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THE STABILITY AND CONVERGENCE OF COMPUTINGLONG-TIME BEHAVIOUR�1)Hai-jun Wu Rong-hua Li(Institute of Mathematis, Jilin University, Changhun 130023, China)AbstratThe objet of this paper is to establish the relation between stability and on-vergene of the numerial methods for the evolution equation ut�Au�f(u) = g(t)on Banah spae V , and to prove the long-time error estimates for the approxi-mation solutions. At �rst, we give the de�nition of long-time stability, and thenprove the fat that stability and ompatibility imply the uniform onvergene onthe in�nite time region. Thus, we establish a general frame in order to prove thelong-time onvergene. This frame inludes �nite element methods and �nite dif-ferene methods of the evolution equations, espeially the semilinear paraboli andhyperboli partial di�erential equations. As appliations of these results we provethe estimates obtained by Larsson [5℄ and Sanz-serna and Stuart [6℄.Key words: Stability, Compatibility, Covergene, Reation-di�usion equation, Long-time error estimates. 1. IntrodutionIn 1978, Ho�[3℄ onsidered the long-time behavior omputation of nonlinear reation-di�usion equations, whih is supposed to have an invariant region S, i.e. any loalsolution arising from a point in S is onstrained to lie in. Ho� onstruted a familyof �nit di�erene shemes for the equations. Under some assumptions he proved thatany trajetory starting in S will onverge to an asymptotially stable equilibrium, andS is also an invariant region of the di�erene equations. So Ho� obtained error es-timates uniform in time for the di�erene equations. In 1989, Larsson[5℄ studied thelong-time error estimates of �nite-element approximations of reation-di�usion equa-tion (below dimension 3). The distintion between [5℄ and [3℄ is that Larsson didn'tassume the equation has a invariant region but has an asymptotially stable hyperboliequilibrium, and so the trajetories onstrit to some neighbourhood of the equilibrium.� Reeived Otober 17, 1996.1)The Projet is supported by the National Siene Foundation of China.



398 H.J. WU AND R.H. LIHowever, by the standard �nite time error estimates one an show that the disretiza-tion solution will enter this neighbourhood. In 1992, Sanz-Serna and Stuart[6℄ obtainedan error estimates uniform in time for expliit di�erene sheme of one-dimensionalreation-di�usion equation by using analogous tehnique of [5℄. Note that all of aboveresults are obtained under the ondition that the ontinuous trajetories onverge to anasymptotially stable, hyperboli equilibrium and they are diÆult to be generalized.In this paper, we'll establish the relation between stability and onvergene, andthen obtain a suÆient ondition of long-time onvergene of disrete methods for moregeneral equation. Under suh a ondition we get an error estimate on the in�nite timeregion. Therefore, we provide an abstrat frame to prove onvergene. This methoddosen't assume the existene of an equilibrium. It an be used to both the �nite elementmethods and the di�erene methods, the expliit shemes and the impliit shemes.The paper is outlined as follows: In 2, we give de�nitions of stability, ompatibilityand overgene of disrete shemes on the in�nite time region. Espeially, we obtain atheorem whih states that the stability and ompatibility imply onvergene. In 3 and4, we apply this theorem to the problem in [5℄ and obtain the similar results; to theproblem in [6℄ and obtain the same results. In 5 we give an example whose ontinuoussolution is periodial in time. It an't inlude in the frame of [3℄, [5℄ or [6℄. But we anprove the long-time onvergene of an expliit di�erene sheme from this theorem.2. The Relation Between Stability and ConvergeneLet V be a Banah spae with norm k � k. We onsider the evolutionary equationsuh as: ut �Au� f(u) = g(t);u(0) = u0; (2.1)here A and f are operators on a dense subset of V to V . Let u(t) 2 V be a solution of(2.1).Let Vh be a �nite dimensional Banah spae with norm k � kh. It may or may notbe the subspae of V . Let ph be a operator from V to Vh. We denote the disretizationof (2.1) as follows: Bh;� (un+1h;� ) = Ch;� (unh;� ) + �gnh;� ; n = 0; 1; 2; � � �u0h;� = u0;h; (2.2)where gnh;� , u0;h 2 Vh, Bh;� and Ch;� are operators on Vh, h is spae step-size and � istime step-size, unh;� is the approximation to u(tn)(tn = n�).



The Stability and Convergene of Computing Long-time Behaviour 399Let Lh;� (unh;� ) = (Bh;� (un+1h;� )� Ch;� (unh;� ))=�; (2.3)Rnh;� (u) = Lh;� (phu(n�))� gnh;� ; (2.4)N = f1; 2; � � �g; N0 = f0g [N; (2.5)Sh;� = supn2N0 kRnh;� (u)kh; (2.6)enh;� = unh;� � phu(n�); (2.7)�Bnh;� (vh) = Bh;� (phu(n�) + vh)�Bh;� (phu(n�)); (2.8)�Cnh;� (vh) = Ch;� (phu(n�) + vh)� Ch;� (phu(n�)): (2.9)Condition (A). There exist positive numbers �n� , "1;h;� ; "2;h;� ; �;M; T , suh that,for any n 2 N ,(A1) �Bnh;� has an inverse on fwhjwh 2 Vh; kwhkh � "2;h;�g, andk( �Bnh;� )�1(wh)kh �Mkwhkh; 8wh 2 Vh;(A2)1 For kvhkh � "1;h;� we have k �Cnh;� (vh)kh � �n� k �Bnh;� (vh)kh andk �C0h;� (vh)kh �Mkvhkh;(A2)2 If n� � T , then �n� � 1 +M� ; if n� > T , then �n� � 1� �� ;(A3) "1;h;� �M(aSh;� + bke0h;�kh), "2;h;� � aSh;� + bke0h;�kh,where a = 1� + eM(T+�) � 1M ; b =MeMT : (2.10)We haveTheorem 2.1. Assume that sheme (2:2) satis�es ondition (A) for a pair of h; � ,and ke0h;�kh � "1;h;� ; (2.11)Then the solution of (2:2) exists and satis�eskenh;�kh �M(aSh;� + bke0h;�kh); (n 2 N); (2.12)where a and b are de�ned by (2:10).Proof. From (2.3){(2.9), we have��Rjh;� (u) = �(Lh;� (ujh;� )� Lh;� (phu(j�))) = �Bj+1h;� (ej+1h;� )� �Cjh;� (ejh;� )for any j 2 N0 and so �Bj+1h;� (ej+1h;� ) = �Cjh;� (ejh;� )� �Rjh;� (u): (2.13)



400 H.J. WU AND R.H. LINow, we are going to prove the following proposition by mathematial indution: thereexists ejh;� (j � 0) satis�ng (2.13) andkejh;�kh � "1;h;� ; (j 2 N0): (2.14)From (2.11) we know the proposition is orret for j = 0.Assume that the proposition are orret for j � n, i.e. there exists ejh;� (0 � j � n)satis�ng (2.13) and kejh;�kh � "1;h;� ; (0 � j � n): (2.15)Now, we are going to prove the proposition for j = n+1. At �rst, we give the estimateon the norm of �Cnh;� (enh;� )� �Rnh;� (u).If n = 0,then from (A2)1 and (2.10) we havek �C0h;� (e0h;� )� �R0h;� (u)kh � �Sh;� + k �C0h;� (e0h;� )kh;� aSh;� + bke0h;�kh: (2.16)For n � 1, then from (A2)1 and (2.15), we havek �Cjh;� (ejh;� )kh � �j�k �Bjh;� (ejh;� )kh; (1 � j � n): (2.17)Moreover, from (2.13),k �Bj+1h;� (ej+1h;� )kh � k �Cjh;� (ejh;� )kh + �Sh;� (0 � j � n� 1): (2.18)Combining (2.17) and (2.18) we getk �Cnh;� (enh;� )� �Rnh;� (u)kh ��Sh;� + �n� k �Bnh;� (enh;� )kh��Sh;� + �n� (k �Cn�1h;� (en�1h;� )kh + �Sh;� ) � � � ��(1 + �n� + � � �+ �n� � � � �1� )�Sh;� + �n� � � � �1�k �C0h;� (e0h;� )kh:If n� � T ,then from (A2)2 we have1 + �n� + � � � + �n� � � � �1� �1 + (1 +M�) + � � �+ (1 +M�)n=(1 +M�)n+1 � 1M� � eM(T+�) � 1M� ;�n� � � � �1� �(1 +M�)n < eMT :If n� > T , let m = [T=� ℄, then from (A2)2,1 + �n� + � � �+ �n� � � � �1� � 1 + (1� ��) + � � �+ (1� ��)n�m�eM(T+�) � 1M� �<1� �1� + eM(T+�) � 1M �;



The Stability and Convergene of Computing Long-time Behaviour 401�n� � � � �1� �(1 +M�)m < eMT :Thus, we have the following estimate for both n = 0 and n � 1:k �Cnh;� (enh;� )� �Rnh;� (u)kh � aSh;� + bke0h;�kh: (2.19)Finally, by (A3) we get further estimatek �Cnh;� (enh;� )� �Rnh;� (u)kh � "2;h;� :Now we an onlude from (A1) that there exists en+1h;� suh that�Bn+1h;� (en+1h;� ) = �Cnh;� (enh;� )� �Rnh;� (u):Hene, from (2.19) we haveken+1h;� kh = k( �Bn+1h;� )�1( �Cnh;� (enh;� )� �Rnh;� (u))kh;�M(aSh;� + bke0h;�kh): (2.20)By noting (A3) we get ken+1h;� kh � "1;h;� ; (2.21)so the proposition is hold for j = n + 1. By indution, for 8j 2 N0, there exists ejh;�satis�ng (2.13) and also (2.14). Therefore, we have proved the existene of the disretesolution. And from the proedure of the proof we an easily onlude (from (2.20))that (2.12) holds for n 2 N . This ompletes the proof of Theorem 2.1. #Assume that h and � satisfy a relation (R) (suh as the mesh size satis�es someonditions). Now, let us give the de�nitions of ompatibility, stability and onvergeneCompatibility: limh;�!0Sh;� = 0:Convergene: limh;�!0 supn2N0 kenh;�kh = 0.Stability: There exist h0; �0 > 0, suh that, if h; � satisfy relation (R), and 0 <h � h0, 0 < � � �0, then sheme (2.2) satis�es ondition (A1) and (A2), here theonstants �;M; T don't depend on h; � .In [2℄ Guo Ben-yu disussed the stability of the approximation to the general nonlin-ear equation, but his disussions were all on �nite time interval. However, our de�nitionof stability is more onerned with the ase of in�nite time intervalTheorem 2.2. Assume that the sheme (2:2) satis�es the onditions of stability,ompatibility and (A3) for 0 < h � h0, 0 < � � �0 (h; � satisfy (R)). Moreover, theinitial approximation satis�es the propertyke0h;�kh � "1;h;� ; and limh;�!0 ke0h;�kh = 0: (2.22)



402 H.J. WU AND R.H. LIThen the solution of (2:2) exists and satis�es the error estimatekenh;�kh �M(aSh;� + bke0h;�kh); (n 2 N); (2.23)where a; b de�ned by (2:10).As a onsequene, the approximation unh;� onverges to the solution u of (2.1).Proof. Obviously the de�nition of stability and (A3) imply the ondition (A).Next, from (2.22) we know the onditions of the theorem 2.1 are satis�ed, and henethe estimate (2.23) holds. Finally from ompatibility and (2.22) we an dedue theonvergene of the approximation solution.Remark 1. If "1;h;� ; "2;h;� do not depend on h; � then from ompatibility and (2.22)the ondition (A3) is satis�ed for suÆiently small h; � .Remark 2. Let V1 be a Banah spae with norm k � k1, qh: Vh ! V1 and r:V ! V1be ontinuous operators, satisfykqhk = supvh2Vh kqhvhk1kvhkh � C1; (h � h0); (2.24)limh!0 supt�0 kqhphu� ruk1 = 0; u 2 V: (2.25)Then from the de�nition of the onvergene we havelimh;�!0 supn2N0 kqhunh;� � ru(n�)k1 = 0: (2.26)Espeially, If Vh � V , limh!0 supt�0 kphu�uk1 = 0 (ph : V ! Vh is a projetion), k�kh = k�k,and let V1 = V; qh = I; r = I, thenlimh;�!0 supn2N0 kunh;� � u(n�)k = 0: (2.27)Remark 3. In the ase of variable time-step disretization, we an obtain theanalogous results by almost the same argument.3. Appliation to the FEMLarsson[5℄ onsidered the long-time error estimates of �nite-element approximationsof semilinear paraboli problems of the form:ut = �u+ f(u); in 
� (0;1);u = 0; on �
� (0;1);u(�; 0) = u0; in 
; (3.1)



The Stability and Convergene of Computing Long-time Behaviour 403here 
 is a bounded domain in Rn (n � 3) with smooth boundary �
, u0 is smoothon �
 with zero boundary values, and f is a smooth funtion satisfyingf 0(s) > 0; (s 2 R): (3.2)Larsson obtained the long-time onvergene and error estimates of impliit om-pletely disrete �nite-element method. In this setion, we obtain the similar resultsfrom theorem 2.2.The orresponding stationary problem is��u = f(u); in 
;u = 0; on �
: (3.3)For any given positive funtion w 2 C( �
), we onsider the eigenvalue problem withweight w: ��' = �w'; in 
;' = 0; on �
:let �1[w℄ denote its smallest eigenvalue, then �1[w℄ an be haraterized as�1[w℄ = inf�2H10 k 5 �k2(w�;�) ; (3.4)and that �1[w℄ > 0. Here k � k and (�; �) denote the usual norm and inner produt inL2(
) and H10 (
) is the subspae of the standard Sobolev spae H1(
) satisfying thehomogeneous Dirihlet boundary ondition.We will assume that (3.3) has a lassial solution u, whih is linearized stable inthe sense that, for some real number Æ > 0,1�1[f 0(u)℄ � Æ < 1: (3.5)Note that �1[f 0(u)℄ is well de�ned beause of (3.2). We also assume that u0 2 H2(
)\H10 (
)is suh that (3.1) has a global lassial solution u whih satis�es u(t) ! u inL2(
) as t!1 andku(�; t)kL1 � B1; 0 � t <1; (3.6)ku(t)kH2 + kut(t)kH2 + kutt(t)kH2 � B2; 0 < t <1: (3.7)In the disrete problem to be desribed below we replae the funtion f by a smoothfuntion ~f , whih satis�es~f(s) = f(s); jsj � B1 + 1; (3.8)j ~f(s)j; j ~f 0(s)j; j ~f 00(s)j � K; 8s 2 R; (3.9)



404 H.J. WU AND R.H. LIwhere K depends on B1, of ourse. Obviously, this replaement does not a�et theexat solution of (3.1).Let V = H10 (
); Vh � V be the �nite-element spae, ph be the Ritz projetion fromV to Vh satisfying (5phu;5vh) = (5u;5vh); 8vh 2 Vh; (3.10)kphu� uk � Ch2kukH2 ; 8u 2 H2(
) \H10 (
): (3.11)Let qh the L2(
) projetion from V to Vh satisfying(qhu; vh) = (u; vh);8vh 2 Vh: (3.12)Now the impliit ompletely disrete �nite-element method for (3.1) with the timestep-size � reads as follows. Find unh;� 2 Vh suh that�un+1h;� � unh;�� ; ��+(5un+1h;� ;5�) = ( ~f(un+1h;� ); �); 8� 2 Vh; n 2 N0;u0h;� = u0;h: (3.13)Let Ah be the linear operator de�ned on Vh as follows:(Ahuh; vh) = (5uh;5vh); 8uh; vh 2 Vh: (3.14)Set Bh;� (vh) = vh � �Ahvh � �qh ~f(vh); 8vh 2 Vh; (3.15)Ch;� (vh) = vh;8vh 2 Vh: (3.16)Then we an rewrite (3.13) asBh;� (un+1h;� ) = Ch;� (unh;� ); n 2 N0:u0h;� = u0;h: (3.17)Theorem 3.1.[5℄ Let f be a �xed smooth funtion satisfying (3:2). For 8B1; B2 > 0,and 0 < Æ < 1, there are C0 > 0 and h0 > 0, �0 > 0 suh that whenever(H1) u is a solution of (3:3) satisfying (3:5);(H2) u0 2 H2(
) \H10 (
) suh that u(t)! u in L2(
) as t!1;(H3) u satis�es (3:6), (3:7);(H4) the initial approximation u0;h is hosen suh as thatku0;h � u0k � Ch2ku0kH2 ; h < h0: (3.18)



The Stability and Convergene of Computing Long-time Behaviour 405Then, for 0 < h � h0, 0 < � � �0, the solution unh;� of disrete problem (3:17) existsand satis�es kunh;� � u(n�)k � C0(� + h2); n 2 N0: (3.19)Lemma 3.2.[5℄ There is a onstant C suh that��� 1�1[w1℄ � 1�1[w2℄ ��� � Ckw1 � w2k (3.20)for any pair of weight funtions w1 and w2.Now we are going to prove the the ompatibility and stability of sheme (3.17), andthen give the proof of Theorem 3.1.Lemma 3.3. Under the assumptions of Theorem 3:1, the sheme (3:17) is ompat-able and Sh;� � C(� + h2); (3.21)here C is a positive onstant.Proof. Form (3.15){(3.17)Rnh;� (u) =(Bh;� (phu((n+ 1)�)) � Ch;� (phu(n�)))�=ph(u((n+ 1)�)� u(n�))� �Ahphu((n+ 1)�)� qh ~f(phu((n+ 1)�)):From (3.1), for 8vh 2 Vh(ut; vh) + (5u;5vh)� ( ~f(u); vh) = 0:Hene, by (3.11) and (H3) we have(Rnh;� (u); vh) =�ph(u((n+ 1)�) � u(n�))� ; vh) + (5u((n+ 1)�);5vh�� ( ~f(phu((n+ 1)�)); vh)=�ph(u((n+ 1)�) � u(n�))� � ut((n+ 1)�); vh�+ ( ~f(u((n+ 1)�)) � ~f(phu((n+ 1)�)); vh)��ph�(u((n+ 1)�)� u(n�))� � ut((n+ 1)�)�+ k(ph � I)ut((n+ 1)�)k+Kk(ph � I)u((n+ 1)�)kkvhk��ph Z (n+1)�n� s� n�� utt(s)ds+ C1h2(kut((n+ 1)�)kH2+ ku((n+ 1)�)kH2 )kvhk � C(� + h2)kvhk;where C is a positive onstant depending on kukH2 ; kuttk; kutkH2 . Taking vh = Rnh;� (u),we get kRnh;� (u)k � C(� + h2):



406 H.J. WU AND R.H. LIThis proves the lemma.Lemma 3.4. Let wn = Z 10 ~f 0(phu(n�) + svh)ds:Then there exist "1; T; h0; 0 < Æ1 < 1 suh that, for h < h0, n� > T , kvhk � "1,1�1[wn℄ � Æ1: (3.22)Proof. By Lemma 3.2,1�1[wn℄ � 1�1[f 0(u)℄ + Ckwn � f 0(u)k= 1�1[f 0(u)℄ + Ckwn � ~f 0(u)k�Æ + C(kwn � ~f 0(phu(n�))k + k ~f 0(phu(n�))� ~f 0(u(n�))k+ k ~f 0(u(n�)) � ~f 0(u)k)�Æ + C� Z 10 ( ~f 0(phu(n�) + svh)� ~f 0(phu(n�)))ds+ k ~f 0(phu(n�))� ~f 0(u(n�))k+ k ~f 0(u(n�)) � ~f 0(u)k�Æ + C� Z 10 ~f 00(�1)svhds+ k ~f 00(�2)(ph � I)u(n�)k+ k ~f 00(�3)(u(n�)� u)k�:From (3.9),(3.11)and (H3) we have1�1[wn℄ � Æ + �C(kvhk+ h2 + ku(n�)� uk):Note that Æ < 1 and (H2), then (3.22) an be dedued from above inquality.From (3.15) and (3.16) we have, for 8vh 2 Vh�Bnh;� (vh) = vh � �Ahvh � �qh( ~f(phu(n�) + vh)� ~f(phu(n�))); (3.23)�Cnh;� (vh) = vh: (3.24)Lemma 3.5. Sheme (3:17) is stable under the assumptions of Theorem 3:1.Proof. Let Dh = I � �Ah, then from (3.14) we an onlude easily that Dh has aninverse and kD�1h k < 1, (� > 0). Obviously,�Bnh;� (vh) = Dhvh � �qh( ~f(phu(n�) + vh)� ~f(phu(n�))):From (3.9), ~f satis�es global Lipshitz ondition, so there is �0 suh that �Bnh;� has aninverse for 0 < � � �0.From (3.23),( �Bnh;� (vh); vh) = kvhk2 + � jvhj21 � �( ~f 0(�)vh; vh) � kvhk2 � �Kkvhk2;



The Stability and Convergene of Computing Long-time Behaviour 407and hene k �Bnh;� (vh)k � (1� �K)kvhk: (3.25)Let �0 < 12K , then for � � �0 we �ndk �Bnh;� (vh)k � 12kvhk:Hene, with 8vh 2 Vh, 0 < � � �0 we havek( �Bnh;� )�1(vh)k � 2kvhk: (3.26)Taking "2;h;� =1, then the ondition (A1) is satis�ed for 0 < � � �0.If the assumptions of Lemma 3.4 are satis�ed, then from (3.4) we have(qh(wnvh); vh) = (wnvh; vh) � jvhj21�1[wn℄ � Æ1jvhj21; (3.27)hene for 0 < h � h0, kvhk � "1, n� � T ,( �Bnh;� (vh); vh) = kvhk2 + � jvhj21 � �(qh(wnvh); vh) > kvhk2 + �(1� Æ1)jvhj21;thus, there exists �1 suh that( �Bnh;� (vh); vh) � (1 + �1�)kvhk2:Taking � = �11 + �1�0 , then for 0 < h � h0, kvhk � "1, n� � T , we havekvhk � 11 + �1� k �Bnh;� (vh)k=�1� �1�1 + �1� �k �Bnh;� (vh)k � (1� ��)k �Bnh;� (vh)k: (3.28)On the other hand, from (3.24) k �Cnh;� (vh)k = kvhk: (3.29)The inequality (3.25) shows thatkvhk � 11� �K k �Bnh;� (vh)k =�1 + K�1�K� �k �Bnh;� (vh)k�(1 + 2K�)k �Bnh;� (vh)k: (3.30)In a words, if we take "1;h;� = "1, M = max(2; 2K), and �n� = 1 +M� for n� � T ;while �n� = 1 � �� for n� > T , then from (3.26), (3.28){(3.30), we see the onditions



408 H.J. WU AND R.H. LI(A2)1 and (A2)2 satis�ed. Thus sheme (3.17) is stable. This ompletes the proof ofLamma 3.5.Proof of Theorem 3.1. From (H2); (H4) and (3:11) we haveke0h;�k = ku0h;� � phu0k = ku0;h � phu0k � Ch2ku0kH2 : (3.31)Let h0 be small enough, then for 0 < h � h0, we haveke0h;�k � "1;h;� ; limh!0 ke0h;�k = 0:From Lemma 3:3 and 3:5, sheme (3:17) is stable and ompatable. Moreover, sine"1;h;� , "2;h;� do not depend on h; � , so Theorem 2:2 holds by Remark 1. Hene for0 < h � h0, 0 < � � �0 and n � 1, the approximations unh;� exist and satisfykenh;�k �M(aSh;� + bke0h;�k): (3.32)From (2:10) a � 1� + eM(T+�0) � 1M :By using (3:21), (3:31) to evalute the right hand of (3:32), then we an show that thereexists onstant C suh that kenh;�k � C(� + h2);or kunh;� � phu(n�)k � C(� + h2): (3.33)Finally, from (3:11) and (H3) we getkunh;� � u(n�)k �kunh;� � phu(n�)k+ k(I � ph)u(n�)k�C(� + h2) + Ch2ku(n�)kH2 :This ompletes the proof of Theorem 3:1.4. Appliation to the FDMSanz-Serna and Stuart[6℄ onsidered the di�erene method for the reation-di�usionproblem of the form: ut = uxx + f(u); 0 < x < 1; t > 0;u(0; t) = u(1; t) = 0; t > 0; (4.1)u(x; 0) = u0(x); 0 < x < 1:



The Stability and Convergene of Computing Long-time Behaviour 409The assoiate expliit �nite di�erene sheme is as follows:un+1j � unj� = unj+1 � 2unj + unj�1h2 + f(unj ); j = 1; � � � ; J � 1; n 2 N0;un0 = unJ = 0; n 2 N; (4.2)u0j = u0(jh); j = 0; � � � ; J;where unj denotes the approximation to u(xj ; tn), xj = jh; j = 0; � � � ; J; tn = n� .Let Vh = fvjv = (v1; � � � ; vJ�1)T g. De�ne the norms of v suh askvkh = � J�1Xj=1 hv2j�1=2 (4.3)and kvk1 = max1�j�J�1 jvj j: (4.4)Obviously kvk1 � 1phkvkh: (4.5)Let V = H10 ([0; 1℄), ph be the operator from V to Vh:phu = (u(h); u(2h); � � � ; u((J � 1)h))T : (4.6)We are going to state the assumptions and main theorem given by Sanz-Serna andStuart.Assumptions[6℄:(H1) f(�) 2 C2((a; b); R) for some interval (a; b) � R.(H2) Equation (1.1) have a solution u for whih the derivatives uxxxx and utt existand are uniformly bounded for 0 � x � 1, 0 � t � 1. Furthermore, there exists Æ > 0suh that a+ Æ � u(x; t) � b� Æ; 8(x; t) 2 [0; 1℄ � [0;1):(H3) As t!1, u approahes an equilibrium �u. More preisely, ku(�; t)� �u(�)k1 !0, where �u satis�es �uxx + f(�u) = 0; 0 < x < 1;�u(0) = �u(1) = 0: (4.7)(H4) �u is an asymptotially stable equilibrium in the sene that�max = max�2H10 Z 10 (�(�x)2 + f 0(�u(x))�2)dxZ 10 �2dx < 0: (4.8)



410 H.J. WU AND R.H. LINote that �max is the largest eigenvalue of the problem�� = �xx + f 0(�u)�; 0 < x < 1�(0) = �(1) = 0: (4.9)(H5) The grids are re�ned in suh a way that�=h2 � � < 1=2(this is relation(R)): (4.10)Theorem 4.1.[6℄ Under the assumptions above, there exist onstants h0 and C,depending only upon f; � and u, suh that, for 0 < h � h0, the numerial solutionunh;� = (un1 ; � � � ; unJ�1)T exists for all positive integers n and satis�es the error boundkunh;� � phu(n�)kh � C(� + h2); n 2 N0: (4.11)Now we are going to prove Theorem 4.1 by the general frame established in x2.For vh 2 Vh, setBh;� (vh) = vh; (4.12)Ch;� (vh) = � � � � ; vj + �h2 (vj+1 � 2vj + vj�1) + �f(vj); � � � �T :(v0 = vJ = 0) (4.13)Then the sheme (4.2) an be rewritten asBh;� (un+1h;� ) = Ch;� (unh;� ); n � 0:u0h;� = phu0 (4.14)Lemma 4.2. Under the assumptions above, sheme (4:14) is ompatable.Proof. Set w = Rnh;� (u). Then from (2.3) and (2.4) we havew = [Bh;� (phu((n+ 1)�))� Ch;� (phu(n�))℄=�:From (4.6),(4.12) and (4.13),wj =u((n+ 1)�; jh) � u(n�; jh)� � u(n�; (j + 1)h)� 2u(n�; jh) + u(n�; (j � 1)h)h2� f(u(n�; jh))=ut(n�; jh) + utt(�1; jh)2 � � uxx(n�; jh)� h224 (uxxxx(n�; �2) + uxxxx(n�; �3))� f(u(n�; jh)):



The Stability and Convergene of Computing Long-time Behaviour 411From (4.1) and (H2), there exists a onstant C, suh thatjwj j =���utt(�1; jh)2 � � h224(uxxxx(n�; �2) + uxxxx(n�; �3))����C(� + h2); 1 � j � J � 1; (4.15)hene kRnh;� (u)kh = kwkh � kwk1 � C(� + h2): (4.16)Thus, sheme (4.14)is ompatable. Furthermore,Sh;� � C(� + h2): (4.17)This ompletes the proof of Lemma 4.2.From (4.12) and (4.13), for vh 2 Vh, it is easy to see�Bnh;� (vh) =vh; (4.18)�Cnh;� (vh) =� � � � ; vj + �h2 (vj+1 � 2vj + vj�1)+ �(f(u(n�; jh) + vj)� f(u(n�; jh))); � � � �T : (4.19)Lemma 4.3. Under the assumptions above, sheme (4:14) is stable.Proof. With "2;h;� = +1, M � 1, then from (4.18) the ondition (A1) holds for8h; � .Let vh = (v1; � � � ; vJ�1)T 2 Vh. From (4.19) we onlude that[ �Cnh;� (vh)℄j =vj + �h2 (vj+1 � 2vj + vj�1) + �f 0(�u(jh))vj+ �f 00(�nj )(u(n�; jh) � �u(jh))Vj + �f 00(�nj )v2j =2;where �nj = snj �u(jh) + (1� snj )u(n�; jh);�nj = u(n�; jh) + rnj vjand 0 � snj � 1, 0 � rnj � 1. By using (4.5), the norm of �Cnh;� (vh) satis�esk �Cnh;� (vh)kh � kI + �Akhkvhkh + �K1(k(u(n�; jh) � �u(jh)k1 + kvhkh2ph kvhkh); (4.20)



412 H.J. WU AND R.H. LIwhere K1 = supa+Æ�x�b�Æ jf 00(x)j,A = 0BBBB� �1 h�2h�2 �2 h�2. . . . . . . . .h�2 �J�11CCCCA (4.21)and �j = � 2h2 +f 0(�u(jh)). From the known results we an onlude that, as h! 0, thelargest eigenvalue of A onverges to the eigenvalue �max de�ned in assumption (H4)(see, for example, [4℄). Furthermore, the smallest eigenvalue satis�es�� � � 4h2 �K2;where K2 = maxff 0(�u(x)), 0 < x < 1g. Sine A is symmetri, hene, by (H5) we anobtain kI + �Akh � 1� ��; � > 0 (4.22)for h; � suÆiently small. From (H3), there exists T > 0, suh that for n� > TK1ku(n�; jh) � �u(jh)k1 � �=4: (4.23)Let "1;h;� = �ph2K1 , � = �2 . From (4.20), (4.22) and (4.23), there exist h0; �0, suh thatfor 0 < h � h0, �h2 � �, n� > T , kvhkh � "1;h;� we havek �Cnh;� (vh)kh � (1� ��)kvhkh: (4.24)From (4.20), (4.22) and the assumption, there exists M > 0 suh that, for 0 < h � h0,�h2 � �, n� � T , kvhkh � "1;h;� , we havek �Cnh;� (vh)kh � (1 +M�)kvhkh: (4.25)Next, by formula (4.18), we obtaink �Bnh;� (vh)kh = kvhkh: (4.26)Thus, if we take �n� = 1+M� for n� � T ; �n� = 1��� for n� � T , then ondition (A2)1and (A2)2 hold for 0 < h � h0, �h2 � �. This ompletes the proof of Lemma (4.3).Proof of Theorem 4.1. Sine ke0h;�kh = 0, Sh;� � C1h2 (from (4:17)), we knowthe ondition (A3) holds for suÆiently small h0 and �0. Furthermore, from Lemma4:2 and 4:3, the onditions in Theorem 2:2 are satis�ed. This ompletes the proof ofTheorem 4:1 by using (4:17).



The Stability and Convergene of Computing Long-time Behaviour 4135. An ExampleConsider the semilinear paraboli problems as followsut = uxx � u2 + g(t; x); 0 < x < 1; t > 0;u(0; t) = u(1; t) = 0; t > 0; (5.1)u(x; 0) = 0; 0 < x < 1;where g(t; x) = sin(2�x)(os t+ 4�2 sin t+ sin t sin(2�x)): (5.2)The solution of (5.1) is u(t; x) = sin t sin(2�x): (5.3)We onsider the forward Euler method with entral di�erenes in spae:un+1j � unj� = unj+1 � 2unj + unj�1h2 � �(unj )2 + �g(n�; jh); j = 1; � � � ; J � 1; n 2 N0;un0 = unJ = 0; n 2 N; (5.4)u0j = 0; j = 0; � � � ; J;where unj denotes the approximation to u(n�; jh), Jh = 1.Sine the solution of (5.1) does not onverge as t!1, it an't inlude in the framesof [3℄, [5℄ and [6℄. But, by using the frame of x2, we an prove: For suÆiently small hand � satisfying �h2 � 12, the sheme (5.4) possesses onvergene uniformly in time.Theorem 5.1. There exist onstants h0 and C, suh that, for 0 < h � h0, �h2 � 12 ,the numerial solution unh;� = (un1 ; � � � ; unJ�1)T exists for all positive integers n andsatis�es the error boundkunh;� � phu(n�)kh � C(� + h2); n 2 N0; (5.5)where k � kh and ph are de�ned by (4:3) and (4:6) respetively.The proof of Theorem 5.1 is analogous as that of Theorem 4.1.For vh = (v1; � � � ; vJ�1)T 2 Vh, we takeBh;� (vh) = vh; (5.6)Ch;� (vh) = � � � � ; vj + �h2 (vj+1 � 2vj + vj�1)� �v2j ; � � � �T ; (5.7)gnh;� = (g(n�; h); � � � ; g(n�; (J � 1)h))T ; (5.8)then we an rewrite sheme (5.4) asBh;� (un+1h;� ) = Ch;� (unh;� ) + �gnh;� ; n 2 N0;



414 H.J. WU AND R.H. LIu0h;� = 0: (5.9)Lemma 5.2. Sheme (5:9) is ompatable, and haveSh;� � C(� + h2); (5.10)where C is a onstant.Proof. We ommit the proof beause it is straightward.From (5.6) and (5.7) we have�Bnh;� (vh) = vh; (5.11)�Cnh;� (vh) = � � � � ; vj + �h2 (vj+1 � 2vj + vj�1�� 2� sin(n�) sin(2j�h)vj � �v2j ; � � � �T :(5.12)Lemma 5.3. If �h2 � 12 , then the sheme (5:9) is stable.Proof. Let A = 1h2 0BBBB��2 11 �2 1. . . . . . . . .1 �21CCCCAThe eigenvalues of A are �4 sin2(k�h=2)h2 , (k = 1; � � � ; J�1) (see [1℄), hene, from (5.12)we have k �Cnh;� (vh)kh � (1� ��h)kvhkh + 2�kvhkh + �phkvhk2h; (5.13)where �h = �2 sin2(�h=2)(�h=2)2 . Sine sinx � x � 16x3, (x � 0), there exists h0 suh that,�h � 9 for 0 < h � h0. Let "1;h;� = ph2 , then for 0 < h � h0 and kvhkh < "1;h;� , wehave k �Cnh;� (vh)kh � (1� 9� + 2� + �=2)kvhkh � (1� 6�)kvhkh:Note that (5.11), and take � = 6, M = 1, T = 0, �n� = 1 � �� , then the onditions(A2)1 and (A2)2 hold for 0 < h � h0, �h2 � 12. This ompletes the proof of lemma 5.3.Proof of Theorem 5.1. From (5:10) and ke0h;�kh = 0 we an onlude that, theondition (A3) holds for suÆiently small h0 and 0 < h � h0, �h2 � 12 . On the otherhand, from lemma 5:2 and 5:3 we see Theorem 2:2 holds. Then from (5:10) we andedue Theorem 5:1.The following numerial results veri�ed the long-time onvergene of sheme (5.4)in a sense.



The Stability and Convergene of Computing Long-time Behaviour 415time t error (L2 norm) error (maximum norm)10.00000 5.6708982E-04 8.3100796E-0420.00000 9.1236364E-04 1.3898611E-0330.00000 9.6483884E-04 1.4952421E-0340.00000 7.0018758E-04 1.0771155E-0350.00000 2.1183636E-04 3.1808019E-0460.00000 3.3865144E-04 4.8586726E-0470.00000 7.8310986E-04 1.1746287E-0380.00000 9.8119921E-04 1.5131235E-0390.00000 8.5874501E-04 1.3295412E-03100.0000 4.5624792E-04 6.9254637E-045000.000 9.7848591E-04 1.5147328E-035010.000 7.5847126E-04 1.1598468E-035020.000 2.9577641E-04 4.3708086E-045030.000 2.5466483E-04 3.6710501E-045040.000 7.2789006E-04 1.0963678E-035050.000 9.7230350E-04 1.5004277E-035060.000 8.9846307E-04 1.3860464E-035070.000 5.3234241E-04 8.0072880E-045080.000 2.2076156E-06 3.6954880E-065090.000 5.2837259E-04 7.8123808E-045100.000 8.9519034E-04 1.3697147E-0310000.00 1.7128926E-04 2.4917722E-0410010.00 6.7269686E-04 1.0180473E-0310020.00 9.6278504E-04 1.4868975E-0310030.00 9.3699095E-04 1.4405847E-0310040.00 6.0683367E-04 9.0640783E-0410050.00 8.7746092E-05 1.2588128E-0410060.00 4.5683002E-04 6.7991018E-0410070.00 8.6307735E-04 1.3242960E-0310080.00 9.9076249E-04 1.5313625E-0310090.00 7.9297303E-04 1.2033582E-0310100.00 3.4287336E-04 4.9999356E-04Here h = 149 , � = 0:0001.Now let us explain the fat that the numerial solution has long-time onvergenein another way. In fat, we an prove, in a sense, sheme (5.4) has a solution with



416 H.J. WU AND R.H. LIperiod 2� (the same as the period of the ontinuous solution).Theorem 5.4. There exist h0, C > 0, suh that, for �h2 � 12 and � = 2�m (m 2 N),sheme (5:9) has a solution �unh;� with period 2�, i.e.�u0h;� = �umh;� ; (5.14)and having the following estimate:k�unh;� � phu(n�)kh � C(� + h2); n 2 N0: (5.15)Remark. Sine gnh;� = gn+mh;� , (n � 0), therefore (5.14) implies �unh;� = �un+mh;� .Proof. From x2, ekh;� = ukh;� � phu(k�) satis�es the following equationek+1h;� = �Ckh;� (ekh;� ) + �Rkh;� (u): (5.16)Sine phu(n�) = (� � � ; sin(n�) sin(2j�h); � � �)T has period 2�, it is suÆient to proveequation (5.16) has a solution of period 2� satisfying (5.15). LetDk(vh) = �Ckh;� (vh) + �Rkh;� (u); (5.17)then one an transform (5.16) intoek+1h;� = Dk(ekh;� ): (5.18)Let Z = fvhjvh 2 Vh, kvhkh � "1;h;�g. Then for 8vh 2 Z we havekDk(vh)kh �(1� ��)"1;h;� + �Sh;�="1;h;� � ��("1;h;� � Sh;�� ) � "1;h;� ;hene, Dk is a operator from Z to Z.For 8v1h; v2h 2 Z, from (5.12) and (5.17) we onlude thatkDk(v1h)�Dk(v2h)kh �kI + �Akkv1h � v2hkh + 2�kv1h � v2hkh + �kph(v21h � v22h)kh�(1� ��h + 2� + 2�ph"1;h;� )kv1h � v2hkh:Let h0 be suÆiently small suh that lemma 5.3 holds. Then from the proof of thelemma we onlude thatkDk(v1h)�Dk(v2h)kh �(1 � 9� + 2� + �)kv1h � v2hkh=(1 � ��)kv1h � v2hkh: (5.19)



The Stability and Convergene of Computing Long-time Behaviour 417De�ne T k by T k = DkDk�1 � � �D0; (k � 0): (5.20)Obviously T k is a strit ontration in Z. Moreover, for 8v1h, v2h 2 Z we havekT k(v1h)� T k(v2h)kh � (1� ��)k+1kv1h � v2hkh: (5.21)From (5.18) and (5.20), ek+1h;� = T k(e0h;� ); (k � 0): (5.22)Sine Tm�1 is a strit ontration in Z, it has a �xed point. So there exists �ekh;� 2 Zsatis�es (5.22) and �e0h;� = �emh;� ; (this implies �u0h;� = �umh;� ); (5.23)hene �ekh;� is a solution of period 2�.From (5.21) and (5.22), for 8e0h;� 2 Z, enh;� de�ned by (5.22) satis�esk�enh;� � enh;�kh = kT n�1(�enh;�) � T n�1(enh;� )kh � 2(1 � ��)n"1;h;� : (5.24)If taking e0h;� = 0, then from theorem 5.1 we getkenh;�kh � C1(� + h2); n � 0: (5.25)From (5.24), there exists N > 0 suh that, for n > N ,k�enh;� � enh;�kh � C1(� + h2);hene, for n > N , we havek�enh;�kh � C(� + h2); (C = 2C1):By using (5.23) we onlude thatk�enh;�kh � C(� + h2); 8n � 0 (5.26)This is (5.15). Thus we omplete the proof of theorem 5.4.In fat, from the proof of theorem 5.4 we an also onlude that, this periodisolution is asymptotially stable (see (5.24)).By theorem 5.4, we an understand easily why the numerial solution has long-timeonvergene.
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