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THE SCHWARZ CHAOTIC RELAXATION METHOD WITHINEXACT SOLVERS ON THE SUBDOMAINS�Jian-guo Huang(Department of Applied Mathemati
s, Shanghai Jiao Tong University,Shanghai 200240, China)Abstra
tIn this paper, a S-CR method with inexa
t solvers on the subdomains is pre-sented, and then its 
onvergen
e property is proved under very general 
onditions.This result is important be
ause it guarantees the e�e
tiveness of the S
hwarzalternating method when exe
uted on message-passing distributed memory multi-pro
essor system.Key words: S-CR method, Chaoti
 algorithm, Inexa
t solvers.1. Introdu
tionEarly in 1869, A.H. S
hwarz introdu
ed the te
hnique of domain de
omposition andalternative iteration to prove the existen
e of the solution for some ellipti
 problem innon-regular domain. In re
ent years, with the arrival and tremendous developmentof super
omputer and multipro
essor system, this an
ient and profound idea bringsabout fresh vitality, be
omes an important sour
e to the resear
h of large-s
ale s
ienti�

omputation.Besides the ease of parallelization, S
hwarz alternating algorithm and many otherdomain de
omposition methods allow one to treat 
omplex geometries or to isolatesingular parts of the domain through adaptive re�nement. They have attra
ted mu
hattention all of the world, see e.g. [1℄, [8℄ for details. But all of these algorithms aresyn
hronous, whi
h will lead to great overheads in data 
ommuni
ation, and severelydamage the eÆ
ien
y of parallelization in pra
ti
e.In [5℄, [6℄, Kang put forward the S-CR algorithm (S
hwarz Chaoti
 Relaxation algo-rithm) whi
h �rst 
ombined the 
haoti
 idea and s
hwarz relaxation alternating method.This new algorithm was 
arried out in some message - passing distributed memorymultipro
essor system. Numeri
al experiments have showed its e�e
tiveness[5;6℄. In hisPh.D. Thesis, Huang[3;4℄ gave a rigorous proof for the 
onvergen
e of the S-CR. Thisproof depends heavily on the norm estimates of some multipli
ative operators.In this arti
le, the author will go on with the 
onvergen
e analysis of the S-CR withinexa
t solvers on the subdomains. It is well known that implementation of the S-CRis mainly at the request of the solving of subproblems assigned on 
ertain separate andinter
onne
ted pro
essors. But exa
t solvers for these subproblems are impossible or� Re
eived June 6, 1994.



126 J.G. HUANGimproper, in pra
ti
e we have to employ the inexa
t solvers, e.g. Gauss-Seidel method,SSOR, PCG and other high eÆ
ient iterative methods. What in
uen
e on the global
onvergen
e does this result in? We show under mu
h re
eivable 
onditions the S-CRalgorithm with inexa
t solvers is also 
onvergent. This result is important be
ause itguarantees the e�e
tiveness of the S-CR algorithm when exe
uted on the message -passing distributed memory multipro
essor system.Let 
 � R2 be a bounded polygonal domain, and let( a(u; v) = (f; v); f 2 H�1(
); v 2 H10 (
);u 2 H10 (
); (1.1)be the variational form of an ellipti
 operator de�ned on it. The bilinear form satis�es:For arbitrary u; v 2 H10 (
), 8><>: a(u; v) = a(v; u);a(u; v) � C2kuk1 kvk1;a(v; v) � C1kvk21; (1.2)where k:k1 is the 
onventional Sobolev norm in H10 (
), C1 and C2 are two positive
onstants. We will borrow the �nite element method to approximate (1.1).Assume that the triangulation Th is quasi-uniform[1℄, and let V � H10 (
) be the
orresponding pie
ewise linear �nite element spa
e de�ned on it. Then we have thefollowing dis
retized form of (1.1).( a(uh; v) = (f; v); v 2 V;uh 2 V: (1.3)Thanks to (1.2), in what follows, we will 
onsider V as a Hilbert spa
e with innerprodu
t a(�; �), its related indu
ed norm is denoted by k:k.Suppose 
 is divided into m subdomains 
1;
2; � � � ;
m whi
h satisfy:1. 
 =X
i;2. �
i aligns with the triangulation Th, i.e. the line of �
i either 
oin
ides with ordoes not interse
t the triangulation line of �T.Let Vi = H10 (
i) \ V whi
h 
an be looked upon as a subspa
e of V, M? denotethe orthogonal 
omplementary subspa
e of some subspa
e M , and PM represent theorthogonal proje
tion operator from V onto M . We assume thatV =XVi: (1.4)Let ! 2 (0; 2) be a relaxation parameter. The S-CR introdu
ed in [5℄ and [6℄ 
an beabstra
ted as follows: Let u0 2 V be an arbitrary guess fun
tion, the iterative sequen
efukg for solving (1.3) satis�es that8><>: u1 � uk�1 2 V�(k);a(u1; v) = (f; v); v 2 V�(k);uk = (1� !)uk�1 + !u1; (1.5)
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hwarz Chaoti
 Relaxation Method with Inexa
t Solvers on the Subdomains 127where �(k) denotes the subs
ript of the subdomain related to the kth iteration, andfor arbitrary natural number i, 1 � i � m, it appears in�nite often in the index setf�(k)g1k=1.From (1.5), we see that the main work to exe
ute the S-CR is to solve the subprob-lem de�ned on the subdomain 
�(k) at the kth step. But exa
t solver is not availableor improper in general, and only inexa
t solvers su
h as Gauss-Seidel method, SSOR,PCG or other high-eÆ
ient iterative algorithms 
an be used. This leads to the followings
heme whi
h des
ribes that S-CR implemented in pra
ti
e.SCRI (S-CR with inexa
t solvers). let u0 2 V be an arbitrary initial guess fun
tion,! 2 (0; 2) and � 2 (0; 1) be two parameters. Then the iterative sequen
e fukg satis�esthat 8>>>>>>><>>>>>>>:
u1 � uk�1 2 V�(k); (�)a(u1; v) = (f; v); v 2 V�(k); (�)u2 � uk�1 2 V�(k);ku2 � u1k � �kuk�1 � u1k;uk = (1� !)uk�1 + !u2; (1.6)where u2 is the approximate solution of (1:6�) via proper iterative method with initialfun
tion uk�1, � means the a

ura
y restri
tion.Let Ek = uk � uh, E1 = u1 � uh and E2 = u2 � uh. It follows from (1.6) that8>>>>>>><>>>>>>>:
E1 �Ek�1 2 V�(k);a(E1; v) = 0; v 2 V�(k);E2 �Ek�1 2 V�(k);kE2 �E1k � �kEk�1 �E1k;Ek = (1� !)Ek�1 + !E2: (1.7)Obviously E1 = P 0�(k)Ek�1 where P 0l denotes the orthogonal proje
tion operatorfrom V onto the subspa
e V ?l . Let �k = kE2 �E1kkEk�1 �E1k (�k = 0 if E1 = Ek�1), then itis 
lear that 0 � �k � � < 1.In order to make out the error propagation of the algorithm SCRI more 
learly,we'd like to express (1.7) in operator form. It follows from (1.7), matrix theory and theisomorphism te
hnique that there exists an orthogonal operator Qk on V�(k) satisfyingE2 �E1 = �kQk(Ek�1 �E1): (1.8)Here Qk 
an be viewed as a linear operator de�ned on the whole spa
e V by zeroextension, i.e. Qkv = 0, for v 2 V ?�(k). By the way, from now on we will view anarbitrary orthogonal operator de�ned on any subspa
e W of V as the operator on V inthe same way. Thus from (1.6), (1.7) and (1.8) we haveE2 = �kQkEk�1 + (1� �kQk)E1; (1.9a)Ek = [(1� !)I + !�kQk + !P 0�(k)℄Ek�1: (1.9b)



128 J.G. HUANG2. Preparation of The ProofIn order to give the rigorous proof of the 
onvergen
e property, we need the followingLemmas.Lemma2.1. Suppose the 
onstants a, �, ! satisfy that 0 � a � � < 1, 0 < ! < 21+� ,then k(1� !)I + !aQ+ !P 0kk � 1; (2.1)where Q is an arbitrary orthogonal operator on Vk, 1 � k �m.Proof. For any v = v1 + v2 2 V , v1 2 Vk, v2 2 V ?k ,[(1� !)I + !aQ+ !P 0k℄v = (1� ! + !aQ)v1 + v2;and k[(1 � !)I + !aQ+ !P 0k℄vk2 = k(1� ! + !aQ)v1k2 + kv2k2:Butk(1� ! + !aQ)v1k2 =(1� !)2kv1k2 + 2a!(1 � !)(Qv1; v1) + a2!2kQv1k2�8<: (1� ! + !a)2kv1k2; 0 < ! � 1(1� ! � !a)2kv1k2; 1 � ! < 21 + � � kv1k2:Lemma2.1 then follows.In what follows we will always assume the 
onditions for !; � in Lemma2.1 aresatis�ed.Lemma2.2. There exists a 
onstant � 2 (0; 1), su
h that, for arbitrary elementM1 of fVkgmk=1 (here fVkgmk=1 is a �nite set with subspa
es Vk; k = 1; 2; � � � ;m as itselements), and M2 whi
h is the sumspa
e of any subset of fVkgmk=1 (i.e., M2 = lXi=1 Vtifor a subset fVtigli=1 � fVkgmk=1), for any �k, 0 � �k � �, any orthogonal operator Qkon subspa
e Mk, k = 1; 2, we have


 2Yk=1[(1 � !)I + !�kQk + !P 0Mk ℄v


 � �kvk; v 2M1 +M2; (2.2a)and k[(1 � !)I + !�1Q1 + !P 0M1 ℄P 0M2vk � �kvk; v 2M1 +M2: (2.2b)Proof. We only prove (2.2a), proof of (2.2b) is similar. Be
ause of the �nite 
hoi
esof Mk, and the 
ontinuity of


 2Yk=1[(1�!)I+!�kQk+!P 0Mk ℄


 = supv2M1+M2;v 6=0 


 2Yk=1[(1�!)I+!�kQk+!P 0Mk ℄v


=kvkwith respe
t to �k 2 [0; �℄, and Qk, k = 1; 2, if (2.2a) is not true, then there exist someMk, �k, Qk, k = 1; 2, and vn, kvnk = 1, vn 2M1 +M2, su
h that


 2Yk=1[(1� !)I + !�kQk + !P 0Mk ℄vn


! 1: (2.3)
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t Solvers on the Subdomains 129Therefore, from Lemma2.1 and (2.3) we havek[(1 � !)I + !�2Q2 + !P 0M2 ℄vnk ! 1:Let vn = vn1 + vn2 , vn1 2M2, vn2 2M?2 , thenk[(1� !)I + !�2Q2 + !P 0M2 ℄vnk2 = k(1 � ! + !�2Q2)vn1 k2 + kvn2 k2:So kvn1 k2 + kvn2 k2 � k(1 � ! + !�2Q2)vn1 k2 � kvn2 k2 ! 0:But kvn1 k2 � k(1 � ! + !�2Q2)vn1 k2�minf1� (1� ! + !�2)2; 1� (1� ! � !�2)2gkvn1 k2�minf!(1� �)(2� !); !(2 � ! � !�)gkvn1 k2;whi
h leads to vn1 ! 0, i.e. PM2vn ! 0. Thus from (2.3) we also havek[(1� !)I + !�1Q1 + P 0M1)℄vnk ! 1:With the same argument we have PM1vn !0.On the other hand, from Lions lemma[7℄ there exists a positive 
onstant � su
h thatkvk2 � �(kPM1vk2 + kPM2vk2); v 2M1 +M2:These lead to vn ! 0 whi
h is a 
ontradi
tion sin
e kvnk = 1. Thus Lemma 2.2 isproved.Lemma 2.3. Let ft1, t2g be an arbitrary subset of f1; 2; � � � ;mg, then for arbitraryK natural numbers �i 2 ft1, t2g, i = 1 ; 2; � � �, K, and ft1; t2g � f�1; �2; � � � ; �Kg, �i,0 � �i � �, orthogonal operators Q�i on V�i , we have


 KYk=1[(1� !)I + !�kQk + !P 0�k ℄v


 � �kvk; v 2 Vt1 + Vt2 ; (2.4)where � 2 (0; 1) is de�ned as in Lemma 2:2.Lemma 2.3 follows easily from Lemma 2.1 and Lemma 2.2. Now we 
an obtain thefollowing main result.Theorem 2.4. There exists a 
onstant � 2 (0; 1) su
h that, for any integerl(2 � l � m), for arbitrary subset ft1; t2; � � � ; tlg � f1; 2; � � � ;mg, arbitrary �k 2ft1; t2; � � � ; tlg, k = 1; 2; � � � ;K with ft1; t2; � � � ; tlg � f�1; �2; � � � ; �Kg, we have


 KYk=1[(1� !)I + !�kQk + !P 0�k ℄v


 � �lkvk; v 2 lXk=1Vtk ; (2.5)where 0 � �k � �, Qk is arbitrary orthogonal operator on V�k , and �2 = �, �l+1 =� + (1� �)�l.



130 J.G. HUANGProof. By indu
tion. As l =2, the result is followed from Lemma 2.3 dire
tly.Assume the result is true for l (2 � l < m); we want to prove the 
orre
tness for l+ 1.For arbitrary ft1; t2; � � � ; tl+1g � f 1; 2; � � � ;mg, arbitrary �k 2 ft1; t2; � � � ; tl+1g,k = 1; 2; � � � ;K with ft1; t2; � � � ; tl+1g � f�1; �2; � � � ; �Kg, v 2 l+1Xk=1Vtk , 
onsider theestimate of KYk=1[(1�!)I +!�kQk+!P 0�k ℄v. Without loss of generality, we may assumethat �1 = t1, t1 =2 f�2; �2; � � � ; �Kg. Otherwise, by the sear
h pro
ess in order, thereexists some i (1 � i � K), su
h that ft1; t2; � � � ; tl+1g � f�i; �i+1; � � � ; �Kg, and �i =2f�i+1; �i+2; � � � ; �Kg. We might as well suppose �i = t1, then from Lemma 2.1


 KYk=1[(1 � !)I + !�kQk + !P 0�k ℄vk � 


 KYk=i[(1� !)I + !�kQk + !P 0�k ℄vkwhi
h is 
onverted to the estimate of the assumption 
ase.Let W = l+1Xk=2Vtk ; E3 = KYk=2[(1� !)I + !�kQk + !P 0�k ℄v:Then from indu
tion assumption, we havekE3 � PW?vk = 


 KYk=2[(1� !)I + !�kQk + !P 0�k ℄(v � PW?v)


 � �lkv � PW?vk: (2.6)Let � = kE3 � PW?vkkv � PW?vk (� = 0 as v � PW?v = 0). Thus0 � � � �l: (2.7)We next introdu
e the following auxiliary fun
tion8<: v� = PW?v + 1� (E3 � PW?v); (� > 0);v� = v; (� = 0): (2.8)It is easy to see that8<: kv�k2 = 1�2 kE3 � PW?vk2 + kPW?vk2 = kvk2;E3 = �v� + (1� �)PW?v�; (2.9)sin
e E3 � PM?v = KYk=2[(1� !)I + !�kQk + !P 0�k ℄(v � PW?v)and for any v 2W,[(1 � !)I + !�kQk + !P 0�k ℄v 2W; k = 2; 3; � � � ;K:
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 KYk=1[(1� !)I + !�kQk + !P 0�k ℄v


 = k[(1 � !)I + !�1Q1 + !P 0�1 ℄E3k=k[(1 � !)I + !�1Q1 + !P 0�1 ℄[�v� + (1� �)PW?v�℄k��kvk + (1� �)�kvk � [� + (1� �)�l℄kvkwhi
h proves Theorem 2.4. The last inequalities follow from (2.7), (2.9), Lemma 2.1and Lemma 2.2, here we also use the fa
t that v� 2 V�1 +M . This is be
ause thatE3 � PW?v 2W (see before) and PW?v 2 V�1 +W sin
e v 2 V�1 +W .Let l = m, we have the following lemma.Lemma 2.5. For arbitrary natural numbers �i 2 f1; 2; � � � ;mg, i = 1; 2; � � � ;K,and f1; 2; � � �, mg � f�1; �2; � � � ; �Kg;


 KYk=1[(1 � !)I + !�kQk + !P 0�k ℄


 � �m < 1; (2.10)where 0 � �k � �, Qk is an arbitrary orthogonal operator on V�k , k = 1; 2; � � � ;K,respe
tively. 3. Proof of The Convergen
eTheorem 3.1. Under the 
onditions given before, i.e., V is split into m subspa
esfVkgmk=1 satisfying V = mXk=1Vkand the relaxation parameter ! and the a

ura
y parameter � satisfy0 � � < 1; 0 < ! < 21 + �;the SCRI algorithm is 
onvergent.Proof. There is no harm in assuming that the iterative sequen
e fukg 
an bede
omposed into u1 ! u2 ! � � � ! up1up1+1 ! up1+2 ! � � � ! up2� � � � � � � � � � � � � � � � � � � � � � � � � � �upi+1 ! upi+2 ! � � � ! upi+1� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �i = 1; 2; � � � � � �, and f1; 2; � � � ;mg � f�(pi+1), �(pi+2); � � �, �(pi+1)g. Then from (1.8)and Lemma 2.5, for arbitrary k, pl�1 � k � pl,kEkk � (�m)l�1kE0k:



132 J.G. HUANGPay attention to the fa
t that l!1 as k !1, the theorem is proved.Remark. It should be pointed out that the te
hniques and results given in [1℄, [8℄
an not lead to our 
onvergen
e result dire
tly.Finally, the author is grateful for my advisor Prof. Jiang Erxiong, and Dr. ZhangSheng who have given me great help in this resear
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