
Journal of Computational Mathemati
s, Vol.17, No.1, 1999, 97{112.
THE FULL DISCRETE DISCONTINUOUS FINITE ELEMENTANALYSIS FOR FIRST{ORDER LINEAR HYPERBOLICEQUATION�1)Che Sun Shu-jie Qin(Department of Mathemati
s, Nankai University, Tianjin 300071, China)Abstra
tIn this paper, the full dis
rete dis
ontinuous Galerkin �nite element methodto solove 2{dimensional �rst{order linear hyperboli
 problem is 
onsidered. Twopra
ti
al s
hemes, Euler s
heme and Crank{Ni
olson s
heme, are 
onstru
ted. Forea
h of them, the stability and error estimation with optimal order approximationis established in the norm stronger than L2{norm.Key words: Hyperboli
 equation, Dis
ontinous F.E.M., Euler s
heme1. Introdu
tionLet �
 be a bounded domain in R2 with pie
ewise smooth boundary �
, [0; T ℄ be atime interval. Consider the �rst-order hyperboli
 problem as following�u�t + �(x; t) � ru+ �(x; t)u = f(x; t); t 2 (0; T ℄; x 2 ~
(t); (1.0a)u(x; t) = g(x; t); t 2 [0; T ℄; x 2 �
�(t); (1.0b)u(x; t) = u0(x); x 2 
: (1.0
)where ru = (�u�x ; �u�y ), �(x; t) = (�1(x; t); �2(x; t)), �
�(t) = fx 2 �
 : �(x; t) � 
 < 0g,
(x) is the outward unit normal to �
; ~
(t) = �
n�
�(t). As usual, �
�(t) is referedto as in
ow boundary at time t, and �
+(t) = �
n�
�(t) is 
alled out
ow boundaryat time t.For simpli
ity in �nite element analysis, suppose that boundary �
�(t) is indepen-dent of t. Thus for all t 2 (0; T ℄ we 
an write�
�(t) � ��; �
+(t) � �+; ~
(t) = �
n�� � 
?and problem (1.0) 
an be written as�u�t + �(x; t) � ru+ �(x; t)u = f(x; t); (x; t) 2 
? � (0; T ℄; (1.1a)u(x; t) = g(x; t); (x; t) 2 �� � [0; T ℄; (1.1b)� Re
eived O
tober 17, 1996.1)The Proje
t was Supported by the National Natural S
ien
e Foundation of China.



98 C. SUN AND S.J. QINu(x; 0) = u0(x); x 2 
: (1.1
)We shall 
onsider the full dis
rete dis
ontinuous Galerkin method for problem (1.1).Set D = 
 � (0; T ℄, Lp(0; T ;X) � Lp(X), p = 2;+1, where X is a Bana
hspa
e. Assume that �i 2 L1(C1(�
)), i = 1; 2; � 2 L1(L1(
)), f 2 L2(L2(
)),g 2 L2(L2(��)); u0 2 L2(
):Dis
ontinuous Galerkin (DG) method is an expli
t method with good stability andsatisfa
tory a

ura
y, thus it has be
ome to be an eÆ
tive pro
edure to solve �rst-orderhyperboli
 problems. DG method was proposed by P. Lesaint and P.R. Raviart in 1978([1℄), then it was developed by C. Johnson, G.R. Ri
hart et al.[2�4℄. In prin
iple, we
an use the DG method based on spa
e-time �nite element dis
retization for domain�
�[0; T ℄ to solve Problem (1.1), but in this 
ase, we must solve a series of dis
retizationproblems de�ned on 3{dimensional subdomain �
� [tn�1; tn℄, n = 1; 2; � � �; As 
omparedwith full dis
rete Galerkin method, the 
omputational s
ale of DG method is larger andthe 
omputing program is more 
omplex.In order to over
ome the weakness of DG method, we now present a simpli�edDG method for time-dependent Problem (1.1), full dis
rete dis
ontinuous Galerkin(FDDG) method, that is, using DG dis
retization only in spa
e variables and using�nite di�eren
e dis
retization in time variable t.One 
an imagine that FDDG s
heme possesses similar stability and 
onvergen
e re-sultes with the DG s
heme (based on spa
e-time �nite element). In fa
t, the theoriti
alanalysis for FDDG s
heme is more 
omplex than that of DG s
heme be
ause of thenon-uniform pro
essing in time and spa
e variables. It seems to us so far that therehas been no paper to establish 
omplete analysis for FDDG s
heme of Problem (1.1).In se
tion 2 two pra
ti
al FDDG s
hemes, Euler s
heme and Crank{Ni
olson (C|N) s
heme, are 
onstru
ted; In se
tion 3 the stability and error estimate for Eulers
heme are derived; In se
tion 4 the theoreti
al results for Crank{Ni
olson s
heme aregiven brie
y; Finally, a numeri
al example is given in se
tiom 5.Throughout 
ontext, we shall use letters C, Ci, ", "i to denote some positive 
on-stants independent of time-step 4t and �nite element mesh parameter h, whi
h havedi�erent values in di�erent inequalities.2. Full Dis
rete Dis
ontinuous Galerkin S
hemesFor 
onvenien
e, let �
 be a polygonal domain, Th = fkg is a quasi{uniform trian-gular partition of �
 with mesh parameter h(0 < h � h0 < 1), k is an element in Th.Let 4t = � be time{step, tn = n� , n = 0; 1; � � � ; N = [T=4t℄. Suppose that on all timelevels t = tn(n = 0; 1; � � � ; N), the same �nite element mesh Th for spa
e domain �
 isadopted. Denote Vh = fv 2 L2(
) : vjk 2 Pr(k);8k 2 Thg; (2.1)where Pr(k) is a set of polynomials with degree � r on k.I. Euler FDDG S
hemeSet �n(x) = �(x; tn). For 8k 2 Th, let �k be the boundary of k whi
h 
onsist ofstraight line sides lj (j = 1; 2; 3) and 
(x) be the outward unit ve
tor normal to �k.
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 Equation99De�ne for 8k 2 Th on time level t = tn,��nj = 1jlj j Zlj �n(x) ds; j = 1; 2; 3; (jlj j is length of lj);��n(x) = ��nj ; for x 2 lj ; j = 1; 2; 3;�kn� = �x 2 �k; ��n(x) � 
(x) < 0	 ; �kn+ = �kn�kn�: (2.2)�kn� and �kn+ are 
alled in
ow and out
ow boundary of element k Respe
tively.Obviously, if lj � �� then lj � �kn� from the de�nition (2.2).Note that vj�k may be dis
ontinuous for v 2 Vh. De�ne for v; w 2 Vh and x 2 �kon t = tn, vn+(x) = lims!0+ v(x+ s��n(x)); vn�(x) = lims!0� v(x+ s��n(x));[vn(x)℄ = vn+(x)� vn�(x);hv; wi�kn� = Z�kn� vwj��n � 
j ds; jvj2�kn� = hv; vi�kn� ; (2.3)hv; wi�n� = X�kn����hv; wi�kn� ; jvj2�n� = hv; vi�n� :Likewise, hv; wi�kn+ , jvj�kn+ , hv; wi�n+ , jvj�n+ 
an be de�ned.And also, denote(v; w)k = Zk vw dx; jjvjj2k = (v; v)k;(v; w) = Z
 vw dx; jjvjj2 = (v; v);(v; w)H1(
) = Xk2Th(v; w)H1(k); jjvjj21 = Xk2Th(v; v)H1(k):Denote qn(x) = q(x; tn) and 4tqn = qn�qn�1� . Problem (1.1) on time t = tn 
an bewritten as 4tun + �n � run + �nun = fn +En1 ; n = 1; 2; � � � ; N; (2.4a)un�j�� = gn; (2.4b)u0 = u0; x 2 
: (2.4
)where En1 is trun
ation error En1 = 4tun � ��u�t �n: (2.5)Omitting En1 from (2.4a) and 
onsulting the de�nition of DG s
heme[2℄, the EulerFDDG s
heme of Problem (1.1) is de�ned as: Find Un 2 Vh, n = 0; 1; � � � ; N su
h that,for ea
h k 2 Th,(4tUn + �n � rUn + �nUn; v)k + h[Un℄; v+i�kn� = (fn; v)k; 8v 2 Pr(k); (2.6a)



100 C. SUN AND S.J. QINUn�j�kn� = gn; on �kn� � ��; (2.6b)(U0 � u0; v)k = 0; 8v 2 Pr(k): (2.6
)Initial-value fun
tion U0 2 Vh is determined by (2.6
). We 
an use (2.6a) and (2.6b)to 
ompute Un element by element starting from those elements where �kn� � ��, whenUn�1 has been solved.Summing (2.6) for k 2 Th, we have(4tUn + �n � rUn + �nUn; v) + Xk2Thh[Un℄; v+i�kn� = (fn; v); 8v 2 Vh; (2.7a)Un�j�� = gn; (2.7b)(U0 � u0; v) = 0; 8v 2 Vh: (2.7
)It is easy to see that Promble (2.6) is equivalent to Problem (2.7).II. Crank{Ni
olson FDDG S
hemeSet tn = (tn�1 + tn)=2, qn(x) = q(x; tn), ~qn(x) = (qn�1 + qn)=2. Then on levelt = tn, (1.1a) 
an be written as4tun + �n � r~un + �n~un = fn +En2 ; n = 1; 2 � � � ; N; (2.8)where the trun
ation errorEn2 = 4tun � ��u�t �n � �n � r(un � ~un)� �n(un � ~un): (2.9)As the de�nition (2.2) introdu
ed in Euler s
heme (2.6), de�ne for 8k 2 Th withboundary lj(j = 1; 2; 3) on t = tn,��(j)n = 1jlj j Zlj �n(x) ds; j = 1; 2; 3;��n(x) = ��(j)n ; 8x 2 lj; j = 1; 2; 3;�kn� = �x 2 �k; ��n(x) � 
(x) < 0	 ; �kn+ = �kn�kn�: (2.10)And also, de�ne for v 2 Vh and x 2 �k on t = tn,vn�(x) = lims!0� v(x+ s��n(x)); [vn(x)℄ = vn+ � vn�:Omitting En2 from (2.8), the Crank{Ni
olson FDDG s
heme of Promble (1.1) isde�ned as: Find Un 2 Vh (n = 0; 1; � � � ; N) su
h that, for 8k 2 Th,(4tUn + �n � r ~Un + �n ~Un; v)k + h[ ~Un℄; v+i�kn� = (fn; v)k; 8v 2 Pr(k); (2.11a)Un�j�kn� = gn; on �kn� � ��; (2.11b)(U0 � u0; v)k = 0; 8v 2 Pr(k): (2.11
)
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hemeFor simpli
ity in notations, set P 4= Pk2Th and S 4= Sk2Th. On level t = tn, setQn� = S �kn�, Qn+ = S �kn+ and denotehv; wiQn� =Xhv; wi�kn� ; hv; wiQn+ =Xhv; wi�kn+ ;B(wn; v;wn�1) 4=X(4twn + �n � rwn + �nwn; v)k + h[wn℄; v+iQn� : (3.1)3.1 StabilityLemma 3.1. There exist 
onstants C? and C?? > 0 independent of k; h; n su
hthat, for 8v 2 Pr(k),jjvjjL2(�k) � C?h�12 jjvjjk; 8k 2 Th; (3.2)��� Z�k v2(�n � ��n) � 
 ds��� � C??jjvjj2k; 8k 2 Th: (3.3)Proof. Estimate (3.2) 
an be derived from the quasi{uniformity of Th and the inverseestimation jjvjjL1(k) � M0h�1jjvjjk for Pr(k). The inequality (3.3) follows from (3.2)and the fa
t jj�n � ��njjL1(�k) �M1hjj�jjL1(C1(�
)).Lemma 3.2. There exists 
onstant C0 > 0 independent of �; h; n su
h that, for8wn, wn�1 2 Vh and 8wn�j�� 2 L2(��),B(wn; wn;wn�1) + C0jjwnjj2 + 12 jwn�j2�n��12 h4tjjwnjj2 + � jj4twnjj2 + j[wn℄j2Qn� + jwn�j2�n+i (3.4)where 4tjjwnjj2 4= (jjwnjj2 � jjwn�1jj2)=� .Proof. By de�nition (3.1),B(wn; wn;wn�1) 4=X(4twn + �n � rwn + �nwn; wn)k + h[wn℄; wn+iQn� : (3.5)It's easy to see that(?1) (4twn; wn) = 12 (4tjjwnjj2 + � jj4twnjj2);(?2) (�n � rwn + �nwn; wn)k = ((�n � 12div�n)wn; wn)k + 12 R�k(wn)2�n � 
 ds;(?3) R�k(wn)2�n � 
 ds = R�k(wn)2 ��n � 
 ds+ R�k(wn)2(�n � ��n) � 
 ds;(?4) R�k(wn)2 ��n � 
 ds = R�kn+(wn�)2 ��n � 
 ds� R�kn�(wn+)2j��n � 
j ds:Substituting (?1)|(?4) into (3.5) we have(?5) B(wn; wn;wn�1) � 12(4tjjwnjj2 + � jj4twnjj2)� jj� � 12div�jjL1(L1(
)) � jjwnjj2+ 12hwn�; wn�iQn+ � 12 hwn+; wn+iQn� + h[wn℄; wn+iQn�� 12P��� Z�k(wn)2(�n � ��n) � 
 ds���:Noting that (wn�; wn�)Qn+ = hwn�; wn�iQn� � hwn�; wn�i�n� + hwn�; wn�i�n+ :



102 C. SUN AND S.J. QINApplying (3.3) to term R�k(wn)2(�n � ��n) � 
 ds and settingC0 = 


� � 12div�


L1(L1(
)) + 12C??;then estimate (3.4) is obtained immediately from inequality (? 5).Theorem 3.1. For 4t(= �) small enough, Euler FDDG s
heme (2:6) has a uniquesolution fUng and the following estimate is true:max0�n�N jjUnjj2 + NXn=1(j[Un℄j2Qn� + jUn�j2�n+ )� � Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g;(3.6)where 
onstant C is independent of �; h.Proof. It is suÆ
ient to show the estimation (3.6). In fa
t, from (2.7) we haveB(Un; Un;Un�1) = (fn; Un); n = 1; 2; � � � ; N:Applying Lemma 3.2 and (2.7b) to the right{side of above equality then using Gron-wall inequality and noting that jjU0jj � jju0jj, we 
an see that provided 4t(= �) issuÆ
iently small su
h that 1� (C0 + 1)� � �0 > 0 andNXn=1 jjfnjj2� � 2jjf jj2L2(L2(
)); NXn=1 jjgnjj2L2(��)� � 2jjgjj2L2(L2(��))then(?6) jjUnjj2 +Pnl=1(j[U l℄j2Ql� + jU l�j2�l+)�� Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g; n = 1; 2; � � � ; N;from whi
h the 
on
lusion (3.6) is proved.If spe
ifying Un+j�+ = 0 and un+j�+ = 0, setting Q 4= S �k = Qn�S�+ and denotingjjU jj24 4= max0�n�N jjUnjj2 + NXn=1 j[Un℄j2Q� (3.7)then estimation (3.6) 
an be written asjjU jj24 � Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g: (3.8)In order to establish the stability of s
heme (3.6) in that norm whi
h is strongerthan jj � jj4, it is ne
essary to make a more �ne analysis for s
heme (2.6).Let Ok be the geometry 
entre of element k 2 Th and wn; wn�1 2 Vh. De�nepie
ewise fun
tions on Thwn? = 4twn + �n � rwn; 8k 2 Th; (3.9)wn = 4twn + �n(Ok) � rwn; 8k 2 Th; (3.10)then wn 2 Vh and it is easy to show thatjjwn � wn? jjk � Cjjwnjjk; (3.11)
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 Equation103jjwnjjk � C(jjwnjjk + jjwn? jjk); 8k 2 Th: (3.12)Lemma 3.3. There exists a 
onstant ~C0 > 0 su
h that, for 8wn, wn�1 2 Vh and8wn�j�� 2 L2(��),B(wn; wn;wn�1) � 34 jjwn? jj2 � ~C0(jjwnjj2 + h�1j[wn℄j2Qn�): (3.13)Proof. By the de�nition (3.1) we haveB(wn; wn;wn�1) =Xf(wn? ; wn? )k + (�nwn; wn? )kg+ h[wn℄; wn+iQn�+Xf(wn? ; wn � wn? )k + (�nwn; wn � wn? )kg: (3.14)Set �1 = jj�jjL1(L1(
)) then(wn? ; wn? )k + (�nwn; wn? )k � (1� ")jjwn? jj2k � �214" jjwnjj2k; (0 < " < 1):It follows from (3.11), (3.12) and Lemma 3.1 that(wn? ; wn � wn? )k �"jjwn? jj2k + C14" jjwnjj2k;(�nwn; wn � wn? )k �C2jjwnjj2k;h[wn℄; wn+i�kn� �C3h�12 j[wn℄j�kn� jjwnjjk�"(jjwn? jj2k + jjwnjj2k) + C44" h�1j[wn℄j2�kn� :Substituting inequalities above into (3.14) and taking " = 112 then (3.13) is derived.Lemma 3.4. There exists a 
onstant C?0 > 0 su
h thatjjUn? jj2 � C?0fjjUnjj2 + h�1j[Un℄j2Qn� + jjfnjj2g; n = 1; 2; � � � ; N (3.15)Proof. Sin
e Un 2 Vh we haveB(Un; Un;Un�1) = (fn; Un); n = 1; 2; � � � ; N:The estimation (3.15) 
an be obtained by Lemma 3.3 and applying "�ab inequalityand (3.12) to term (fn; Un).Now de�ne jjU jj2�;h 4= jjU jj24 + h NXn=1 jj4tUn + �n � rUnjj2�; (3.16)where still spe
ifying Un+j�+ = 0, n = 1; 2; � � � ; N .Theorem 3.2. Euler FDDG s
heme (2:6) is stable in norm jj � jj�;h, that is, for �small enough, the solution fUng of s
heme (2:6) satis�es the following estimate:jjU jj2�;h � Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g; (3.17)



104 C. SUN AND S.J. QINwhere C is independent of h; � .Proof. It follows from (2.7) and Lemma 3.2 that12[4tjjUnjj2 + j[Un℄j2Qn� + jUn�j2�n+ ℄ � jjfnjj2 + C1jjUnjj2 + jjgnjj2L2(��): (3.18)Multiplying (3.15) by �h(� > 0) where � is small so that �C?0 � 14 and adding theobtained inequality to (3.18) we have12� (jjUnjj2 � jjUn�1jj2) + 14 j[Un℄j2Qn� + 12 jUn�j2�+ + �hjjUn? jj2�C2(jjUnjj2 + jjfnjj2 + jjgnjj2L2(��)); n = 1; 2; � � � ; N:Summing above inequalities up for n and using the regularity treatment, then the
on
lusion (3.17) 
an be proved.Comparing Theorem 3.2 with Theorem 3.1 we see that Theorem 3.2 delineates thestability of s
heme (2.6) more deeply sin
e estimate (3.17) shows that the 
hange ofUn along the 
ow �eld dire
tion (�n1 ; �n2 ; 1) is also stable. By the way, we point outthat it seems impossible to establish the same stability results as (3.17) for full dis
reteGalerkin s
heme of Problem (1.1).Remark 1 If the term jj4tUnjj2 is retained by applying Lemma 3.2 to derive (3.18),then the estimate (3.17) 
an be improved asjjU jj2�;h + � NXn=1 jj4tUnjj2� � C(jjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2): (3.19)If taking � = �h (� = 
onst: > 0) and noting thatjj�n � rUnjj2 � 2(jj4tUnjj2 + jj4tUn + �n � rUnjj2)then we 
an get jjU jj24 + NXn=1f� jj4tUnjj2 + hjj�n � rUnjj2g��Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g: (3.20)Remark 2. In the analysis of DG method based on spa
e-time �nite elementdis
rete to solve Problem (1.1), the 
ondition� � 12div� � �0 > 0; (x; t) 2 Dis assumed[2℄. But as we have seen above that the assumption is not ne
essary for EulerFDDG s
heme (2.6).3.2 Convergen
e-order estimationLet u be the solution of (1.1). Assume that u 2 L1(Hr+1(
)) \ C( �D), �u�t 2L2(Hr+1(
)) and �2u�t2 2 L2(L2(
)). The trun
ation error En1 in following equationB(un; v;un�1) = (fn; v) + (En1 ; v); 8v 2 Vh; n = 1; 2; � � � ; N (3.21)
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an be bounded byjjEn1 jj2 =


4tun � ��u�t �n


2 = 1�2 


 Z tntn�1(t0 � tn�1)�2u�t2 dt0���2�C1�


�2u�t2 


L2(Jn;L2(
)); (3.22)where Jn = (tn�1; tn).It follows from (3.2) and (2.7) thatB(un � Un; v;un�1 � Un�1) = (En1 ; v); 8v 2 Vh; n = 1; 2; � � � ; N; (3.23a)(un � Un)�j�� = 0; (3.23b)(u0 � U0; v) = 0; 8v 2 Vh: (3.23
)De�ne ~u(t) : [0; T ℄! Vh su
h that, for 8k 2 Vh,(~u(t)� u(t); v)k = 0;8v 2 Pr(k); t 2 [0; T ℄: (3.24)Set �n = Un� ~un, �n = un� ~un, en = un�Un = �n� �n and take ~un�j�� = gn thenB(�n; v; �n�1) = B(�n; v; �n�1)� (En1 ; v); 8v 2 Vh; n = 1; 2; � � � ; N; (3.25a)�n�j�� = 0; �n�j�� = 0; (3.25b)�0 = 0: (3.25
)Taking v = �n in (3.25a) we haveB(�n; �n; �n�1) = B(�n; �n; �n�1)� (En1 ; �n):Using Lemma 3.2 and the boundary 
ondition (3.25b) we 
an get12[4tjj�njj2 + j[�n℄j2Qn� + j�n�j2�n+ + � jj4t�njj2℄�B(�n; �n; �n�1) +C0jj�njj2 � B(�n; �n; �n�1)+C1(jj�njj2 + jjEn1 jj2): (3.26)Lemma 3.5. There exists a 
onstant C > 0 su
h that4tjj�njj2 + j[�n℄j2Qn� + j�n�j2�n+ + � jj4t�njj2�Cfjj�njj2 + jj�njj2 + hjj�njj21 + j�n�j2Qn� + j�n�j2�n+ + jjEn1 jj2g; n = 1; 2; � � � ; N:(3.27)Proof. In fa
t,B(�n; �n; �n�1) =X(4t�n + �n � r�n + �n�n; �n)k + h[�n℄; �n+iQn� : (3.28)
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e �njk 2 Pr(k), from the de�nition of ~u we have(? ? 1) (4t�n; �n)k = 1� (�n � �n�1; �n)k = 0, 8k 2 Th:Integrating by parts yields(? ? 2) (�n � r�n + �n�n; �n)k = �(�n; �n � r�n)k+((�n � div�n)�n; �n)k + R�k �n�n�n � 
 ds:Noting that (�n(Ok) � r�n)jk 2 Pr(k) and using the inverse estimate of Pr(k) we 
anget(? ? 3) (�n; �n � r�n)k = (�n; (�n(x)� �n(Ok)) � r�n)k � C1jj�njjk � jj�njjk:And also(? ? 4) R�k �n�n�n � 
 ds= R�kn+ �n��n� ��n � 
 ds� R�kn� �n+�n+j��n � 
j ds� R�k �n�n( ��n � �n) � 
 ds:Using Lemma 3.1 and the tra
e inequality we obtain(? ? 5) R�k �n�n( ��n � �n) � 
 ds � (R�k(�n)2j�n � ��nj ds) 12 � (R�k(�n)2j�n � ��nj ds)12� Ch 12 jj�njjL2(�k) � jj�njjk � Ch 12 jj�njjH1(k) � jj�njjk� jj�njj2k + C2hjj�njj21;k:Combining (? ? 1)|(? ? 5) with (3.28) and noting (3.25b) we haveB(�n; �n; �n�1) �C3(jj�njj2 + jj�njj2) + C2hjj�njj21 + h�n�; �n�iQn+� h�n+; �n+iQn� + h[�n℄; �n+iQn��C4(jj�njj2 + jj�njj2 + hjj�njj21) + 14(j[�n℄j2Qn� + jj�n�jj2�n+ )+ 2(j�n�j2Qn� + j�n�j2�n+ ):Substituting above inequality into (3.26), the desired estimate (3.27) is proved.De�ne for n = 1; 2; � � � ; N ,�n? = 4t�n + �n � r�n;8k 2 Th; (3.29a)�n = 4t�n + �n(Ok) � r�n; 8k 2 Th: (3.29b)Lemma 3.6. There exists a 
onstant ~C > 0 su
h thatjj�n? jj2 � ~C1[jj�njj2 + h�1j[�n℄j2Qn� + jjr�njj2 + jj�njj2+ h�1j[�n℄j2Qn� + jjEn1 jj2℄; n = 1; 2; � � � ; N: (3.30)Proof. Taking v = �n in (3.25a) and using Lemma 3.3 we 
an get34 jj�n? jj2 � B(�n; �n; �n�1) + ~C0(jj�njj2 + h�1j[�n℄j2Qn�)= B(�n; �n; �n�1)� (En1 ; �n) + ~C0(jj�njj2 + h�1j[�n℄j2Qn�):From (3.12) we have (En1 ; �n) � 14(jj�n? jj2 + jj�njj2) + C1jjEn1 jj2:
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 Equation107Thus 12 jj�n? jj2 � B(�n; �n; �n�1) +C2(jj�njj2 + h�1j[�n℄j2Qn� + jjEn1 jj2): (3.31)Note that B(�n; �n; �n�1) =X(4t�n + �n � r�n + �n�n; �n)k + h[�n℄; �n+iQn� ;(3.32)(41) (4t�n; �n)k = 0;(42) (�n � r�n + �n�n; �n)k � C3(jjr�njjk + jj�njjk) � (jj�n? jjk + jj�njjk);(43) h[�n℄; �n+iQn� � C4h�12 X j[�n℄j�kn�(jj�n? jjk + jj�njjk):Combining (3.31) with (3.32), (41)|(43) and using "{ab inequality the estimate (3.30)is derived.Theorem 3.3. Let u; fUng be the solutions of Problem (1:1) and Euler FDDGs
heme (2:6) respe
tively. Assume thatu 2 L1(Hr+1(
)) \C( �D); �u�t 2 L2(Hr+1(
)); �2u�t2 2 L2(L2(
)):Then there exists a 
onstant C independent of �; h su
h that, for � small enough,max0�n�N jjenjj2+ NXn=1 j[en℄j2Q� + NXn=1(� jj4tenjj2 + hjj4ten + �n � renjj2)��C(h2r+1 + �2); (3.33)where Un+j�+ = un+j�+ = ~un+j�+ = 0 are spe
i�ed.Proof. Multiplying (3.30) by �h(� > 0) with � proper small and adding this newinequality to (3.27), we 
an get4tjj�njj2 + j[�n℄j2Q + � jj4t�njj2 + hjj�n? jj2�C1fjj�njj2 + jj�njj2 + j[�n℄j2Q + hjjr�njj2 + j�n�j2Qn� + jjEn1 jj2g; n = 1; 2; � � � ; N:Multiplying above inequalities by � then summing up for n and applying Gronwallineqality, re
alling �0 = 0 we obtain for � small enough,jj�njj2 + nXj=1 j[�j ℄j2Q� + nXj=1(� jj4t�jjj2 + hjj�j?jj2)��C2n nXj=1[jj�j jj2 + j[�j ℄j2Q + hjjr�j jj2 + j�n�j2Qn� ℄� + nXj=1 jjEj1jj2�o: (3.34)From (3.22) we havenXj=1 jjEj1jj2� � C3�2 nXj=1 


�2u�t2 


2L2(Jj ;L2(
)) = C3�2


�2u�t2 


2L2(L2(
))



108 C. SUN AND S.J. QINTherefore from (3.34),max0�n�N jj�njj2 + NXn=1 j[�n℄j2Q� + NXn=1(� jj4t�njj2 + hjj4t�n + �n � r�njj2)��C4n NXn=1[jj�njj2 + j[�n℄j2Q + hjjr�njj2 + j�n�j2Qn� ℄� + �2o: (3.35)Moreover, we need to estimate terms jj�njj, jjr�njj, j[�n℄jQ, j�n�jQn� . To this end, let�hu(t) be the interpolation of u(t) in Vh. By the de�nition of ~u and the �nite elementinterpolation theorem we know thatjj�njjk =jjun � ~unjjk = inf'2Pr(k) jjun � 'jjk � jjun ��hunjjk�Chr+1jjunjjr+1;k; n = 1; 2; � � � ; N (3.36)where jj � jjr+1;k 4= jj � jjHr+1(k). Alsojj�njj�k 4= jj�njjL2(�k) = jjun � ~unjj�k � jjun ��hunjj�k + jj�hun � ~unjj�k:A

ording to the result given by [3℄ we havejjun ��hunjj�k � C0hr+12 jjunjjr+1;k:Thus using Lemma 3.1 and triangle inequality to term jj�hun � ~unjj�k we 
an getjj�njj�k � C1hr+12 jjunjjr+1;k: (3.37)Hen
e j[�n℄jQ � C2hr+12 jjunjjr+1;
: (3.38)Sin
e r�n = r(un ��hun) +r(�hun � ~un);we 
an get from (3.36) jjr�njjk � C3hrjjunjjr+1;k: (3.39)Substituting (3.36)|(3.39) into (3.35) to obtainmax0�n�N jj�njj2 + NXn=1 j[�n℄j2Q� + NXn=1(� jj4t�njj2 + hjj4t�n + �n � r�njj2)��C4(h2r+1 + �2): (3.40)Noting that jj4t�njj2k � 1� ZJn 


�u�t 


2k dt:
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 Equation109By the regularity analysis[5℄ we 
an getNXn=1 jj4t�njj2� � C5h2r+2jj�u�t jj2L2(Hr+1(
)): (3.41)Thus from (3.35) and applying triangle inequality, the 
onvergen
e order estimate (3.33)is obtained.The 
onvergen
e order given by (3.33) is optimal sin
e error �n � ren and [en℄Q are
onsidered. 4. Crank{Ni
olson FDDG S
hemeApplying the treatment analogous to that used in se
tion 3 for Euler s
heme (2.6),we 
an establish the theoreti
al analysis for C|N FDDG s
heme (2.11). Here we onlygive some 
on
erned results on the stability and error estimation.De�neG(wn; v;wn�1) =X(4twn + �n � r ~wn + �n ~wn; v)k + h[ ~wn℄; v+iQn� ; (4.1)where the de�nitions of notations ~wn; �n; �n; �kn�; � � � ; Qn� have been given in x2.Obviously, the C|N s
heme (2.11) 
an be written as: �nd Un 2 Vh, n = 0; 1; � � � ; N ,su
h that G(Un; v;Un�1) = (fn; v); 8v 2 Vh; n = 1; 2; � � � ; N (4.2a)Un�j�� = gn; (4.2b)(U0 � u0; v) = 0;8v 2 Vh: (4.2
)Taking v = ~wn in G(wn; v;wn�1) and noting that (4twn; ~wn) = 124tjjwnjj2, we 
anget Lemma 4.1. There exists a 
onstant C0 > 0 su
h that, for arbitrary wn; wn�1 2 Vhand wn�j�� 2 L2(��),G(wn; ~wn;wn�1) + C0jjwnjj2 + 12 j ~wn�j2�� � 12(4tjjwnjj2 + j[ ~wn℄j2Qn� + j ~wn�j2�+): (4.3)De�ne pie
ewise fun
tions on Th for n = 1; 2; � � � ; N ,~Un? = 4tUn + �n � r ~Un; 8k 2 Th; (4.4)~Un = 4tUn + �n(Ok) � r ~Un; 8k 2 Th; (4.5)where Ok is the geometry 
entre of element k.Lemma 4.2. Let fUng be the solution of s
heme (2:11) then there exists a 
onstant~C > 0 su
h thatjj ~Un? jj2 � ~Cfjj ~Unjj2 + h�1j[ ~Un℄j2Qn� + jjfnjj2g; n = 1; 2; � � � ; N: (4.6)By Lemma 4.1, 4.2 and using the similar argument to prove Theorem 3.2 in x3 we
an obtain



110 C. SUN AND S.J. QINTheorem 4.1. C|N FDDG s
heme (2:11) has a unique solution fUngN0 whi
hsatis�es the following stability estimation: for � small enough,max0�n�N jjUnjj2 + NXn=1 j[ ~Un℄j2Q� + h NXn=1 jj4tUn + �n � r ~Unjj2��Cfjjf jj2L2(L2(
)) + jjgjj2L2(L2(��)) + jju0jj2g; (4.7)where Un+j�+ = 0 (n = 1; 2; � � � ; N) are spe
i�ed.Finally, applying the analogous approa
h used in x3 to establish Theorem 3.3 we
an prove the following theorem.Theorem 4.2. Let u; fUngN0 be the solutions of Problem (1:1) and C|N s
heme(2:11) respe
tively. Assume thatu 2 L1(Hr+1(
)) \C( �D); �u�t 2 L2(Hr+1(
)); �2u�t2 2 L2(H1(
))and �3u�t3 2 L2(L2(
)). Then for � small enough,max0�n�N jjenjj2 + NXn=1 j[~en℄j2Q� + h NXn=1 jj4ten + �n � r~enjj2)� � C(h2r+1 + �4); (4.8)where 
onstant C is independent of �; h.5. A Numeri
al ExampleConsider the following hyperboli
 problem�u�t + �u�x = f(x; t); (x; t) 2 (0; 1℄ � (1; 2℄; (5.1a)u(x; 1) = u0(x); x 2 [0; 1℄; (5.1b)u(0; t) = g(t); t 2 [1; 2℄: (5.1
)where f(x; t) = 1"(1 � e�1=")(1� x� t)e�(1�x)t=";u0(x) = (1� e�(1�x)=")=(1 � e�1=");g(t) = (1� e�t=")=(1 � e�1="):The exa
t solution of (5.1) isu(x; t) = (1� e�(1�x)t=")=(1 � e�1="): (5.2)Take h = 1M , 4t = � = 1N where M;N are two positive integers. Let xi = ih,i = 0; 1; � � � ;M , Ii = [xi�1; xi℄ and tn = 1 + n� , n = 0; 1; � � � ; N . DenoteP1(Ii) = fv = ax+ b; a; b 2 R; x 2 Iig; i = 1; 2; � � � ;M;
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 Equation111Vh = fv 2 L2(0; 1); vjIi 2 P1(Ii); i = 1; 2; � � � ;Mg:The Euler FDDG s
heme for Problem (1.1) is as follows: Find Un 2 Vh, n =0; 1; � � � ; N , su
h that, for element Ii,�Un � Un�1� ; v�Ii + (Unx ; v)Ii + [Un(xi�1)℄ � v+(xi�1) = (fn; v)Ii ;8v 2 P1(Ii); n = 1; 2; � � � ; N; (5.3a)(U0; v)Ii = (u0; v)Ii ;8v 2 P1(Ii); (5.3b)Un�(0) = gn; (5.3
)where Unx = �Un�x , [Un(xi�1)℄ 4= Un+(xi�1)� Un�(xi�1).Let 'i�1(x), 'i(x) be the basis fun
tions of P1(Ii) satisfying'l(xs) = Æls; l; s = i� 1; ithen Un(x) 
an be written asUn(x) = Un+(xi�1)'i�1(x) + Un�(xi)'i(x); x 2 Ii; i = 1; 2; � � � ; N: (5.4)Clearly, Un(x) 
an be solved element by element in order I1; I2; � � � ; IN from (5.3).Taking " = 10�3 and 
hoosing M = 103; N = 10, we 
omputed the solution fUngN0of FDDG s
heme (5.3).To 
ompare the numeri
al results with standard Galerkin method, we also solvedProblem (5.1) by full dis
rete Euler Galerkin s
heme.Some numeri
al results at time t = 2(n = 10) are given in following table. (For thevalues of solution Un(x) of Euler FDDG s
heme at node x = xi, we spe
ify UN (xi) 4=UN� (xi).) Table ( at t=2.0 )x exa
t solution FD{DG solution Galerkin solution0 1 1 10.5 1 1 10.93 1 0.99997 0.999970.94 0.99995 0.99989 0.999750.95 0.99966 0.99950 0.998130.96 0.99752 0.99723 0.986210.97 0.98168 0.98201 0.898560.98 0.86464 0.87379 0.264081 0 0.08530 �0:7324From the results above we see that FDDG s
heme is better than standard Galerkins
heme. Spe
ially, in the neighborhood x = 1 where the exa
t solution u(x; 2) presentsrapid 
hange from 1 & 0. The solution of FDDG s
heme 
an approximate the exa
tsolution still, but the solution of standard Galerkin method is of instable so that it 
annot simulate the exa
t solution of Problem (5.1).
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