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NEW APPROACH TO THE LIMITER FUNCTIONS*

Jin Li  Ze-min Chen Zi-giang Zhu
(Beijing University of Aeronautics and Astronautics, Beijing 100083, China)

Abstract

In this paper we discuss three topics on the designing of the limiter functions.
(1) To guarantee the TVD property (2) To maintain enough artificial viscosity. (3)
A method to form TVB limiter which can ensure second order accuracy even at
the extrema of the solution.
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1. Introduction

Since 1980’s, difference schemes with TVD or TVB properties have been used for
more and more CFD problems, especially the following system of conservation laws:

U, + F(U), = 0. (1.1)

The reason is that the TVB property will guarantee the convergence of any subsequence
of the difference solution sequence to a week solution of the differential equation. Ob-
viously if the week solution is unique, then the whole sequence will converge to that
solution.
One of the frequently used TVD scheme is the second order five-point conservative
one:
UMY = U = MNH;jap0 — Hi 1 p9). (1.2)

Here H; iy = H(U , U, Uy, Uly), is consistent with F, i.e, H(U,U,U,U) =

7 7 2

F(U), and could be written as
Hip1p=F(U]") + Qiyr/2 - (F(Ujy,) — F(U)), (1.3)

here Q;1/2 is usually a nonlinear function of U}* |,---, U/, 5, and is called Limiter.

It is this Limiter that has great effect on the scheme. In this paper we will discuss
some principles and methods on how to construct that function in order that the scheme
has desired properties. For simplicity, we begin with the following scalar linear equation
as the model problem:

Ui+a-U; =0. (1.4)

* Received April 16, 1996.
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The corresponding scheme is:
UM =UP —a- MU+ Qiz1y2 - AUy o — ~ Qi1 - AU;i_1/9) (1.5)

here A = %, AUiy12 = Uy — Uj". Without loss of generality, we assume here a > 0.

Although the above simple model is used for the theoretical analysis, the background
problem of this paper is a practical 3-D viscous outer flow one, so some of the numerical
examples are about 3-D flow problems.

In section 2, the conditions on Limiter for TVD property are discussed. In section
3, for solving the problems arising in the practical flow calculation, some ideas on
maintaining proper artificial viscosity are given. In section 4, a method for constructing
a Limiter which will ensure the second order accuracy of the scheme even at the extrema
of the solution while keeping the TVB property is presented. The results of numerical
experiments are provided in section 5.

2. The Basic Conditions for TVD Limiters

Accordiong to the TVD sufficient condition of Harten in [1], if a scheme can be

written as:
Urtt = U+ Gy oAU 1ja — Cf g AU 1 (2.1)
and if
G Cinp 20, Clipp+Crpypp <1 (2.2)

then the scheme is a TVD one.
The scheme (1.5) can be put into the form (2.1) if we choose:

AU1+1/2

Ciil/g =a- >‘(1 + Qi+1/2 AU

Qz 1/2) ng,l/g =0. (23)
Assume that (Q; 11/ is a function of the difference ratio r;,1/o = %7 Le, Qip1/2 =
Q(rit1/2), and the function satisfies:

Q(r)=20 r<0

ry>0 if r>0. (2.4)

Q(r)=1/2 r=1
Furthermore we require the Q(r)
dent of 7, such that for any r,r':

is Lipschitz continuous, i.e, there is a L > 0 indepen-

Q(r) = Q(r)| < L-|r —1'|. (2.5)
Thus, there must be Q(0) = 0, for any r > 0:
Q) =1Q(r) —QO) < L-r (2.6)
Therefore, when a - A < 1+L’ for the coefficient C;”, , in (2.3), we have:
AU,
if /2 < . (2.7)

AU; 19
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1

0<Cyp=a-A1- Qi) < 111 <1 (2.8)
AUit1/2
if ———= >0 from (2.6): 2.9
1
0<Ci11/2§a-)\(1+L-7’i+1/2- ):a)\(1+L)S1
Tit1/2 (2.10)

In consequence, we get the following conclusion:

Theorem 2.1. If the Limiter function Q(r) satisfies condition (2.4) and is Liptchitz
continuous, then when a -\ < here L is the Liptchitz constant, the scheme (1.5)
1s TVD.

The next question is about the accuracy of scheme (1.5), if it satisfies the conditions

1
I+L’

in theorem (2.1). Here the accuracy is in the sense of truncation error.
From Taylor expansion:

h? . A

AUiyrp = Ui~ Ui = h-U; + = U] + FU}” +O(h™h)
! h2 " h3 (3)
AU;_1)3=Ui —=Ui_y =h-U; — S U+ U7+ O(h) (2.11)
r 3R 7h3
AUvifb'/Q =U;i1—Ui2=h-U; - TUZ U( ) + O(h4)

Substituting (2.11) into (1.5) yields:

S MAU; 12+ Qiy1y2 - AUiy1y — Qi1/2 - AU;1)3)
. h?
=U;" —a- A{ T+ Qiyry2 — Qiaye) - Uy + 7(—1 + Qig172 + Qi—1y2) - U,
3

h
+ F(l + Qiv1/2 — Qi—1/2) Ui(3) + O(h4)}- (2.12)

Eq.(2.12) means that to have second order accuracy, we only need:

Qiv12 — Qi—1/2 = O(n?) (2.13)
Qit1/2 + Qi1j2 — 1= 0(h). (2.14)

From the Liptchitz continuity of ), we have:

AU; - 1/2) ( 3/2H AUy, AU 3/2‘

AUit1)2 AU; 11 ™ AUiprp AUy

AU —1/2 AUi73/2'AUi+1/2
AU 1o - AU; 19

Qiv1/2 — Qi—1/2] ‘Q(

=L \ \ = O(h?). (2.15)
In the derivation of the last equality, the expansion (2.11) and the following results are

used:

AUiy1y2, AU; 15 = O(h). (2.16)
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Thus the (2.13) is proved. For the proof of (2.14), note that Q(1) = 1/2, so we have:

Qi - 172 —|Q(5am1t2) — (22,

AUz+1/2 AUi+1/2

AU;i_1/9 — AUjq12
<L- = 0O(h). 2.17
<L AT = 0(h) (2.17)

Similarly |@Q;_1/5 — 1/2| = O(h) can be proved. Notice that all the above expansions
are on the basis of (2.16), i.e. we require here U; # 0 or z; is not an extramum of U.
Otherwise the scheme will degenerate into first order one.

Up to now, we have proved the following conclusion:

Theorem 2.2. If Q(r) satisfies the conditions in theorem (2.1), then except in the
vicinity of the extrama of the solution U, scheme (1.5) has second-order accuracy.

It is not difficult to know that many widely used Limiters satisfy the above condi-
tions. For example, the following:

Minimod: Q(r) = 1/2 - minimod(1, )

here

minimod(1,r) =

min (1,7) ifr>0
r<0

Monotonic: Q(r)y=1/2- 1+r“
MUSCL: Q(r) = 1/2 - max[0, min(2, 2r, 147)].
Superbee: Q(r) = 1/2 - max[0, min(2r, 1), min(r, 2)]

The conditions in the above theorem are relatively easy to meet, so besides the

above Limiters, one can form some new Limiters which will also guarantee the TVD
condition and second order accuracy. Here we want to emphasize that if Q(r) satisfies
the conditions in the above theorems, then the function QM (r) defined by Q(r):

QM (r) = Q(min(r, 1/7)) (2.18)

still satisfies those conditions. The proof is as follows:

First it is easy to see the QM (r) still satisfies condition (2.4), so we only need to
prove:

Lemma 2.3. The QM (r) is Liptchitz continuous with the same Liptchitz constant
L as that of Q(r).

Proof. First, for any 71,79 > 0:

(1) whenm < 1,79 <1

QM (r1) = Q(r) QM () = Q(r2). (2.19)

So the lemma is obvious in this case.
(2) when m > 1, r9 > 1, from the L-continuity of Q(r) and  |ry - 79| > 1:

1

™

[EAESE

™

Q) - QM) =|a(-) - Q[
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™ — T2

~L- <Ll =l (2.20)

T -T2

(3) when g < 1,79 > 1 It can be similarly proved when r; > 1, ry < 1)

Q) - QM) = () - Q)|
gL-%rﬂszl—%;ﬁ. (2.21)

rgfryrg
r2
When ry - r9 < 1, from r% > 1 the above is obvious.

2
T5—T1T |

Because |rg — 11| = | o

|, so we only need to prove \17;;'T2| <

When ry 79 > 1, then r; -9 — 1 > 0, from r; < ry comes r% — 11 -19 > 0. therefor:
P2 — -y —|r oo — 1) =15 —ry rp— 1 oy 1
:r§—2-7’1r2+7’%+1—r%
=(ry — )%+ (1 —r%) > 0. (2.22)

Combine the above inequalities, we have:

<L-

1—7“1-7“2‘ ’I"%—’I"l"l"g

@Mﬁﬁ—QMWMSLﬂ \:LWW—HL (2.23)

T2 T2

So in the case of r1, 79 > 0, the lemma is proved. In the cases of one or both rs less than
0, the corresponding QM will become 0, then the prove is very simple, it is ommited
here. =

From the above theorems and lemma, we know that if the Limiter QM (r) is used
in (1.5), the scheme will still be a second order TVD scheme.

Notice that this Limiter (which we call the Limiter of QM type in the following
discussion) is not the same as the symmetric Limiters of H.C. Yee in [11].

3. The Relation Between the Limiter and the Artificial Viscosity

Numerical viscosity included in almost all of the schemes used in CFD. The central
difference schemes usually have an explicit artificial viscosity term, while the upwind
biased flux spliting schemes include an implicit one sometimes called the scheme vis-
cosity. To include artificial viscosity is not only for the purpose of shock capturing but
also in many cases for the stably converging of the numerical solution. Especially when
the meshes used in the numerical calculation are not fine enough to make the physical
viscosity play the key role in stabilizing the solution.

As mentioned in section 1, the background problem of this paper is a viscous 3-D
static outer flow problem, the Re number is in the order of 10% and the angle of attack
is fairly large. The distribution of pressure is given in Fig.3. When we used flux vector
spliting scheme plus the Monotonic or Minimod Limiter to solve the above problem, the
numerical solution is ‘lowing’ up and down, i.e. changing with the advance of the time
steps (the dashed line in Fig.3) and not converging to a fixed place. Other researchers
carrying out the calculation for the same problem also found similar phenomena.
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In fact, for the scheme (1.5), the sign, size and property of numerical viscosity are

all related to the Limiter. Consider the semidiscrete scheme corresponding to (1.5):
a
Uy = e (AU 172 + Qit1y2 - AUiy1y — Qi 172 - AU; 1 3).

From (2.11), we have the expansion similar to (2.12):

(3.1)

U=—a-U + (a : [(1 = Qiv12 — Qim1y2) — (Qiv1y2 — Qi—1/2) -

u® h ’ ;
(1 + Qiviyz — Qicy2) (}—ZH ' 5} - §Ui ) + O(h?). (3.2)
If Limiter @ satisfies (2.13) and (2.14), the three terms in the square bracket are all

O(h), and the sum of them is in fact the coefficient of the numerical viscosity. To ensure
the stability, the coefficient must be positive. (notice here a > 0)

Now let us analyse this coefficient. From the expansion (2.11), we obtain:

U — AU 1y + AU; 19

57 + O(h?)
U = AUi“”h_QAU“” +O(h?) (3.3)
and:
Ui(3) _ AUip1y — 2AZ;1/2 + AU;_3/9 n

O(h).
From |Qit1/2 — Qi—1/2] = O(h?), omit the higher order terms:

(1= Qigr2—Qicry2) — (Qigrj2 — Qiry2) :

)

U
7
%UI{/ - (]- + Qi+1/2 - Qi*l/?) : Uu .
9. [(1/2-Qi41/2) AU 4 15— (1/2-Q;_172)-AU;_1 5]
AU;11/2—AU;_1/2

w| >

7

1 A3U;

Ty (3.5)
3 AUy

Here A3Ui73/2 = AUi+1/2 - 2AUze1/2 + AUze3/2a A2Uz>1/2 = AUz’+1/2 - AUze1/2-

The omitted terms are higher order ones and will not affect the sign of the main
term, so the right hand side of the above equation should be positive.

Now let us see in what cases the above condition can be violated.
(1) When:

0 < AUjpr72 < AUj_1)2 < AU;_32
it is obvious that in this case, Tit1/2 > 1

(3.6)
Tifl/Q > 1.
If the Limiter @(r) is linear on the interval (1, max(r;;1/2, 7i_1/2)) with the 3 as
the slop, we have:

AU;
(1/2 = Q1) = Q2

AU;
i) oS0z

(AUjt1/2 — AU;—1)2)
AUt/

AUj 172

(3.7)
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(AU;_1 /5 — AU;_3/5)

1/2 —Q,_ =8- . 3.8
(12 Q) = i (38)
Substituting the above two equations into (3.5), the coefficient of numerical viscosity
is just:
A3U; 379
95 — by _Zi32 3.9
53 ma (39)
Ife > % and:
A3Ui73/2
———— <0 3.10
A2U; )9 (3.10)
the value of (3.9) is negative.
If 8 < ¢ and:
Ay
7 >0 3.11
A2U; 9 (3.11)

the value of (3.9) is also negative.

In fact, for the MUSCL Limiter, the (3.7) becomes true if r; /5, 712 < 3.0 with
p=1

For the Superbee Limiter, the (3.7) becomes true if 7, /9, rj_1 /2 < 2.0 with 8 = %

For the Minimod Limiter, the (3.7) is held for any r;, /9, r;_1/o > 1.0 with 8 = 0.

Although the Monotonic Limiter is not a linear function, when ;1 /9, ri_1/2 > 1.0
it varies in the similar way.

Therefore we can say that all the above Limiters can’t ensure the coefficient being
positive under the conditions of both (3.10) and (3.11).

The cases of (3.6), (3.10), (3.11) are just what happened in our calculations. The
pressure curve at the right neighbour of point zy in Fig.3 show that here U > 0,
U" < 0, so comes (3.6). The absolute value of U" first increase, then decrease, i.e.
the value of U®) first is negative then positive, thus make the cases (3.11) and (3.10)
alternately happen in that narrow area. So if the Limiter is not properly designed, the
‘fluctuating’ phenomenon of the numerical solution will occur.

To make the values of (3.9) be always positive, the Limiter of QM type in the last
section was tried, but no satisfactory result has been obtained. Some analysis show that
the reason is the convexity on [0,1] of the basic Limiter Q(r), i.e. for any s,t € [0, 1],
s < t, there always be:

1/2 - Q(s)

Qt) > —=—

(t—s)+ Q(s). (3.12)
This is the common feature of the Limiters from Minimod to Superbee, the equality is
hold only for the Minimod Limiter.

Further analysis indicate that if () is convex, the coefficient of artificial voscosity is
definitely negative under (3.6), (3.11), but if @) is concave, the result may be different.
Let’s see the following example:
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Denote @ = min (|1 - Ti:l/?\, |1 — Ti}l/?\) it is easy to know a = O(h), so we
construct a Limiter as:
1 =1 1 1
Q(s)za-eaz =5 Is (3.13)
e a?

it is obvious: Q(1) = 1/2, and Q(0) = 1/2 - 606—21 is a vary small quantity. To make
(Q(0) = 0 so that the conditions in theorem (2.1) are satisfied, a small smoothness could
be made in the neighborhood of 0, but this will not affect the main property of that
Limiter. For simplicity, we omitted it here.

Thus when r; /9, 7;_1/2 > 1, the corresponding QM Limiter is

1/rig12—1 1/ri 1721
QMi+1/2:1/2-6 a? , QMi,1/2:1/2-e a? . (3.14)

Substituting this into (3.5), now the coefficient is:

QM; 1) — QMiy1s | AU 359
1_2QMi+1/2+2' 1 1 —g'W
Tit1/2 i~1/2
1-1/ri_1 1—1/ripq e
—(1=1/7541/2) (6( /C:2 —1/2) 677( {;HN) )
=1l—e a? - -
1_1/Ti+1/2 1_1/Ti+1/2
1 AU
i) 2 (3.15)
3 A2Uz>1/2
By the definition of a:
(1=1/r;_1/2) (1=1/ri41/2)
B 2 1 1 B 2 1 1
e @ 1Ll e 1] (3.16)
1_1/Ti+1/2 « 1_1/Ti+1/2 (87
From the properties of exponential function, for any k£ > 0:
1 _1
W e« ajO 0. (317)

Because a = O(h), the second and third terms in (3.15) are less than O(h3), so they are
higher order terms and will not affect the sign of the quantity. Omitting those terms,
the quantity in (3.15) become:

1 Ay

1— . 722 3.18
3 AUy (3.18)
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Q

The second term is O(h), so when h is i
small enough, the coefficient is positive. velo
The above example indicate that at T

least the coefficient will be positive when
Q is concave enough. But the Limiter in £
the above example is concave too much | A (R &

and will cause too big artificial viscosity. 'S0 31 |
The Limiter Q(s) could be designed 0 1 =
as in the following shape:
Fig.1
Here @ is linear on [sg, $1] with the slop S > 0, when sy < 1"1-:1/2’ Ti—ll/z < s1, the
coefficient in (3.5) is:
M; 15 — QM; 1 AU; 1 1
R T
Ttz i—1/2  Tit1/2 Ti—1/2
M; 15 — QM; 1 AU; 1 1
1_2QM1'71/2+2'Q i—1/2 Q i+1/2 1 _ i—3/2 i > 7
L—7iy1/2 3 A%Ui 12 Tig12 Tice (3.19)
By the linearity of Q:
2-(QM;_1/3 — QM;y1)5) =2 (Q( ! ) - Q( ! ))
Ti—1/2 Ti+1/2
1 1
=2 ( - ) (3.20)
Ti—1/2  Tit1)2
so for the first case of (3.19), the third term is:
QM;_1 5 — QM,; (== - )
p. L1 B2 _ _gg. Ty el og (3.21)
Tit1/2 N o Tit1/2
for the second case, this term is positive.
By Fig.1 and sg < n-+l1/2’ Ti711/2 < sy, it is obvious that:
1-2QM;y1)9, 1-2QM; 1)y >2-1 (3.22)

combine the above analysis, we know that for both cases in (3.19), the quantity there
will not be less than:

1 A3Ui,3/2
2-1-28— - - —~ 3.23
A3U; 379

That means if we choose I — 3 > é the coefficient of artificial viscosity (if h

C AU )
is small enough) will be positive.
To determine the parameters such as I, 3, sg, s1 properly, we need some preknowl-

1

edge about the feature and property of the solution U, for example, the range of TS
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3U. -
1 the scale of 2y2=#2 etc. But at least the above analysis indicate that the QM

ri_1/2’ A2U;_y 9
type plus concave shape is a right direction to design a Limiter such that it can maintain

adequate artificial viscosity.

With the parameters determined, to implement the program is not difficult. The @)
can be formed on [0,1] as a piecewise polynomial and what we have to do is to calculate
the polynomial coefficients for each piece, afterwards the s = r, or s = % can be used

as the variable to get the value Q(s).

4. A Uniform Second Order TVB Limiter

For TVD schemes there is a common defect that they will degenerate to first order
accuracy near the extrema of U. The reason is (2.16) will no longer be correct at the
extrema and become the following form:

AU’H—I/Q? AU’ifl/Q — O(h2) (41)

In this section we simply use the above result to modify the Limiter in the vicinity of
the extrema to maintain the second order truncation error while only lead to O(h?)
Total Variation increase there. Because there is only finite number of extrema, the
TV increase during the whole procedure of time evolution is bounded by a constant
independent of step size At, and Az, i.e. the scheme is a TVB one.

In the following, the (1.4) is still used as the model equation to discuss the mod-
ification of the Limiter. From (2.12) it is obvious that to make (2.1) second order is
equivalent to make:

) h?
h Ui (Qiz1y2 — Qi-1/2) + =5 Ul (Qiv1)2 + Qi—1/2 — 1) = O(h?) (4.2)

For the scheme at point z;, we first assume that z;  is an extremum point of U. (The

extremum point is easy to be detected in practical calculation by checking whether
AU; _p41/2

AU 1) < 0.) so we have U;fk = 0. From Taylor expansion:

(kh)?
2

—kh - (U — kh - U™ + O(h?)) +

Ui(i)k +O(h?)

(kh)?
2

U, =U! , +k-hU!", +

Ui@k +O(h?)

—kh U, — (kh)? - U®) +

=kh - U, + O((kh)?). (4.3)
Substituting the above into the left side of (4.2), we have:
h2
h-Uj(Qiy1y2 — Qi—1/2) + o U (Qig12 + Qi—1j2 — 1)
h2
=[(1+2k) - Qizrjp+ (1 —2k) - Q12 — 1]? U/ + R,
(4.4)
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here
Ri = (Qiy1/2 — Qi1)2) - O(h - (kh)?). (4.5)

Now let the value of Limiter at i — 1/2, i.e. Q;_1/2 = Q(rj_1/2) be the TVD Limiter
satisfying the conditions in theorem (2.1), but the value at i + 1/2 be:

(1+(2k—1) Qi 1)2) _1- 2Qi 12
1+ 2k 1+ 2k

Qiv1/2 = + Qi 12 (4.6)

It is easy to verify that if R; = O(h?), with the above definition the (4.2) will be
satisfied.
Of course we can choose ;1,2 as the normal TVD Limiter but let:

(1-@Ck+1)-Qit12)  1-2Qi41
1 -2k o 1-2k

Qi-172 = + Qit1/2: (4.7)
this definition can also make (4.2) be satisfied when R; = O(h?).
When xz;, is the extremum point, similar modification can be made either as:
Qi41/2 1s the normal TVD Limiter with:

(1+ 2k = 1) Qiy1y2) 1 -2Qi41)2
Qi-12= T 2% =11 + Qit1)2 (4.8)

or as:
(i—1/2 is the normal TVD Limiter with:

0 (1= (2k4+1)- Qi) 1-2Q; 1)
/2= 1- 2k 12

+Qi—1/2 (4.9)

To ensure the scheme is a TVB one under some conditions, the Limiters should be
modified on the following principle:

Principle 4.1. Between the two Limiters: Q;_ 12, Qiy1/2, the one corresponding
to the bigger AU must be the TVD Limiter with the other modified.

For example, if [AU;_;5| < [AUi41)9|, the Q12 should be the original TVD
Limiter and the @Q;_; /5 could be modified using (4.7), or (4.8).

Now we begin to prove that with the above modified Limiter, the scheme (1.5) is
a uniform second order TVB scheme. In order to avoid confusion, in the following the
modified Limiter defined in (4.6) to (4.9) is denoted by @B, while the TVD Limiter in
section 2 is Q).

In this section, we assume the solution U of equation (1.4) has a compact support on
the z axis, i.e. there are a, 3 € R such that U vanishes outside (a, 3). We also assume
the time upper bound T is a finite number, i.e. we only need to get the solution U (¢, z)
of (1.4) with ¢ < T'. Many practical CFD problems satisfy the above assumptions.

Under the above assumptions, it is obvious that the number of mesh points at x
direction is Ny = %, here B; = f—a. The number of time steps is denoted as Ny = %.
If the CFL number A = % is bounded, i.e. 0 < A1 < A < A9, then we have:
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Theorem 4.1. If the numerical solution of (1.4) has only finite number of isolated
discontinuous points, then the scheme (1.5) with the modified Limiter QB is a TVB
scheme.

Here a point z; is a discontinuous point that means AU; = O(1), and it is a isolated
one that means there should be AU;_1, AU; 11 = O(h)

Proof. In this proof, U, ¢ = 0,1,---, Ny, n = 0,1,---, Ny, denote the numerical
solution of (1.4).

The scheme (1.5) with @B as its Limiter is:

UM =UP —a- MU + QBji1yo - AUip1)o — U | = QBj_1/2 - AU;_19)
=UD!"" + aXMQit1/2 — Q@Biy1)2)
AUy 179 — aMQi172 — @Bi172) - AU; 159 (4.10)
here @ is the TVD Limiter from Which the QB is formed in (4.6) to (4.9), and UD?*! =
Ul —a- MU+ Qiq1/2 - AUjy1/0 — — Qi_1/2 - AU;_y /) is just the value of U; on

n+1 time level when the original TVD lelter is used.
From the TVD property: TV (UD"!) < TV (UD"):

UTL+1 Z ‘UTH-I U277:|11

Ny
<TV(U™) + 20X - Z |Qit1/2 — QBig1y2| - |AU +1/2|
i=1
Ny
+2a)\-Z\Qz>1/2 QB;_ 1/2| |AU; 1/2\ (4.11)

i=1

The last two term in the above inequality can not be combined because the formula used
to calculate @B; /2 at point z; maybe different from the formula for QB(;1)_1/2 at
point z; 1. (For simplicity, we did not introduce different notations for them.) Notice
that between the two Limiter values QB; 112, QB; 1/ associated with point z;, there
is only one which is different from Q’s value.

To estimate the scale of last two terms, note that no matter which formula of (4.6)
0 (4.9) is used, we always have:

|Qiv172 — QBig12| < 12Qi 12 — 1 +1Qit1/2 — Qi1)2] (4.12)

and the above inequality is correct for any k, (In fact, when k = 0, there is a better
estimation.) so from the condition (2.4), there will be:

Qiy1/2 — QBij1/2| < 2. (4.13)

First, assume the numerical solution U" is smooth enough in the interval [z; o, z;;2]
which is the ‘dependent interval’ of the value U
2 are correct here.

, thus all the estimations in section
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From expansion (2.11), no matter whether or not U; = 0, there always be:
AUji1po = AU;_1j5 + O(h?), (4.14)

so if AU;_1 /o = O(h), there must be AU; /o = O(h) too, thus the (2.13) and [Q;_; /2 —
1/2| = O(h) are correct, substituting them into (4.12) lead to:

|Qi+1/2 - QBi+1/2‘ = O(h) (4.15)
Now we have the following conclusion:

if:  |AUii1/2| = O(h)
Qiv1/2 — QBit12| - |AUs 1 o] = O(h?)
From (4.13): (4.16)
if: |AU;y1/0) = O(R®) also:
|Qi+1/2 - QBi+1/2‘ ) ‘AUiJrl/Q‘ = O(h?)

Similarly we can prove that:

Qi—1j2 — @Bj_1)2] - |AU; 12| = O(h?). (4.17)

By the derivation above and in section 2, it is easy to know that the coefficients in the
second order infinitesimal O(h?) are only dependent on the local values of derivatives
of numerical solution U™ and the Lipschitz constant L of TVD Limiter (). In this way,
if U™ is smooth enough on [z; 2, %,12], there is a finite number M > 0, such that:

Qit172 — QBiyijal - |AU; 10| < M - B2

Qi—1j2 — @Bj1)2| - |AU;_1)a| < M - b, (4.18)
It is obvious that the number of points in the smooth region of U" is < Ny = %, SO

the possible increase of total variation:

> o 1Qis1j2 — QBijija| - [AUipry| < Ni- MB?* = By - h

z;, €C

> 1Qic1/2 — @Bi_1ja| - |AU; 13| < Ny - MB? = By - h (4.19)
z;, €C

Here z; € C means the point z; is in the smooth region. By = B; - M is independent
of h.

Now assume the z; is not in the smooth region. From principle (4.1), one of the two
values: [Q;_1/9 — Q@B;_y/2| or |Qi11/2 — @Bj11/2| must be 0, the other is correspond to
the less AU and satisfy (4.13). From the assumption that the discontinuous points are
isolated, this AU must be O(h), so we have:

|Qit1/2 — QBiy1y2] - |AUj 12| = O(h)
|Qi—1/2 — @B; 12| - |AU; 12| = O(h). (4.20)
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Because the number of discontinuous points is finite, so there must be a By independent
of h such that:

Z |Qit1/2 — @Big1y2| - |[AUjp1)2| < Bs - h
z,€DC

Z |Qi—1/2 — QBi_1)2| - |AU;_1/2| < Bs - h. (4.21)
z,eDC

Here z; € DC means the point z; is a discontinuous point of U™.
Substituting (4.19) and (4.21) into (4.11), we have:

TV U™ <TV(U™) +4a-Xy- (By+ Bs)-h=TV(U") + Bg - h (4.22)
here Bg = 4a - Ay - (B4 + Bj), so whenn+1 < Ny = Alt = % . Ait = %%, there should

be:

T By

TB
TV(U™ ) < TV(U®) + Ny - Bg-h =TV (U°) + Tﬁ <TV(U) + (4.23)

1

The righthand side of the above inequality is independent of At, h, i.e. Ny, Ny. =
Remark 1. More caref toul proof could give

h2
Qiv1/2 — QBig1ya] - [AUjpa 2| < M - m
h2
Qi—1/2 — QBi 12| - [AU; 15| < M - m (4.24)

instead of (4.18), so a better TV bound than (4.23) could be found.

Theorem 4.2. If the exact solution of (1.4) is smooth enough, then the scheme
(1.5) with the modified Limiter QB is unformly second order accuracy.

Proof. Here the U denote the exact solution of (1.4).

From (4.2), (4.4), (4.5), the main obstacle of second order accuracy is the R; depend
on k which is the step number from the present point z; to the nearst extremum point
z;_k, and this k can varry from 0 to O(N;) = O(3), so we can not say the scheme is
uniformly second order only from the elimination of the coefficient of O(h?) term in
(4.4). That elimination only give the second order accuracy if k = 0.

Now assume k£ > 0.

When U, , =0, From (2.11), we have:

! h2 "
AUiprj2 =h- Ui + 5 U; + O(h%)

! " h2 "
=h[U, j + khU,_, + O((kh)?*)] + Ui + O(h?)

=kh? - U, ;. + O(k*h?)) + O(h?)) = O(kh?). (4.25)

From (4.14) and above, it holds:

(4.26)

AU;_1/5 — AUi+1/2‘ _ O(%)

Qi =172 < |



New Approach to the Limiter Functions

If the Limiter QB;_,/; is formed by (4.7), we have:

(Q@Biy172 — QBi 12| = |Qiv1/2 — @Bi 12| = ‘

Substituting the above and (4.3) into (2.12):

Urtt =ur —a- )x[h Ui +(QBij1)2 — Q@B;_1 ) - hU;

2(Qiy1/2 —

2k -1

h2
+ (QB’H—I/Q + QBifl/Q — 1)? . Ul” _|_ O(h3)]

=U"—q- A[h, U+ (QBiy1)s — QBi 1p2) - kh? - U + h- (QByy1 s

2

L~ o
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h
— QB;_19) - O((kh)*) + (QBiy12 + QB;_12 — 1)? U} + O(hg)]

2

h
=Uj" —a- )\[h U+ ((2k +1) - QBiy1jo + (1 - 2k) - QB; 15 — 1) - o Uy

B o(%) JO((kh)?) + O(h¥)]
=UP" —a- Al U+ O(h%).

(4.28)

This means the scheme is second order independent of k, i.e. uniformly second order
accuracy. (When k£ < 0 or used (4.6), (4.8) and (4.9) to form @B, the proof are similar)

5. The Numerical Examples and the Conclusion

Although in the above sections we have only discussed the scheme (1.5) which is

for the scalar differential equation (1.4), this scheme can be generalized by some well

known methods such as that in [1] and used for the equation system (1.1).

The first example (In fact, the background problem) is solving a three dimensional

N-S equation around a blunt revolution body with the symmetric section shown in

Fig.2.

Here the angle of attack @ = 20° and the
Mach number of free stream is 0.9. A mesh of
O O type with the points number 77 x 40 x 45
is used for this outer flow field. Our task is to
obtain the distribution of pressure on the body’s
surface. When we use van Leer flux vector split-
ing plus the Limiters from Minimod to Super-
bee, the fluctuating phenomenon occurs and the
numerical solutions do not converge even after
more than 10000 time steps. This phenomenon
can be seen from Fig.3 and Fig.4 which give
the pressure distributions on the lee side of the
above symmetric section of that blunt body.

0.5

-0.5+

-

Fig.2
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Po
' 3
11
]
’I Monotonic Limiter
0.86 T~
solid—3300 step
3 dashed with circle mark—4300 step
0.72 1 dashed with bullet mark—4800 step
.
0.58 1 3
_____ @
O T T . - -. 0- =
0.44 1 i Tl
19
*~—+ + + + > T
03 o 0.2 0.4 0.6 0.8 1

Fig.3 Lee side

The different lines in the same figure above show the results after different time
steps. It is clear that with the limiters above, we can’t get a convergent solution (The
Minimod Limiter gives a similar result and with the Superbee limiter the solution
vibrated so badly that the result omitted here); so we tried and formed the limiter in
section 3. The result is shown in the following figure:

P
Po
17
% MUSCL Limiter
0.86 1
solid-3300 step
dashed with circle mark-4300 step
0.72 1 dashed with bullet mark-4800 step
d
058+  °
0.44 ¢ S i
'~',. --6
0.3 ; ; ; ; S
0 0.2 0.4 0.6 0.8 1

Fig.4 Lee side
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1 y
i Limiter in section 3
0.86 T,
\ solid-3300 step
dashed with circle mark—4300 step
0.72 + dashed with bullet mark—4800 step
Y
0.58 1
| e
0.44 ¢ P S
9
0.3 L + + + > T
0.2 0.4 0.6 0.8 1

Fig.5 Lee side

It could be seen that the distributions of pressure remains unchanged even after
thousands of time steps. The numerical calculation with this limiter indeed gives a
successfully converging result.

Now we turn to the numerical examples for the section 4, i.e. comparison between
the results obtained using a TVD limiter and those using the ‘uniform second order’
limiter constructed from that TVD limiter following the procedure in section 4. For
this purpose, a shock tube problem (discontinuous initial value problem with one di-
mensional Euler equation as governing equation) is solved. The results are shown in
the following figures:

pressure density
47 151
3.3 Ty 1.25 1
\ |
2.6 N e

0.75 1

1.9
0.5 1
SR
1.2 0.25 1
0.5 0 -
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pressure density
A A

4 1.5

3.3 \\\‘ 1.25 1

2.6 \ SN o

0.75 1
1.9
0.5 1
e
1.2 0.25 1
0.5 > 0 > 7

Fig.7

Here the solid curve represents the exact solution.

In Fig.6, the Minimod limiter is used while the Fig.7 is the result with the limiter
formed from Minimod limiter following the formulas and principle in section 4. Al-
though the new limiter makes the discontinuity a little bit of sharper, the vibration on
the pressure curve is stronger.

The result using the TVD limiter discussed in section 2 and that using the limiter
constructed from that TVD limiter are also compared and show the similar difference
as in Fig.6 and Fig.7.

It seems to us that the limiters in section 4 produce less numerical viscosity than the
limiters from which they constructed. Although they did not make remarkable improve-
ment in above numerical experiments, it is worth doing some further investigations on
them.
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