,y) is unique
in the sense that it is independent of the ordering of the elements of every column in
IT while D_'R(:I:,y) 1s unique in the sense that it is independent of the ordering of the
elements of every row in II.

Proof. Denote by U(x,y) another BVRIH which differs from E(z, y) only in branches.
We might as well suppose that the block does not lie on any boundary and hence may

write
=g o r — I r—Tp-1
R(zr,y) = soly) + —=——— — =N
e =50+ 50 s TR
- 5 Tr— Iy L — Tp-1
U T,y) =v\Y) + —=—— B —
(9) =BWH T vt T )
where
o 7 Y—Y Y—Ym—1
S; =b;o+ —,
z(y) 7,0 bi,l 4t bi,m
- . Y—Y0 Y—Ym—1
v = €y T — =
’L(y) 2,20 62"2'1 +“‘+ el’lm
with #g,%1,---,%,, being a reordering of 0,1,---,m for s = 0,1,---,¢1,c9,c0o +1,---,n
and
gl(y) _ 5z',[]+ Y—Yo Yy :ymfl y: Yry y_‘* Yray Y—Ym—1

bin A+t by, byt b Tt b

,5»(y)_é» +y_y0 Y—Yri—1 Y —Yr, Y = Yry Y —Ym—1
i = €449 = = = = e —
’ N L A P a2 X b M N
with 49,41, -, %, %, -, %y being a reordering of 0,1,---, r1,re,---,m for ¢« = ¢; +

1,---,co — 1. From
R(z0,y;) = DR(z0,y;), 5 =0,1,---,m

it follows

Assume
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then we derive

from
- o Tk — Tk—1 Tk — T1 T — X0
W =TT e R+ Foly) - Rlony)
,D,k (y) - .’E]i— Tk—1 .’E]i— 1 T — T
Ue-1(y)  +-+ Uily)  + oly) — Ulzk,y)
and

R(zk,y;) = Ulzk, yj5)
forj=0,1,--- mifk<cpork>coand for j =0,1,--- ry,r9,---,mifc; +1< k<
co — 1. The uniqueness of R(:v, y) is thus proved by induction. Similar procedure can
be used to prove the uniqueness of D_’R(ZL‘, Y).

Finally we point out that if the size parameters of 11 satisfy m = n,c; = r1,c9 = ro,
z; = y; for i =0,1,---,n and v;; = U;; for (x;,y;) € II, then R(:L“,y) = D_'R(y,m).
On the basis of this paper it seems interesting to pursue the further study of BVRIHs
with other holes instead of rectangular one, and other types of branched continued
fractions, such as those treated by Cuyt and Verdonk in [1,3], may be extended to the
vector valued case with hole structure taken into consideration.
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