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Abstract

In this paper, the full discrete discontinuous Galerkin finite element method
to solove 2—dimensional first—order linear hyperbolic problem is considered. Two
practical schemes, Euler scheme and Crank—Nicolson scheme, are constructed. For
each of them, the stability and error estimation with optimal order approximation
is established in the norm stronger than L? norm.
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1. Introduction

Let © be a bounded domain in R? with piecewise smooth boundary 02, [0,T] be a
time interval. Consider the first-order hyperbolic problem as following

Z—: + B(z.t) - Vu + oz, t)u = f(z,t), te(0,T],2¢eQ(t), (1.0a)
u(z,t) =g(z,t), te€[0,T],z € 00 _(t), (1.0b)
u(z,t) =uo(z), =z € Q. (1.0c)

where Vu = (g—g, g—’;), Bz, t) = (br(z,t), Ba(z,t)), ON_(t) = {z € 0N : B(z,t) - v < 0},
v(z) is the outward unit normal to 92 Q(t) = Q\IN_(t). As usual, dQ_(t) is refered
to as inflow boundary at time ¢, and 0Q4 () = IQ\0N_(¢) is called outflow boundary
at time ¢.

For simplicity in finite element analysis, suppose that boundary 9Q_ () is indepen-
dent of ¢. Thus for all ¢ € (0,7] we can write

D0 (1) =T_,00, (1) =T, Q) = O\ = 0~
and problem (1.0) can be written as

ou

5 + B(z,t) - Vu+ o(z,t)u = f(z,t), (z,t) € Q" x(0,7T], (1.1a)
u(z,t) = g(z,t), (x,t) el x][0,T], (1.1b)
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u(z,0) = ug(zr), = €. (1.1c)

We shall consider the full discrete discontinuous Galerkin method for problem (1.1).

Set D = Q x (0,7], LP(0,7;X) = LP(X), p = 2,400, where X is a Banach
space. Assume that 3; € L®(CY(R)), i = 1,2; o0 € L®(L®(Q)), f € L*(L%(9Q)),
g € L*(L*(T.)); ug € L2(R).

Discontinuous Galerkin (DG) method is an explict method with good stability and
satisfactory accuracy, thus it has become to be an effictive procedure to solve first-order
hyperbolic problems. DG method was proposed by P. Lesaint and P.R. Raviart in 1978
([1]), then it was developed by C. Johnson, G.R. Richart et al.2=4. In principle, we
can use the DG method based on space-time finite element discretization for domain
Q x[0,T] to solve Problem (1.1), but in this case, we must solve a series of discretization
problems defined on 3-dimensional subdomain Qx [t,, 1,%,], n = 1,2,---; As compared
with full discrete Galerkin method, the computational scale of DG method is larger and
the computing program is more complex.

In order to overcome the weakness of DG method, we now present a simplified
DG method for time-dependent Problem (1.1), full discrete discontinuous Galerkin
(FDDG) method, that is, using DG discretization only in space variables and using
finite difference discretization in time variable .

One can imagine that FDDG scheme possesses similar stability and convergence re-
sultes with the DG scheme (based on space-time finite element). In fact, the theoritical
analysis for FDDG scheme is more complex than that of DG scheme because of the
non-uniform processing in time and space variables. It seems to us so far that there
has been no paper to establish complete analysis for FDDG scheme of Problem (1.1).

In section 2 two practical FDDG schemes, Euler scheme and Crank—Nicolson (C—
N) scheme, are constructed; In section 3 the stability and error estimate for Euler
scheme are derived; In section 4 the theoretical results for Crank—Nicolson scheme are
given briefly; Finally, a numerical example is given in sectiom 5.

Throughout context, we shall use letters C, C;, €, €; to denote some positive con-
stants independent of time-step At and finite element mesh parameter A, which have
different values in different inequalities.

2. Full Discrete Discontinuous Galerkin Schemes

For convenience, let € be a polygonal domain, 7;, = {k} is a quasi uniform trian-
gular partition of Q with mesh parameter h(0 < h < hg < 1), k is an element in 7j.
Let At = 7 be time-step, t" =n7,n=0,1,---, N = [T/At]. Suppose that on all time
levels t = #"(n = 0,1,---, N), the same finite element mesh 7}, for space domain Q is
adopted. Denote

Vi = {v € L*(Q) : v|y € P.(k),Vk € Tp}, (2.1)

where P,(k) is a set of polynomials with degree < r on k.

I.  Euler FDDG Scheme

Set g"(z) = B(x,t"). For Yk € Ty, let Ok be the boundary of k& which consist of
straight line sides [; (j = 1,2,3) and y(z) be the outward unit vector normal to Ok.
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Define for Vk € T, on time level ¢ = ",

1
,3}1 = |l_/ B"(x)ds, j=1,2,3,(|l;] is length of [;),
il
B (z) =B}, forz €ly,j =1,2,3,
k"™ = {z € Ok, " () - y(x) <0} ,OkY = OK\Ok™ . (2.2)
Ok™ and Ok'} are called inflow and outflow boundary of element & Respectively.
Obviously, if {; C I then [; C 0k” from the definition (2.2).

Note that v|gr may be discontinuous for v € Vj. Define for v,w € V}, and = € 0k
ont=t",

o (z) = lim v(z + sB"(z)), o"(z)= lim v(z + sp"(z)),

s—0+ s—0—
[v"(z)] = v} (z) — v"(z),
(v, w)ppn = /E)k" vw|B" - | ds, |v|(29k11 = (v,v) k", (2.3)
('Ua'U))Fj‘ = Z <an>8kﬁa |U|12“j‘ = <Uav)rf-
ok™ CT_

Likewise, (U,U))aki, \v\aki, (U,U))r;, \v\pi can be defined.
And also, denote

.0 = [ owds, o] = @),

(v,0) = [ owda, o] = (v,0),
Q

(an)Hl(Q) = Z (an)Hl(k)a HUH% = Z (vaU)Hl(k)'
keT, keTh

n—1

Denote ¢"(z) = ¢(z,#") and Aq" = ©—9"— . Problem (1.1) on time # = " can be

T

written as

N + " V" + o = "+ EY, n=12--- N, (2.4a)
u . =g", (2.4b)
u’ = g,z € Q. (2.4c)

where ET is truncation error

8“)". (2.5)

El = A" — (=
1 tu (815

Omitting E7 from (2.4a) and consulting the definition of DG scheme?| the Euler
FDDG scheme of Problem (1.1) is defined as: Find U™ € V},, n =0,1,---, N such that,

for each k € Ty,

(AU + 6" -NVU" + 0"U",v)g + (U], o)k = (", 0)k, Vv € Pp(k),
(2.6a)
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Ul|ggn = ¢", on K" CT_, (2.6b)

(U —ug,v), =0, Yo e P(k). (2.6¢)
Initial-value function U® € V, is determined by (2.6¢). We can use (2.6a) and (2.6b)

to compute U" element by element starting from those elements where 0k™ C I'_, when

U™~ ! has been solved.
Summing (2.6) for k& € Ty, we have

(AU + 8" VU™ +0"U™ v) + > ([U"],vp)onn = (f"0), Vv €V,

keTh (2.7a)
Ul = g, (2.7b)
(U° —ug,v) =0, Yv€EV,. (2.7¢)

It is easy to see that Promble (2.6) is equivalent to Problem (2.7).

II. Crank-Nicolson FDDG Scheme

Set t, = (" ' +)/2, qu(z) = q(z,tn), () = (¢° " + ¢")/2. Then on level
t = ty, (1.1a) can be written as

N + By - Vi +opt" = fp+ EY, n=12--- N, (2.8)

where the truncation error

0
Ey = AN — (8—1:)71 — Bn - V(uy — @p) — op(uy —a"). (2.9)

As the definition (2.2) introduced in Euler scheme (2.6), define for Vk € T;, with
boundary /;(j = 1,2,3) on t = t,,

iy 1 )
57(1:]) - |l_/l /Bn(x) dS, J = 172737
J J

Bn(x) =BV, Veel;, j=1,2,3,

n

Ok™ = {z € Ok; B, (z) - y(z) < 0}, Ok" = Ok\OK". (2.10)
And also, define for v € Vj, and ¢ € 0k on t = t",

v (2) = T (e + (@), [ ()] = o} "

Omitting EZ from (2.8), the Crank—Nicolson FDDG scheme of Promble (1.1) is
defined as: Find U" € V}, (n =0,1,---, N) such that, for Vk € Ty,

(AU™ + By - VU™ + 0,0, 0)g + (U™, 0 a6 = (fn, 0)s Yo € Pr(k),
(2.11a)
U71|3kg = gn, on Ok™ C T, (2.11b)

(U —ug,v), =0, Yve P(k). (2.11c¢)
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3. The Analysis for Euler FDDG Scheme
For simplicity in notations, set ) = > and U = U . On level t = ", set
kETh keTh
Q" =UOok", Q' =JOk"} and denote

(v, w)gr =Y (v, w)akn , (v, w)Qr =Y (v, W)k

B(w",v;w™ ) £ 3 (A" + B V' + o™ w", v)g + ([w"], v )gn -
(3.1)
3.1 Stability

Lemma 3.1. There exist constants C* and C** > 0 independent of k,h,n such
that, for Vv € P, (k),

1
vllz2 k) < C*h2][v]lk, VK € Th, (3.2)
\/ (6"~ B") - yds| < C|wllE, VE € Th (3.3)

Proof. Estimate (3.2) can be derived from the quasi—uniformity of 7;, and the inverse
estimation [|v|| e gy < Moh™ '[v||y for P.(k). The inequality (3.3) follows from (3.2)
and the fact [|8" — 8" |1 0r) < M1h[[B]] L~ (c1(0)-

Lemma 3.2. There exists constant Cy > 0 independent of T,h,n such that, for
Vu", w ! € Vi, and Yw™ | € L3(T.),

1
Blw",w"; 0" ") + Collu"||* + 5| [fn
1
> | Dillw P+ A" Pl + o [F] - (3.4)
A
"2 2

where Aqf|w [Jw™][? = [|w™1]2) /7.
Proof. By definition (3.1),

B(w", w";w" ') & Z(Atw” + 8" - Vw" + o"w", w"), + ([w"], w)on . (3.5)

It’s easy to see that
(x1) (D™ w™) = 5(Al[w]|* + 7| A7),
(*2) (A" Vw" +o"w",w")p = ((o" — 1dlvﬁn)w w")k + 5 fak )28" - yds,
(*3)  Jop(w ) B yds = [ (w ) ﬁn yds + [o(w™)? (8" — ﬂ”) v ds,
(x4)  fop(w )2B" -y ds = fak“ 26" -y ds — fakﬁ wi)Q\ﬂn"Y\ds-
Substituting (x1) (x4) into (3 5) we have
(%

5)  Bw",w"w" ") > (w1 + 7l[Dew™|P) — [lo — 5div Bl oo (pee () - ™|
1 L, . .
+%<w yw?)oy — g{wh, wion + ("], wh)on
S]] @nEe - )y,
ok

Noting that

(W, w)gn = (W, w')gn — (W, w")pn + (W, wW" )rn.
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Applying (3.3) to term [, (w™)?(B" — ") - yds and setting
. 1 *k
Co = Ha——dlvﬂH + 507,

then estimate (3.4) is obtained immediately from inequality (x 5).
Theorem 3.1. For At(= 1) small enough, Euler FDDG scheme (2.6) has a unique
solution {U"} and the following estimate is true:

OI<Ha<XNHU”H2+Z (0™[Gn + U Fa)r < CLUIFIZ2 120y + 1912120 y) + lluol P,
n=1
(3.6)

where constant C is independent of T, h.
Proof. Tt is sufficient to show the estimation (3.6). In fact, from (2.7) we have

B(UTL)UTL’UTL*I):(fTL,UTL)’ n:1727"'7N'

Applying Lemma 3.2 and (2.7b) to the right side of above equality then using Gron-
wall inequality and noting that |[U°|| < ||u||, we can see that provided At(= 7) is
sufficiently small such that 1 — (Cy + 1)7 > po > 0 and

N N
YoMPT < 201220, 2 9" 17207 < 2M9lF 22
n=1 n=1

then

(x6) 1012+ i (015 + U3 )7

SC{HfH%z(Lz +Hg|\L2 2y Tl n=1,2,--- N,
from which the conclusion (3.6) is proved
If specifying U7 |, = 0 and v/} |;, = 0, setting Q SUok=Q" U I’y and denoting

HUHA— max_[|U"]|? +Z U"lgT (3.7)

n=1

then estimation (3.6) can be written as

U2 < C{IFlZ2 o) + NallEe oy + [uol - (3.8)

In order to establish the stability of scheme (3.6) in that norm which is stronger
than || - ||a, it is necessary to make a more fine analysis for scheme (2.6).
Let O; be the geometry centre of element k& € 7, and w",w"~' € Vj. Define
piecewise functions on T
Wl = Al + BVl k€T, (3.9)
w" = ANyw" + " (Og) - Vw", Vk € Ty, (3.10)

then w™ € V}, and it is easy to show that

lw" = wille < Cl|w"|lk, (3.11)
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|lw”[lk < CUlw™ |k + [[willk), Yk € Th. (3.12)

Lemma 3.3. There exists a constant Cy > 0 such that, for Yw™, w™ ' € Vj, and
Vu" [ € L2(T),

3 ~
B(w",w"w" 1) > Zfwil] = Co(llw"[|* + b~ H[w"]gn)- (3.13)

Proof. By the definition (3.1) we have

B(w", w™w") =Y {(wi, wi)g + (0w wi)i} + (W], w})on
+ D {(wd w" — wl) + (0" w", w" —wl)i}. (3.14)

Set 01 = HUHLOO(LOO(Q)) then

0.2

(e + (0"l > (1= )l — T E, (0 < e <)

It follows from (3.11), (3.12) and Lemma 3.1 that

1
(wit, w" —wi)g <ellwll[i + 2= [lw” [

(0" w", w" — w}) <Collw"|[},

l n n
([w"],wlt)orn <C3h™ 2| [w"][agn ||w" |k
Cy

<e(lfwylli + [lw"llk) + 5

h71|[wn]|¢29k’1-

Substituting inequalities above into (3.14) and taking € = 75 then (3.13) is derived.
Lemma 3.4. There exists a constant Cy > 0 such that

U212 < G312+ b= H[U™1Gn + 1P}, n=1,2,--- N (3.15)
Proof. Since U" € V), we have
B(Un’gn;Unfl):(fn’Qn)’ ’I’L:].,2,"',N.

The estimation (3.15) can be obtained by Lemma 3.3 and applying € — ab inequality
and (3.12) to term (f",U").
Now define

N
UG4S IUIA +B D IAU" + 8" - VU7, (3.16)
n=1

where still specifying Ut |p, =0,n=1,2,---,N.
Theorem 3.2. Fuler FDDG scheme (2.6) is stable in norm || - ||, that is, for T
small enough, the solution {U™} of scheme (2.6) satisfies the following estimate:

U130 < CUI T2 qr2g) + 1912 (r2q y) + uol P, (3.17)
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where C' is independent of h, T.
Proof. Tt follows from (2.7) and Lemma 3.2 that

1
ST+ UG + U2 [E] < 1P+ CollU™ 2 + 19" 2 e - (3.18)

Multiplying (3.15) by ah(a > 0) where « is small so that aC§ < 1 and adding the
obtained inequality to (3.18) we have

_ 1
(lom)* = o1 + 5

<Co([[U™)12 + 1 £1? + Hg”H%Q(L)), n=12---,N.

- (0711 + 5107 %, -+ k]|

Summing above inequalities up for n and using the regularity treatment, then the
conclusion (3.17) can be proved.

Comparing Theorem 3.2 with Theorem 3.1 we see that Theorem 3.2 delineates the
stability of scheme (2.6) more deeply since estimate (3.17) shows that the change of
U™ along the flow field direction (57, 5%, 1) is also stable. By the way, we point out
that it seems impossible to establish the same stability results as (3.17) for full discrete
Galerkin scheme of Problem (1.1).

Remark 1 If the term ||A;U"||? is retained by applying Lemma 3.2 to derive (3.18),
then the estimate (3.17) can be improved as

N
U1+ 7 D 18U P71 < CUI 12120y + 19122y + [luol[*)- (3.19)
n=1

If taking 7 = ph (u = const. > 0) and noting that
18" - VU2 < 2| 80" + ||8U" + 67 - VU )

then we can get
N
1U[[A + D_ATlAU" P + 18" - VU [P}
n=1

<C{If 17220y + g7 r2y + [uoll}- (3.20)

Remark 2. In the analysis of DG method based on space-time finite element
discrete to solve Problem (1.1), the condition

1
a—gdiVBZ(xo >0,(z,t) €D

is assumed!?l. But as we have seen above that the assumption is not necessary for Euler
FDDG scheme (2.6).
3.2 Convergence-order estimation

Let u be the solution of (1.1). Assume that u € L®(H"'(Q)) N C(D), % €

L?(H™1(Q)) and %QT;‘ € L*(L*(Q)). The truncation error ET in following equation

B, v;u" ") = (f",0) + (B, v), YveV,, n=12---.N (3.21)
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can be bounded by

1B7 2 =HAtu” - (

nl
H/;nl t 82

Cer 57 | 1o sy (3.22)
where J,, = ("1, 7).
It follows from (3.2) and (2.7) that
BW" —U" v;u™ ' —U" ") = (EMv), YoeV, n=1,2---,N,
(3.23a)
(u" = U")-|r. =0, (3.23b)
(W’ —U%w) =0, VveV, (3.23¢)
Define a(t) : [0,T] — V}, such that, for Vk € V},,
(a(t) —u(t),v)r = 0,Yv € P(k),t € [0,T]. (3.24)

Set " =U"—a", " =u"—a", " =u" —U" =" —&" and take 4" | = ¢" then

B(é ,Uéhn 1) B(TI UTI 1)_(E?7U)7 VUEVh,n:1,2,---,N,

(3.25a)
671‘1"7 =0, 7771|F7 =0, (325b)
& =o. (3.25¢)
Taking v = £™ in (3.25a) we have
B(E",€" ") = B, €% ) — (BT €).
Using Lemma 3.2 and the boundary condition (3.25b) we can get
1 n n n n
SAE P+ [[€"Gn + 18217y + 714" 7]
B(E", "6 + Col €] < B, €0 )
+ L€ + 11 ETIP). (3.26)

Lemma 3.5. There exists a constant C > 0 such that

A€ + 1€"MGn + 1€ [Fn + Tl A"

<CLUIE™ 1P+ 1" 117 + ko™ |IF + 10" [Gn + 1" [ + 1 ETI[?}, n=1,2,---, N.
(3.27)

Proof. In fact,

B(n™ "™ ) =Y (D™ + 8" V" + 0" ) + ("], €4 ) gn - (3.28)
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Since £"|; € Pr(k), from the definition of @ we have

(ex 1) (D™ e =z =™ €M) =0, ¥k € Th,
Integrating by parts yields
(xx 2) (8" - V" + 0", E" )k = —(0", B" - VE" )k

+((0" — div B")n", ")k + [y, n"E"B" - v ds.
Noting that (8" (Oy) - VE")|r € Pr(k) and using the inverse estimate of P,(k) we can
get
Gx3) OB VE = (7 (B (@) — B(O4)) - VM < il - 1€ .
And also
(% * 4) Jopn"&"B" - v ds B )
= faki & By - yds — fakg niéilﬁn : ’)" ds — fak n”é”(ﬂ” - /Bn) <y ds.
Using Lemma 3.1 and the trace inequality we obtain
(+x5) L€ (B~ ) s < (" VI8 — B ds)® - (o (€721 — 5| ds)
< Ch2[In™ |2k - 1€ Ik < Ch2|I0™ || g1 iy - 1€ 11
< [[€™[7 + C*hlIn" | 4-
Combining (x* 1) (**5) with (3.28) and noting (3.25b) we have

=
N[ —

B(™, €% 0" 1) <Cs(|[n"|* + 1|€"*) + Cahlln™ ([ + (1, ") on
— (&) on +([n"].)en
n n n 1 n n
<Cu(|ln™ 1% + 1€ + hlln"|I}) + s gn + 1€ [Fn)
+2(0" (G + 0" [F).

Substituting above inequality into (3.26), the desired estimate (3.27) is proved.
Define for n =1,2,---, N,

" = D&+ B(O) - VE?, VE € T (3.29b)

Lemma 3.6. There exists a constant C > 0 such that
€21 <CLlE™ 1> + R IE s + V™ |17 + (0™
+h " on + IIETIP], n=1,2,---, N. (3.30)

Proof. Taking v = " in (3.25a) and using Lemma 3.3 we can get

3 _ ~ _

Z|\§f|\2 < BE™ ) + Co(IE” 1P + b H[E IGn)

= B(n", " ") = (BY,€) + Co(|1€")” + [ )-
From (3.12) we have

(BY,€") <

(1EX1% + 11€™)1%) + Cul | BT |12,

=~ =
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Thus )
§H§f|\2 < B0 ") + Co(l1E” 1P + b HIEIGn + [IET(). (3.31)

Note that

B, &0 ) =Y (D™ + 5" Vi + 0" €+ ([0"], €7 ) o
(3.32)

(A1) (Am", ")k =0,
(A2) (8" - V" +0o"n", 5”) < G3([IV" ||k + "™ |k) - (11EX e + 117 1k)

(A3) ("], & )qr < Cah” : > " owe (1€ s + 11" ]11).

Combining (3.31) with (3.32), (A1)—(A3) and using e—ab inequality the estimate (3.30)
is derived.

Theorem 3.3. Let u,{U"} be the solutions of Problem (1.1) and Euler FDDG
scheme (2.6) respectively. Assume that

U 2
u € L¥(H™(Q)) nC(D), % € LA(H™(Q)), ‘?9? € L2(L2(9)).

Then there exists a constant C independent of T, h such that, for T small enough,

omax e |\+Z| |QT+nZ1 | 2e™|? + hl|Dge + B - Ve |[P)r

_C(hQT“ + 72, (3.33)

where UY|r, ="l |r, = @'l|n, = 0 are specified.
Proof. Multiplying (3.30) by ah(a > 0) with « proper small and adding this new
inequality to (3.27), we can get

D[EM)? + 1EM1G + Tl A" + hlIER]?

<SCHIIEM 1P+ 1™ |2 + [[1"]17 + BV |2 + (02 (G + (| ET(1?}, n=1,2,---,N.
Multiplying above inequalities by 7 then summing up for n and applying Gronwall
ineqality, recalling £ = 0 we obtain for 7 small enough,

n

Hé"\l2+2|§7 QT+Z (1271 + hllE]*)T

n

<C{ S |12 + |11 + IV |2 + Blr+ 30 1B r}.
j=1 j=1 (3.34)

From (3.22) we have

2|\E9\|27<OT22H BT

= 037 H e

L2(J;,L2(Q)) L2(L2(Q))
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Therefore from (3.34),

max [|¢" \|2+Z| |QT+Z TIAE™M)? + Bl O™ + B - VE )T

0<n<N
n=1

§C4{Z\In |2+ 173 + I [Vn" 2+ | e )7 + 72}
— (3.35)

Moreover, we need to estimate terms ||n" ||, ||Vn™||, |[n"]|g, In™|g» . To this end, let
IT,u(t) be the interpolation of u(t) in Vj,. By the definition of @ and the finite element
interpolation theorem we know that

"l =l = atfle = ot =l < flu” = Thutl
pEP, (k
SChr+1|‘unHr+1,kﬂ n=12-- N (336)
A
where |- [lr416 2 || o1ty Also

™ok = (10" 12000y = 0" — @"{[ax < |Ju" = Tpu"|[og + [[Tpu™ — || ox.

According to the result given by [3] we have

1
[[u" = Tyu™Jor < Coh™ 2 [Ju” |yt 1.

Thus using Lemma 3.1 and triangle inequality to term ||II,u" — 4"||s we can get

1
1" lor < CLA" T2 [[u" ||y 41 - (3.37)
Hence )
"lo < Coh™ 2] |[u™||,41.0- (3.38)

Since
VT]” = V(Un — Hhu”) + V(Hhu” — ﬂ”),
we can get from (3.36)
V0" [l < C3h™|[u"[|r 41 k- (3.39)

Substituting (3.36)—(3.39) into (3.35) to obtain
max_[|€"[]” + Z [€"1G™ + Z (T[| 2" |? + hl| D™ + 6" - VEM|*)7

0<n<N el el

<Cy(R* 4 1%). (3.40)

Noting that

1o <[5 e
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By the regularity analysisl®) we can get

N
n rio OU
D NP7 < C5h* 2| a1y (3.41)

n=1

Thus from (3.35) and applying triangle inequality, the convergence order estimate (3.33)
is obtained.

The convergence order given by (3.33) is optimal since error 4" - Ve" and [e"]g are
considered.

4. Crank—Nicolson FDDG Scheme

Applying the treatment analogous to that used in section 3 for Euler scheme (2.6),
we can establish the theoretical analysis for C—N FDDG scheme (2.11). Here we only
give some concerned results on the stability and error estimation.

Define

Gw", viw"™") = Y (A" + By - VA" + 00", ) + ([0"]vs)gn,  (41)

where the definitions of notations w", &, 0y, Ok™,---, Q" have been given in §2.
Obviously, the C N scheme (2.11) can be written as: find U™ € V;,, n =0,1,---, N,
such that

GU™,v; U Y = (fu,v), YweVy,n=12---.N (4.2a)
Ul = g, (4.2b)
(U° — ug,v) = 0,Yv € Vj,. (4.2¢)

Taking v = @" in G(w",v;w" ') and noting that (A,w", ") = $A/|w"||?, we can
get

Lemma 4.1. There exists a constant Cy > 0 such that, for arbitrary w™, w" ' € V},
and w" |r_ € L*(I'_),

- _ T 1 . -
Gw", " w™ 1) + Collw"[[” + S0 [f > S (Allw"]]* + |[0"][gn + 07 [r,)-  (4.3)
Define piecewise functions on 7p, forn =1,2,---, N,

Ur = AU + B, - VU, Yk € Ty, (4.4)

U" = ANU" + B,(0g) - VU", Yk € Ty,

where Oy, is the geometry centre of element k.
Lemma 4.2. Let {U"} be the solution of scheme (2.11) then there ezists a constant
C > 0 such that

112 < CHUIT P+ Y UMGn + [ fall?y n=1,2,-,N. (4.6)

By Lemma 4.1, 4.2 and using the similar argument to prove Theorem 3.2 in §3 we
can obtain
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Theorem 4.1. C N FDDG scheme (2.11) has a unique solution {U"}Y which
satisfies the following stability estimation: for T small enough,

n||2 n n n||2
Jmax (107 +nZl|U |QT—I—hn§:1HAU + B - VU"|*7

<CA 22 () + 191722y + uol %, (4.7)

where U |p, =0 (n=1,2,---,N) are specified.

Finally, applying the analogous approach used in §3 to establish Theorem 3.3 we
can prove the following theorem.

Theorem 4.2. Let u, {U"}Y be the solutions of Problem (1.1) and C N scheme
(2.11) respectively. Assume that

u 2U
w e L¥(H™(Q)) nC(D), % e L2(H™(Q)), ‘?9? e LX(H'())

and (z)tg € L*(L*(Q)). Then for T small enough,

n ~n ~n < 2r+1 .
01<na<xN\|e 2 +Z| QT—I—hZ 18" + By - Ve |P)T < C(h +7), (4.8)

where constant C' is independent of T, h.

5. A Numerical Example

Consider the following hyperbolic problem

88_1: * % = f(z,1), (z,1) € (0,1] x (1,2], (5.1a)
u(, 1) = wle),z € (0,1}, (5.1b)
u(0,7) = g(0),¢ € [1,2]. (5.1c)
where
= 6(117/6)“ @ =t (7O,

ug(z) = (1= e 77%) /(1 = e71/F),
g(t) = (1 —e %) /(1 =17,

The exact solution of (5.1) is
u(z,t) = (1 — e 1=2e) /(1 — e 1/F), (5.2)

Take h = ﬁ, At =1 = % where M, N are two positive integers. Let z; = ih,

i=0,1,---,M, I, = [z;—1,z;] and t" =14+ n7r, n=0,1,---, N. Denote

P(l;)={v=azx+ba,be Rz € ;}, i=1,2,---, M,
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Vi, ={v e L*(0,1),v|;, € Pi(L;), i=1,2,---,M}.

The Euler FDDG scheme for Problem (1.1) is as follows: Find U™ € Vj, n =
0,1,---, N, such that, for element I,

n n—1
(=T 0), 4 o + 0 )] v () = (700
Vv € Pi(I;),n=1,2,---,N, (5.3a)
(U°,0)1; = (ug,v)1;, Vv € Pi(Iy), (5.3b)
U(0) = g", (5.3¢)

where U = 20 (U™ (z; 1)) = U (2 1) — U™ (2 ).

ox

Let ¢;_1(x), pi(x) be the basis functions of P;(I;) satisfying
oi(xzs) =05, lys=1— 1,1
then U"(x) can be written as
U'(z) = Ul (zi—1)pi—1(z) + U (z;)pi(2),x € I;,1 = 1,2,---, N. (5.4)

Clearly, U™(x) can be solved element by element in order Iy, Iy, ---, Iy from (5.3).

Taking ¢ = 1073 and choosing M = 103, N = 10, we computed the solution {U"}}
of FDDG scheme (5.3).

To compare the numerical results with standard Galerkin method, we also solved
Problem (5.1) by full discrete Euler Galerkin scheme.

Some numerical results at time ¢ = 2(n = 10) are given in following table. (For the

values of solution U"(z) of Euler FDDG scheme at node z = z;, we specify UN (z;) =

UN (z4).)

Table ( at t=2.0 )

exact solution | FD-DG solution | Galerkin solution

X

0 1 1 1
0.5 1 1 1
0.93 1 0.99997 0.99997
0.94 0.99995 0.99989 0.99975
0.95 0.99966 0.99950 0.99813
0.96 0.99752 0.99723 0.98621
0.97 0.98168 0.98201 0.89856
0.98 0.86464 0.87379 0.26408

1 0 0.08530 —0.7324

From the results above we see that FDDG scheme is better than standard Galerkin
scheme. Specially, in the neighborhood 2 = 1 where the exact solution u(z,2) presents
rapid change from 1 \, 0. The solution of FDDG scheme can approximate the exact
solution still, but the solution of standard Galerkin method is of instable so that it can
not simulate the exact solution of Problem (5.1).



112 C. SUN AND S.J. QIN
References

[1] P. Leasaint, P.A. Raviart, On a Finite Element Method for Solving the Neutron Transport
Equation, Mathematical Aspect of Finite Element in Partial Differential Equation, Ed.
C.de.Boor, Academic Press, New York, 1974.

[2] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, 1987.

[3] C. Johnson, J. Pitkaranta, An analysis of discontinuous galerkin method for scalar hyper-
bolic equations, Math. of Comp., 45 (1986).

[4] R.S. Falk, G.R. Richard, Analysis of a continuous finite element method for hyperbolic
equations, SIAM. J. Numer. Anal., 20 (1987).

[5] G. Fairweather, Finite Element Galerkin Method for Differential Equation, Lecture notes
in pure and applied mathematics, Vol.34, Morcel Dekker INC., 1978



