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Abstract

To solve the potential inversion problem of the coupled system for one-way wave
equations, the absorbing boundary conditions in the lateral direction are derived.
The difference schemes are constructed and a layer stripping method is proposed.
Some numerical experiments are presented.
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1. Introduction

The potential inversion problem of the following Plasma wave equation is discussed
in this paper:
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p(z,0,t) = 6(t), (1.3)
0

That is, giving an impulse at the surface z = 0, to determine the wavefield p and
potential v from the impulse response h.

There are three kinds of inverse problems of this Plasma wave equation:

(1) To determine the differential equation from its spectral function!';

(2) To determine the potential from the wave function form at large distance. It is
the so-called inverse scattering problem[2:3;

(3) To determine the potential from the response on the boundary to a unit impulse
at some reference time ¢ = 0%,

Our problem belongs to the third kind.
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In the one dimensional case, there are comprehensive results for this problem. But
for the multi-dimensional case, there is not any satisfactory result, whether theoretical
or numerical. Because in this case the problem is non-linear and ill-possed.

We have done some theoretical analysis about this potential inversion problem and
split the original full-way wave equation into the system of one-way wave equations by
using the wave splitting method based on the theory of pseudo-differential operator!6.
In order to make the problem closed, we also transformed the impulse condition (1.3)
into the conditions on the characteristic surface by singularity analysis. We also proved
the stability of the direct problem for the system of equations, treated as Cauchy
problems in the direction of depth.

As the results of wave splitting and singularity analysis the potential inversion
problem of the one-way wave equations is [6]:
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The initial conditions on the surface z = 0 are
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As the results of singularity analysis we get the conditions on the characteristic surface
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v(z,z) = —4Ui(z, z,t = z + 0). (1.18)
where )
B . 9 [ MT B mm
Um =~ sin (n—i—l)’ sm—cos(n+1). (1.19)

If taking different values of n, we can get different orders of approximate one-way
wave equations. For example, if taking n = 1 we get the so-called 15° approximate
equations. And if taking n = 2 we get the so-called 45° approximate equations.

It is important to point out that the order of all above equations is no more than
two for all values of n. So it is very simple to discrete the equations and to do some
theoretical analysis for the corresponding difference equations. On the other hand, the
forms of all equations are the same for all values of n, so it is possible for us to handle
them in a uniform manner. All of these features are valuable for practical computations.

In this paper we construct the absorbing boundary conditions and presented a layer
stripping numerical method to solve the potential inversion problem. Some numerical
experiments performed by this method are illustrated.

2. Absorbing Boundary Conditions

One of the persistent problems in the numerical simulation of wave phenomena is
the artificial reflections that are introduced by the boundaries of the computational
domain. This problem is common to all calculations where artificial boundaries are
introduced to limit the computational size. To remove spurious reflections in a direct
and efficient manner, one would like to specify boundary conditions which absorb energy
incident on the boundaries. According to the above request, we construct the so-called
absorbing boundary conditions.

The construction of the absorbing boundary conditions should obey the following
rule: On the left boundary there is no reflection for the left-going wave, therefore the
right-going wave is zero. And it is the same on the right boundary. But this rule is
difficult to be satisfied strictly, we should only obey it as well as possible.

Now we introduce the construction of absorbing boundary conditions for the inverse
problem.

The original full-way wave equation is:

(52 a2 ga)r =0
If we delete the term of vp which is negligible near the boundaries of computational
ko2
domain, the dispersion relation is: w? — k2 — k2 = 0, that is k, = Fwy/1 — (—I) .
w

It represents the upcoming wave if taking the sign as “+”. And it represents the
downgoing wave if taking the sign as “—7.
Firstly we consider the upcoming wave. The upcoming wave will be full transparent

without reflection if the following dispersion relation for the upcoming wave is satisfied

on the boundaries:
ki\2
k, = 1—-(—=) .
1= (%)
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But there is a term of k2 corresponding to the two-order differential of x in this equation,
the discretization of which on the boundaries will use not only the wavefield inside the
boundaries but also the wavefield outside the boundaries. It is impossible in practical
computation. So we had only to get the boundary conditions approximately, that is, we
should express the square-root under the request that there are only one-order terms
of k;/w. To do this we use the Pade weighted approximation®l, that is, we use the
following rational fraction

P(z)  ap+ a1z

Q(z) by + bz

to approximate the square-root v/1 — z2, where a;,b; are constant values. Now the
dispersion of the upcoming wave can be written as:

k k
a0+a1‘f‘ aO:I:alf

S kyp k
bo + b1 |— bo £ b1 —

w w

If f > 0, the sign is taken as “47, it represents the left-going wave;

If £ < 0, the sign is taken as “—7, it represents the right-going wave.

w
If we write the above relation into differential equations, we get the absorbing
boundary conditions for the upcoming wave:
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We can get the absorbing boundary conditions for the downgoing wave in the same
manner.
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3. Difference Schemes

Difference schemes for integration Uy, D1, U, D and p are constructed by the trape-
zoidal formula:
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where FZ’; is the approximate value of F(iAz,jAz kAt), A2 = F,1 — 2F; + F;_q,
At = Az.

Difference schemes for integrating ¢y and ¢p are explicit, commonly used for solving
1-D wave equations.
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These difference schemes are similar to that constructed for the one-way wave equations!®)
its stability condition for the direct initial value problem is s, At/Az < 1

The truncation error of these difference schemes is O(Az? + Az? + At?),
Now we construct the difference schemes for absorbing boundary conditions. For

convenience, we take the upcoming wave U; at the left boundary as an example. The
condition (2.1) can be written as
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the difference scheme is
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The potential inversion problem formulated in terms of coupled system is numeri-
cally solved by finite difference method constructed above in layer stripping fashion
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The numerical procedure for solving the potential inversion problem is as follows:
1

k+ .
1. Suppose we have U{“ijfl,D’fijfl, U{;fl,D%fl and pij 2§ for all 7 and &.
2

1
. k+s . . .
2. From (3.3) we can obtain p % . For j = 1 we use the first order approximation
ij—5
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3. In order to obtain Ulkij,UZ-’; from (3.1), (3.4) and D’fij,ij from (3.2), (3.5), we

use the predictor-corrector method in which one iteration is needed. v 1 is taken to

o

be *4Uf¢;£1 in accordance with condition (1.18) in the predictor step, and 72(U1ji;£1 +

[717 ) in corrector step where (717” is the value of Ulj obtained in the predictor step.
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k —
and qD(sm)i;rQ1 are obtained by solving (3.2) and (3.5) successively from
2
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are obtained by solving (3.1) and (3.4)

M|,_.l\'>|’—‘

successively from k= J — 1 to k = j.

5. The potential inversion problem is numerically solved layer by layer for j =
1.2.-..

3 )

4. Numerical Experiments

We give some numerical results below. It should be noted that the following is
only a representative and illustrative sample of our results. The impulse response
h(x,t) needed in the inverse problem are generated by solving numerically the forward
problem (1.1 1.3) with the known potential v(z, z). It is worthwhile to point out that
the computation in the inversion is not the reverse of that in the direct problem, because
the equations involved in the direct and in the inverse problems are quite different.

All examples take n = 1 in (1.19) and use Az = 0.1,At = Az = 1/30. The 3-D
plots depict 2-D function v(z, z). The grid number are 30 x 30. In each Figure, (a) is
the model of potential function, (b) is the numerical results of reconstruction.

In Fig. 1, v(z, z) = cos mx cos hrz. The absorbing boundary conditions are imposed
on the x boundaries.

In Figs. 2 and 3, v(z, z) is a mountain like function.

In Fig. 4, v(z,z) is also a mountain like function, but it is discontinuous in the
direction of x.

From the numerical experiments we draw the following conclusions:

1. The proposed method is numerically stable and the numerical results show that
it can reproduce the potentials with satisfactory accuracy.

2. The absorbing boundary conditions in z direction are effective. That is, when the
waves propagate to the boundaries there isn’t notable reflections. The waves transmit
along the previous directions with the previous velocities, there is no notable reflections.
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Fig. 4(a) Fig. 4(b)

3. Almost for all inverted potentials the errors between the jumps of the function
values are very small. The reason for this is that although we do approximate splitting
to the wave equation, the conditions on the characteristic surface are precise, which are
obtained by singularity analysis.

4. The reconstructed potentials are well when the lateral variation is slow. The
reasons for this are as follows. On one side, the discretization of the equations is
very crude because the two order derivative of z is simply replaced by its two order
difference quotient. On the other side, we use the 15° approximate equations which
requires relatively little lateral change.
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