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Abstract

This is a continuation of short communication!*). In [1] a verification of the

implicitization equation for degree two rational Bézier curves is presented which
does not require the use of resultants. This paper presents these verifications in
the general cases, i.e., for degree n rational Bézier curves. Thus some interesting
interplay between the structure of the m x n implicitization matrix and the de
Casteljau algorithm is revealed.
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1. Introduction

In order to investigate implicit representations of parametric curves and surfaces, the
traditional algebraic geometry theory is always used. Recently some research reports,
e.g.l!l, show that the rising Blossoming principlel®3! is more intuitive and efficient than
the method of algebraic geometry for the implicitization. This paper is a cotinuation
of [1].

Given a degree n plane rational Bézier curve

T
P(s) = [Po,P1, -, P,] [(1 _— (?)(1 s ls st (0<s<1), (1)

where P; = (w;z;, w;y;, w;) are the homogeneous Bézier control points. Denote by

P T Yy w
P,|=ww; |z yi 1], (2)
Pj 5 Yy 1
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where P = (z,y, w) is the homogeneous point. Let

P
- (3]
J P,
min(h,k)
Ly = > Lipskr1-1s (4)
I=max(0,h+k-+1-n)
Log Loy Lopn—1
Lyg Lin ... Lipa
F(P,Py,Pi,,Py) = Fon= | | S S PR ()
L, 10 Ln1a +++ Lp_ina

Using polynomial resultants, the implicit equation of (1) can be writtenl*® as [Gold-
man, Sederberg et al., 1984]

flz,y) =det (F) =0. (6)

In the short communication!!! a proof is presented — which does not rely on the
theory of resultants  that f(z,y) = 0 for all points on the degree two rational Bézier
curve, and hence some insight into the determinantal structure of the implicit equation
is given. But in the general cases, i.e., for degree n rational Bézier curves, the proof
is not given yet. This paper will present these verifications, and show that the de
Casteljau algorithmp’zﬂ is very useful to investigate the implicitization equations of
parametric curves.

2. Verifying the Implicitization Equations
We will prove for all points on the degree n rational Bézier curve,

flz,y) =det (F) = 0.

Before the proof we will show the following
Theorem 1. If subdivide the rational Bézier curve (1) at an arbitrary parameter
value o, and denote a part of the curve (1) that corresponds to [0, a] by a new degree n
rational Bézier curve
T

P*(S):[ 3’ TaaP;] [(ls)na (?)(13)7115178” (OSSS]-)v (7)
then we have
a-A(a)-F(P,Po,Py,...,P,) - AT (a) = F(P,Pj, P, P;). (8)

Where A(a) can be shown to be a lower triangular n X n matriz, with the elements

n— y ] : . .
aij:(i_j>ﬁl Tad ! (Za.7:1a27"'7n)7 (9)
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in which

B=1-a. (10)

In order to prove Theorem 1, we need the following two Lemmas.

¢>1(a,b,c,7«):z(“:1> (Hi’k), (11)

Lemma 1. Let

k=0
! —k\(b+k
¢a(a,b,c,r) :Z:O(ZJ <C+k>. (12)
Then
d1(a,b,e,r) = ¢a(a,b,e,r) (0 <71 <a). (13)

Proof. We will perform mathematical induction for a. First, we have
$1(0,b,¢,7) = ¢2(0,b,¢,7).

Now we show that Lemma 1 hold for a = d + 1 provided it hold when a is replaced
by d. In fact, from the postulate of our induction, we have
T
$p1(d+1,bc,r) =

ot [ RS PO [ Ay
S+ ()
-SLEE)En) (0

Thus Lemma 1 is proved.

4

o(d+1,b,¢,1).

Lemma 2.

(14)

r

$1(a,b,0,7) = ¢2(a,b,0,7) = <a+b+ 1).

Proof. By the following identical relation [Abramowitz & Stegun’72, P822]:
T
P (k r—k r

Proof of Theorem 1. In this paper, we set

Cﬁ:O(p>m. (16)
p

Lemma 2 is evident.

Thus (4) can be rewritten as

min(h,k)

Lik= Y Liptkes1-t. (17)
=0
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Also, we denote a n X n metrix E by (6¢+1’j+1), where €;41 j41 is an element of E that

lies in row ¢ + 1 and column j + 1, (i,7 =0,1,---,n — 1). Now let

F(P7P07P17 U 7Pn) - (fh—|—1,k+1)7
F(P,PE, Ta e ,PZ) = (fi*+1,j+1)-

Without loss of generality, we will prove
T *
alafa’ )it1,j+1 = fiv1m

for the case of 7 > j only. First, we have

n—1 9
(@f)is1he1 = Y Gixt pr fhsi ks = D Gist 1 Lnk
h=0 h=0

‘fn—-1—h .
:Z( S )ﬁl hathk.
h—o \ °
let

1B\ [n-1 & "
Upk = (n ) (n )ah““ﬁl“hk (0<h<i, 0<k<y),

i—h j—k
P
Vi = aH—mfllBH—]—Hflfm Pl 7
Py,
0 (i =)
w = ! . .
Z upiLlng (i > j),

h=j+1
_[(n—-1-k n—l—-—m+k
TRm =\ ik JUtl—l—m+k)

Then when i > 7,

j i
w = Z Uhjfl,h+j+1—la
1=0 h=j+1
and hence
n—1 i 3
(afaT)z'+1,j+1 = Z(af)i+1,k+1a£+1,j+l = Z Z Unk Lipk
k=0 k=0 h=0

ik j-1
=3 unLpe + > Y uppLpk +w

k=0 h=0 k=0 h=k+1

(21)

(22)
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ik h i1 i k
= Z Z Upk Zfl,h+k+14 + Z Z Uhk Zfz,h+k+14 +w
k=0 h=0 =0 k=0 h=k+1 =0
ik ko i1k B
=33 unkLipsrsr+ Y, D> Y tnkLipgrr—i+w
k=0 1=0 h—I k=0 1=0 h=k+1

Il
]~
[~]=

<
z
=
=
+
=
+
T

J_ k_itl4k—l
n n L.
:ZZ (l)( >0kzmvzm (6, =0,1,...,n—1). (25)
m

On the other hand, we know that

n i+j+1-k

By the de Casteljau algorithm,

HETIPE )

m=0

—k e
>ﬁ2+]+1 k maum.

Therefore by applying the identity relation

IR [
. S O[89 [ e |

ik i+j+1—k n n n 1 n—m
fragn =2 2. 2 <z><m><kz><i+j+1mk>”m

k=01=0 m=0

(i,7=0,1,--+,n —1). (26)

Now let

(afaT)i+1,j+1 = Z (7) (Z) EtmVim, (27)

0<I<j

1<m<itj+1

I¥m<itj+1
I<m
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. n\(n
fi+1,j+1 =« Z (l) (m> MmUim-

0<I<j
1<m<itj+1
IFm<itj+1
I<m

From (25), it is easy to know that

( | m—1
§z(m) = Opm (m<j+1)
k=l
min(j,m—1) @) J
Eim = > Ohim =8 & =D Oktm (F+1<m<i+1)
k=max(l,l+m—1—1) k=l
(3) !
glm = Z Okim (m>z’—|—1).
\ k=l4+m—1—1

On the other hand, let
1 .
nl(m) (m<j+1)
mm =14 2 (GH1<m<i+1)
”l(fn) (m >1i+1).
Applying Lemma 1 and 2, we have
W min(j,i-l—zj—l—lm) n—1 n—m
m = k=1)\i+j+1—m—k

k=1

. (n—m n—1
_2%<k—m>C+j+1—z—J
=p(n—1=lL,n—mi+1—m,j—1)
~pin—1-mn—1li+1-1,7—m)
=¢on—1—-1l,n—myi+1—m,j—1)
—¢on—1-m,n—1li+1-1,7—m)

J J
1
= Okim — Y, Okim = fl(m)a
k=l k=m

@ _ min(j,i-l—zj—l—lm) n—1 n—m
lim e k—1)\i+j+1—m—k

=¢p1n—1-l,n—mii+1—m,j—1)
:d)g(n*].*l,n*m,i'l‘]-*maj*l):gl(fn?’

i+j+1—m
(3) _ Z n—1 n—m
Tim E—1)\itj+1-m—k

k=l

(28)
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=¢p1n—1—-1l,n—m,0,i+j+1-1—m)
=¢o(n+i—Il—mmn—-1—-400,i+j+1—=1—m) :gl(r?;)

Thus

Eim = Mim (Vla m) (29)

And hence (20) hold, proof of Theorem 1 is completed.

Corollary 1. For any point on the rational Bézier curve (1), we have
f(@,y,w) = det (F) = 0. (30)
Proof. By Theorem 1, we obtain

o - {det (A(a))}?. det {F(P,Py,Py,---,P,)} =det {F(P,P},P},---,P})}

or
o™ - det {F(P,Py,Py,---,P,)} = det {F(P,P,Pt,--- P5)} (0<a<l).
Since
" P
Li,nflELnfl,’iELi,n: <> P; (7;:0’1’...’”*1)’
)
P,
LOO‘P:Pn . L07n72|P:Pn 0
det {F(P,,Py,Py,---,P,)} = : : o
Ln*2,0|P:Pn Ln72,n72‘P:Pn 0
0 0 0
Similarly,
det {F(P(«), Py, P1,---,P;)} =0 (Va).
Therefore
det {F(P,Py,Py,---,P,)} =0
for all s.
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