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GENERALIZED GAUSSIAN QUADRATURE FORMULAS
WITH CHEBYSHEV NODES*!
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Abstract

Explicit expressions of the Cotes numbers of the generalized Gaussian quadra-
ture formulas for the Chebyshev nodes (of the first kind and the second kind) and
their asymptotic behavior are given.
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1. Introduction

This paper deals with the generalized Gaussian quadrature formulas for Chebyshev
nodes (cf. [2]).

Throughout the paper we assume that m and n are positive integers. As usually,
T, (z) and Uyp(z) denote the m-th Chebyshev polynomials of the first kind and the
second kind, respectively. Among generalized Gaussian quadrature formulas one of the
most important cases is the weight

Wy () = (1 — z2) (M2 =(m+1)/2 (1.1)

where [r] denotes the largest integer < r. In [5] we pointed out that if we take as nodes
of a quadrature formula the zeros of (1 — 2?)U, _1(z) (here we replace n + 1 by n for

convenience)

k
.’Ekn:COS—T(, k=0,1,..,n, (1.2)
n

then the quadrature formula with certain numbers ¢k, = Cigmn (called Cotes numbers
of higher order)

1 n Mmg )
[ f@on@un@)ds = 323 s O (a) (1.3
- k=0i=0
is exact for all f € P, (_1)m_3]/2, where
om(x) :=sgn U, _1(z)™ (1.4)
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and
1, 1<k<n-1,
mp = [nm— 2], =4 (1.5)
5, k = O,TL

As it turns out, the most interesting property of this quadrature formula is that its
nodes do not depend on the index m. In [5] we found the explicit formulas for c;gmn
and their asymptotic behavoiur as n — oc, which provided an answer to an analogue
of Problem 26 of Turan [6, p. 47]. To state this results, which will be used later, we
put:

Ap(z) = (1 — )™ 0, _ ()™, (1.6)
m!(1 —z2)™2U! | (z)™,  1<k<n-—1,
_oym/2 ([ m _
Qo — A () — 4 C2MA([F]) 0wy k=0, (1.7)
(m/2] ([T _1)m —
2m2A([Z]) O (-)™, k=n,
([ngm])!Am (2)
Lin(z) = . k=0,1,..,n, 1.8
k() dyepn (2 — p,) ] ! 5
1 IRIG) .
bikm:,—'[Lkm(:r:) ] L i=0,1,.; k=0,1,..,n, (1.9)
2. T=T}

(4)
Bikm:il—'{ > [Q(xy—x)Lkm(x)]l} . i=0,1,..; k=0,1,...,n,
" Wve{on}\{k} J— (1.10)

=Lk

2, if m is odd,
Sm = (1.11)

, if m is even.

Then we have (cf. [5]; for m = 4 the results of the theorem can be found in [7]).
Theorem A. Let (1.2) be given. Then for each k,0 < k < n, and for each i, 0 <

1 < mg,
NgSm(m — 2)!
c = , m > 2,
{ my,k,m dk,m72[(m . 2)!!]2n = (1_12)
Cmp+1,km = 0,

my !ka k,m

ilng(m — 2) {6 +ng(m —2) — mg)byy, i km—2

Cikm = Cikm—2 +
(1.13)

1
- 5[1 + (=)™ By, i1 km—2}, m > 3.
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Moreover,
(=)l V
|Citermn]| < im0 B (1.14)
o —2lm ]2+ 21 k=0,n,
1— 2 \i/2
Cikmn ~ (n:fif?)’ m=-even; 1=0,2,...m—2; 1<k<n-—1.
(1.15)

Following Kronrod [3], the object of this paper is to extend the fomula (1.3) to the
following formula

1 n Mmg ] n
/ @@ (@) = Y03 Cinnd ) + Y- Dinf (). (1.16)
v k=01=0 k=1
where
%M:mé%:iﬁ,k:Lzmm (1.17)
2n

are the zeros of Tp,(z). We will see that this quadrature formula maintains the above
property: its nodes (1.2) and (1.17) do not depend on the index m.

The main result of this paper is

Theorem 1. Let (1.2) and (1.17) be given. Then the quadrature formula (1.16) is
exact for all f € Py i9)nt(—1)m—3]/2- Here

m — 1 1 .
Cikmn = T ikym—2n T Ecikmna k=0,1,...,n; 1=0,1,..,my,
(1.18)
—1)mE-Dg (m (1 — 2 )(m/2)—[m/2]
DMm:( ) m&%%%f“) L k=1,.,n (1.19)
Moreover,
(1-— x%n)[(mfl)/2]*.[(mflfi)/2} L<b<n 1
‘Clkmn‘ < ,r1Lm+172[(mfz)/2} - — (120)
m—2m/242i+1° k=0,n,
1— 42 Vi/2
Cikmn ~ %, m=ecven; i=0,2,...m—2; 1<k<n-—1.
" (1.21)

The second main result of this paper gives an extremal property of the quadrature
formula (1.16).

Theorem 2. Let (1.2) and (1.17) be given. Then

/1“1maml”ﬂif@"”ynfnzywﬂdf
k=1

n k=1
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1
= min / ‘(1 — g?)m=1/2
<t <o<bi<1 1
—1<np<..<m<1

n—1 n
Jl@ &)™ [ (= - nk)Q‘d:L“. (1.22)
k=1 k=1

Moreover, this solution is unique.
The following lemma plays an crucial role.

Lemma. Let m and n be positive integers. Then

/ﬂﬂwﬂ%@)ﬁm1@Hm1hmﬂ%ﬂﬂKl—I%ml”ﬂdw=0,

Vq S PQH,Q. (123)

The proofs are putted in Section 2 and other results in Section 3. In what follows
we agree Cikmn = Cikmn = 0 if i > my.

2. Proofs

2.1. Proof of Lemma

It is easy to see that (1.23) is equivalent to

/iUkﬂ@TM@Mzﬂﬂmlkgwﬂmﬂmlﬂﬂﬂﬂ—wﬂwlwww=&
k=1,2,..2n—1. (2.1)

By making the change of variable z = cost and integrating over the interval twice,
(2.1) becomes
/ sin kt|(cos nt)(sinnt)™ '|sgn sin2ntdt = 0,
k=1,2,...2n — 1. (2.2)

+ikt

Since sin kt is a liear combination of the functions e™"*, it will be enough to establish

I ::/ ™| (cos mt) (sinnt)™ 'sgn sin2ntdt = 0,
k=+1,42, ..., +(2n —1). (2.3)

Remembering the periodicity of the functions, by making the change of variable t =
0 + m/n we see

I= / eFOFT/M)| cos(n + m) sin™H(nf + «)|sgn sin(2nd + 27)do

:eikﬂ/nI.
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Clearly, e’*7/™ £ 1, which means I =0. O
2.2. Proof of Theorem 1

175

According to the Lemma using a well known method for constructing quadrature

formulas via interpolation the formula (1.16) with certain constants Cig,, and Dy,

must hold for all f € P(m+2)n+[(,1)m,3}/2.

To compute Dy, we start with the formula

! T, (z)(1 — )20,y ()™ ! e
Do = [ | = L 70, GO om0

which follows from (1.16). We expand T}, (z)/(x — yi) as

T, (z)
T — Yk

n—2
=Un-1(z) + Y a;Uj(x)
§=0
with certain constants a;. It follows from (1.3) that
1
/ Ui (2)(1 — o) 2 0, (2)" o ()1 (2)dz = 0, § <n — 2.
J-1

Hence we obtain a simpler formula

1 1
Dy, = / 1— 2™ V2, (2)|"da.
= T (= ), eyt )T el

It is well known that

, - (71)]671” B

Ty (yr) = Wu k=1,2,...,n
and (_1)k—1
Un—1(yx) = W, k=12 ..,n.

We also know [5, (2.8)]
1 T
/ (1= &) D20, | ()" da :/ | sinn6|™df
0

-1
™ |
:/ 'sin0|"'df = sm(m)
0 (mm!1)?

The substitution of these values gives (1.19).

Here from (1.19) we derive an interesting formula

—1
Djom =" —=Djmn, §=0.1,..n (m>3).
m

To determine Cji,,, first we assume m > 3 and consider the function

Fe P vyny-1ym-1/2

(2.4)

(2.9)

(2.10)
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which satisfies the interpolatory conditions

FU () = 6iu0py, v=0,1,.on; p=0,1,....,m,. (2.11)

From (1.3) it follows that

Citkm = /71 F(2) 0 ()t () . (2.12)

On the other hand, first applying (1.16) to F' and using (2.12) yields
n
Cikm = Cikm + Y DimF(y;). (2.13)
j=1
Next, substituting F' into (1.16) in replacing m by m — 2 and using (2.12) gives
n
Cikm = Cigm—2+ > Djm—2F(y;). (2.14)
j=1
Substituting (2.10) into (2.13) and cancelling the term
n
> Djm—2F(y;)
j=1

from the two equations (2.13) and (2.14) we obtain the recurrence relations (1.18) with
respect to the index m. Although, these relations are derived under the assumption
m > 3, they remain true for m < 2 (remembering the agreement in the end of Section
1). In fact, we can check directly. First we easily see Cpg1 = cop1 = 0. Next, by (1.12)
we have ¢gr9 = ngm/n. On the other hand, for

Qui1(2) = (1 — 2)Up 1 ()

using [1, 22.7.25, p. 782] and [4, (3.6) and (3.7)] we obtain

_ ! T ()41 (2) dz
Corz = / Ta(we) U1 (@) (@ — 75) VT — 2
:/1 To(z)[Toir(z) — Tn 1 ()] dz _ T
1 Do) [T (k) = T3y ()2 — 2k) V1 =22 2n (2.15)

This means that (1.18) remains true for m < 2.
Finnally, (1.20) and (1.21) directly follows from (1.18), (1.14), and (1.15). O
2.3. Proof of Theorem 2

This is an immediate consequence of Theorem 1 by Theorems 4 and 5 in [2]. O
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3. Other Results

Theorem 2 admits other generalized Gaussian quadrature formulas. We briefly
discuss one of them.

If we rewrite (1.22) as

1 |n—1 n
/ H T — xp) H z —yp)?| (1 = 2z2) M D2 gy (3.1)
k=1 k=1
1 |n—1 n
= min z— &)™ z—np)? (1= 22) (™ D2y,
—1<€p_1<..<E1<1 /4 kl;[l( ) kl;[l( ) ( )
1<y, <...<m<1
we find that the quadrature formula
1 n—1m-—2 ] n
[ F@om@ - 2V s = 375 Gl o) + S D) (32
I k=1 i=0 k=1

is exact for all f € Ppi0)n-—m—1-

Determination of Dy, in the same way first leads to a formula in different structure.
From (3.2) we obtain

km = 1 Tn(:L“)Un,l(:z:)m*1 om (T _ p2\(m=1)/2 4,
Dim = -/4 Ty (ye) (2 — y)Un—1 (ye) ™! m(@)(1 — o) dz. (3.3)

Comparing this with (2.4) we have
DZm = (1 - yl%)[m/Q}ka
To determine Cj;,, we should consider the function G € P,,(,—1) (m > 2) satisfying

G (z,) = 0ipbrys,  p=0,1,.om 2, v=1,2...n1
G(y,) =0, v=12..n.

Then bY (32) we get
1
Tkm :/ G(z)om(z)(1 — :v2)(m’1)/2dx
—1

_/ 212 () o () 100 () .

Using (1.3) and applying the Newton-Leibniz formula the above relation leads to

. m—2 /. - (j—i)

j=i
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