A WAVELET METHOD FOR THE FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH CONVOLUTION KERNEL*1)

Xiao-qing Jin Vai-Kuong Sin
(Faculty of Science and Technology, University of Macau, Macau)
Jin-yun Yuan
(Department of Mathematics, Universidade Federal do Parana, Curitiba, Brazil)

Abstract

We study the Fredholm integro-differential equation $$
D_{x}^{2 s} \sigma(x)+\int_{-\infty}^{+\infty} k(x-y) \sigma(y) d y=g(x)
$$ by the wavelet method. Here $\sigma(x)$ is the unknown function to be found, $k(y)$ is a convolution kernel and $g(x)$ is a given function. Following the idea in [7], the equation is discretized with respect to two different wavelet bases. We then have two different linear systems. One of them is a Toeplitz-Hankel system of the form $\left(H_{n}+T_{n}\right) x=b$ where T_{n} is a Toeplitz matrix and H_{n} is a Hankel matrix. The other one is a system $\left(B_{n}+C_{n}\right) y=d$ with condition number $\kappa=O(1)$ after a diagonal scaling. By using the preconditioned conjugate gradient (PCG) method with the fast wavelet transform (FWT) and the fast iterative Toeplitz solver, we can solve the systems in $O(n \log n)$ operations.

Key words: Fredholm integro-differential equation, Kernel, Wavelet transform, Toeplitz matrix, Hankel matrix, Sobolev space, PCG method.

1. Introduction

In this paper, we study the Fredholm integro-differential equation

$$
\begin{equation*}
A(\sigma(x)) \equiv D_{x}^{2 s} \sigma(x)+\int_{-\infty}^{+\infty} k(x-y) \sigma(y) d y=g(x) \tag{1}
\end{equation*}
$$

by the wavelet method. The applications of the equation in image restoration could be found in [10]. For the history of numerical methods for the Fredholm integro-differential equations, we refer to [4]. Following the idea in [7], the equation is discretized with respect to two different orthonormal wavelet bases \mathcal{B}_{1} and \mathcal{B}_{2} of $L^{2}(R)$. The \mathcal{B}_{1} comes from the father wavelet $\varphi(x)$ and the \mathcal{B}_{2} comes from the mother wavelet $\psi(x)$. After discretizing of the equation with respect to \mathcal{B}_{1} and \mathcal{B}_{2} on a finite interval, we then have

[^0]two different n-by- n linear systems. One of them is a Toeplitz-Hankel system of the form
\[

$$
\begin{equation*}
\left(H_{n}+T_{n}\right) x=b \tag{2}
\end{equation*}
$$

\]

where T_{n} is a Toeplitz matrix and H_{n} is a Hankel matrix. The other one is a system

$$
\begin{equation*}
\left(B_{n}+C_{n}\right) y=d \tag{3}
\end{equation*}
$$

with condition number

$$
\begin{equation*}
\kappa\left(D_{n}^{-1 / 2}\left(B_{n}+C_{n}\right) D_{n}^{-1 / 2}\right)=O(1) \tag{4}
\end{equation*}
$$

after a diagonal scaling D_{n}. The relation between $H_{n}+T_{n}$ and $B_{n}+C_{n}$ is $B_{n}+C_{n}=$ $W_{n}\left(H_{n}+T_{n}\right) W_{n}^{-1}$ where W_{n} is the wavelet transform matrix between \mathcal{B}_{1} and \mathcal{B}_{2}.

We then solve (2) by solving its equivalent form (3) with $y=W_{n} x$ and $d=W_{n} b$. For solving (3), we use the PCG method with the diagonal preconditioner D_{n}. The condition number of the preconditioned system is, by (4),

$$
\kappa\left(D_{n}^{-1}\left(B_{n}+C_{n}\right)\right)=\kappa\left(D_{n}^{-1 / 2}\left(B_{n}+C_{n}\right) D_{n}^{-1 / 2}\right)=O(1)
$$

When the PCG method is applied to solve the preconditioned system, the convergence rate will be linear, see [5]. By using the FWT, see [2], and fast iterative Toeplitz solver, see [1] and [9], we can solve the system $\left(B_{n}+C_{n}\right) y=d$ and also $\left(H_{n}+T_{n}\right) x=b$ in $O(n \log n)$ operations.

2. Discretization of Fredholm Equation

The Fredholm integro-differential equation is given as follows, $A \sigma=g$, where A is defined by (1), $g \in L^{2}(R)$ and $k(x-y) \in L^{2}(R)$ is symmetric and positive, i.e., $k(x-y)=k(y-x)>0$. For solving the equation, we need to find $\sigma \in C_{0}^{2 s}(R)$ such that (1) is to be satisfied. The equivalent variational form of (1) is: find $\sigma \in H_{0}^{s}(R)$ such that

$$
\begin{equation*}
B(\sigma, \mu)=F(\mu) \tag{5}
\end{equation*}
$$

for $\forall \mu \in H_{0}^{s}(R)$. Here $B(\sigma, \mu)=B_{0}(\sigma, \mu)+B_{1}(\sigma, \mu)$ with

$$
\begin{aligned}
& B_{0}(\sigma, \mu)=\int_{-\infty}^{+\infty} D_{x}^{s} \sigma(x) D_{x}^{s} \mu(x) d x \\
& B_{1}(\sigma, \mu)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} k(x-y) \sigma(y) \mu(x) d y d x
\end{aligned}
$$

and

$$
F(\mu)=\int_{-\infty}^{+\infty} g(x) \mu(x) d x
$$

We assume that $B(\sigma, \mu)$ is a continuous elliptic bilinear form on $H_{0}^{s}(R) \times H_{0}^{s}(R)$, i.e., there exist two constants $\beta \geq \alpha>0$, such that $\alpha\|\sigma\|_{H_{0}^{s}}^{2} \leq B(\sigma, \sigma)$ and $B(\sigma, \mu) \leq$ $\beta\|\sigma\|_{H_{0}^{s}}\|\mu\|_{H_{0}^{s}}$. For instance, when $s=0$ (or $s=1$) and $+\infty>C \geq k(x-y) \geq c>0$, then obviously, $B(\sigma, \mu)$ is a continuous elliptic bilinear form on $L^{2}(R) \times L^{2}(R)$ (or $\left.H_{0}^{1}(R) \times H_{0}^{1}(R)\right)$.

2.1 Wavelet Bases

Now, following the idea in [7], we are going to discretize the Fredholm integrodifferential equation with respect to two different orthonormal wavelet bases \mathcal{B}_{1} and \mathcal{B}_{2} of $L^{2}(R)$. First of all, we introduce a function $\varphi(x) \in L^{2}(R)$ called the father wavelet (or scaling function), with a compact support $[0, a], a>0$, see [3]. The $\varphi(x)$ has the property that

$$
\begin{equation*}
\varphi(x-k), \quad k \in Z \tag{6}
\end{equation*}
$$

form an orthonormal sequence in $L^{2}(R)$. Let V_{0} be the closed linear subspace of $L^{2}(R)$ generated by (6). A chain of closed subspaces in $L^{2}(R)$ is given as

$$
\cdots \subset V_{j-1} \subset V_{j} \subset V_{j+1} \subset \cdots
$$

The multiresolution analysis (MRA), depending on $\varphi(x)$, is given as follows:
(i) $f(x) \in V_{0}$ if and only if $f\left(2^{j} x\right) \in V_{j}$;
(ii) $\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots$;
(iii) $\overline{\bigcup_{-\infty}^{\infty} V_{j}}=L^{2}(R)$ and $\bigcap_{-\infty}^{\infty} V_{j}=0$;
(iv) The sequence (6) forms an orthonormal basis of V_{0}.

Let W_{j} denote the orthogonal complement of V_{j} in V_{j+1}, i.e., $V_{j+1}=V_{j} \oplus W_{j}$.
From MRA (iii), we also have $\oplus_{-\infty}^{\infty} W_{j}=L^{2}(R)$. There exists at least one function $\psi(x) \in W_{0}$ such that $\psi(x-k), k \in Z$ form an orthonormal basis of W_{0}, see [2] and [8]. The $\psi(x)$ is called the mother wavelet. We then construct following two wavelet sequences: $\varphi_{j, k}(x)=2^{j / 2} \varphi\left(2^{j} x-k\right), j, k \in Z$, and $\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$, $j, k \in Z$. The $\left\{\varphi_{j, k}(x)\right\}$ and $\left\{\psi_{j, k}(x)\right\}$ form two wavelet bases of $L^{2}(R)$ and $\left\{\psi_{j, k}(x)\right\}$ also constructs an orthonormal basis of $H_{0}^{s}(R)$ for $0 \leq s<r$ where r is the regularity of the MRA, see [6] and [8]. The bilinear form B defined by (5) can be projected on the subspace V_{J} (J is fixed) with respect to the following two bases in V_{J} :

$$
\mathcal{B}_{1}=\left\{\varphi_{J, k}(x)\right\} \quad \text { and } \quad \mathcal{B}_{2}=\bigcup_{-\infty<j \leq J-1}\left\{\psi_{j, k}(x)\right\}
$$

The following lemma could be found in [6] and [8].
Lemma 1. Let $f=\sum_{j, k}\left\langle f, \psi_{j, k}\right\rangle \psi_{j, k}$. Then $f \in H_{0}^{s}(R)$ if and only if

$$
\begin{equation*}
\|f\|_{H_{0}^{s}}^{2} \equiv \sum_{j, k}\left|\left\langle f, \psi_{j, k}\right\rangle\right|^{2}\left(1+2^{2 j}\right)^{s}<+\infty, \quad 0 \leq s<r \tag{7}
\end{equation*}
$$

where r is the regularity of the MRA.

2.2 Projection of B with respect to \mathcal{B}_{1} and \mathcal{B}_{2}

Let B_{J} denote the projection of $B(\sigma, \mu)$ on $V_{J} \times V_{J}$. The matrix representation of B_{J} corresponding to the basis \mathcal{B}_{1} has the elements given by

$$
\begin{equation*}
m_{p, q}=B\left(\varphi_{J, p}, \varphi_{J, q}\right) \tag{8}
\end{equation*}
$$

where $\forall p, q \in Z$. For $\forall \sigma, \mu \in H_{0}^{s}(R)$, let σ_{J}, μ_{J} denote the the projections of σ, μ on V_{J} respectively. Then the equation (5) becomes

$$
\begin{equation*}
B\left(\sigma_{J}, \mu_{J}\right)=F\left(\mu_{J}\right) \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\sigma_{J}=\sum_{p \in Z} x_{p} \varphi_{J, p} \quad \text { and } \quad \mu_{J}=\varphi_{J, q}, \quad \forall q \in Z \tag{10}
\end{equation*}
$$

Substituting (10) into (9), we have the following linear system

$$
\begin{equation*}
M_{\infty} x=b \tag{11}
\end{equation*}
$$

where $\left(M_{\infty}\right)_{p, q}=m_{p, q}$ is given by (8), and

$$
(x)_{p}=x_{p}, \quad(b)_{q}=\int_{-\infty}^{+\infty} g(x) \varphi_{J, q}(x) d x .
$$

Let H_{∞} and T_{∞} be matrices with $\left(H_{\infty}\right)_{p, q}=h_{p, q}$ and $\left(T_{\infty}\right)_{p, q}=t_{p, q}$ where $h_{p, q}=$ $B_{0}\left(\varphi_{J, p}, \varphi_{J, q}\right)$ and $t_{p, q}=B_{1}\left(\varphi_{J, p}, \varphi_{J, q}\right)$. Then we have $M_{\infty}=H_{\infty}+T_{\infty}$. Because,

$$
\begin{aligned}
h_{p, q} & =h_{q, p}=B_{0}\left(\varphi_{J, p}, \varphi_{J, q}\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \widehat{D}_{x}^{\widehat{s} \varphi_{J, p}}(\xi) D_{x}^{\widehat{s} \varphi_{J, q}}(\xi) d \xi \\
& =\frac{1}{2 \pi 4^{J}} \int_{-\infty}^{+\infty}(i \xi)^{2 s} e^{-i(p+q) 2^{-J} \xi}\left|\hat{\varphi}\left(2^{-J} \xi\right)\right| d \xi=h_{p+q} .
\end{aligned}
$$

Hence, H_{∞} is a Hankel matrix. For matrix T_{∞}, since $k(x-y)$ is symmetric and $\varphi(x)$ has the compact support [$0, a$], we have

$$
\begin{aligned}
t_{p, q} & =B_{1}\left(\varphi_{J, p}, \varphi_{J, q}\right) \\
& =2^{J} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} k(x-y) \varphi\left(2^{J} x-p\right) \varphi\left(2^{J} y-q\right) d y d x \\
& =2^{J} \int_{2^{-J} p}^{2^{-J}(a+p)} \int_{2^{-J} q}^{2^{-J}(a+q)} k(x-y) \varphi\left(2^{J} x-p\right) \varphi\left(2^{J} y-q\right) d y d x \\
& =2^{-J} \int_{0}^{a} \int_{0}^{a} k\left[2^{-J}(x-y+p-q)\right] \varphi(x) \varphi(y) d y d x=t_{p-q}=t_{q, p} .
\end{aligned}
$$

Hence, T_{∞} is a Toeplitz matrix. Therefore, (11) is a Toeplitz-Hankel system.
The matrix representation of B_{J} corresponding to the basis \mathcal{B}_{2} has the elements given by

$$
\begin{equation*}
n_{p, l ;, m}=B\left(\psi_{p, q}, \psi_{l, m}\right) \tag{12}
\end{equation*}
$$

for $-\infty<p, l<J$ and $-\infty<q, m<\infty$. Let

$$
\begin{equation*}
\sigma_{J}=\sum_{p, q} y_{p, q} \psi_{p, q} \quad \text { and } \quad \mu_{J}=\psi_{l, m}, \quad-\infty<l<J, \quad \forall m \in Z . \tag{13}
\end{equation*}
$$

Substituting (13) into (9), we have the following linear system

$$
\begin{equation*}
N_{\infty} y=d \tag{14}
\end{equation*}
$$

where $\left(N_{\infty}\right)_{p, l ; q, m}=n_{p, l ; q, m}$, given by (12), denotes the (p, l) th entry of the (q, m) th block of $N_{\infty}, y=\left(y_{p, q}\right)^{T}$ and $d=\left(d_{p, q}\right)^{T}$ are vectors with $d_{p, q}=\int_{-\infty}^{+\infty} g(x) \psi_{p, q}(x) d x$. Let B_{∞} and C_{∞} be matrices with

$$
\left(B_{\infty}\right)_{p, l ; q, m}=B_{0}\left(\psi_{p, q}, \psi_{l, m}\right) \quad \text { and } \quad\left(C_{\infty}\right)_{p, l ; q, m}=B_{1}\left(\psi_{p, q}, \psi_{l, m}\right)
$$

Then we have $N_{\infty}=B_{\infty}+C_{\infty}$.

3. Condition Number and Operation Cost

Now we consider the condition number of the system (14) by following the idea in [6]. Let $\phi \in V_{J}$ with $\phi=\sum_{j, k} w_{j, k} \psi_{j, k}$. We have

$$
\begin{equation*}
B(\phi, \phi)=\sum_{j, k} \sum_{p, q} w_{j, k} w_{p, q} n_{j, p ; k, q}=w^{T} N_{\infty} w \tag{15}
\end{equation*}
$$

where $w=\left(w_{j, k}\right)^{T}$ is a vector. By the assumption that $B(\sigma, \mu)$ is a continuous elliptic bilinear form on the space $H_{0}^{s}(R) \times H_{0}^{s}(R)$, we have

$$
\begin{equation*}
C_{1}\|\phi\|_{H_{0}^{s}}^{2} \leq B(\phi, \phi) \leq C_{2}\|\phi\|_{H_{0}^{s}}^{2} \tag{16}
\end{equation*}
$$

where $C_{2} \geq C_{1}>0$ are constants. Combining (15) and (16), we have

$$
C_{1}\|\phi\|_{H_{0}^{s}}^{2} \leq w^{T} N_{\infty} w \leq C_{2}\|\phi\|_{H_{0}^{s}}^{2} .
$$

By using (7), one can easily obtain

$$
C_{3} \sum_{j, k}\left|2^{j s} w_{j, k}\right|^{2} \leq w^{T} N_{\infty} w \leq C_{4} \sum_{j, k}\left|2^{j s} w_{j, k}\right|^{2}
$$

where $C_{4} \geq C_{3}>0$ are constants. After a diagonal scaling D, we have

$$
C_{3}\|w\|^{2} \leq w^{T} D^{-1 / 2} N_{\infty} D^{-1 / 2} w \leq C_{4}\|w\|^{2}
$$

where $\|\cdot\|$ is the l_{2}-norm. Thus, the condition number of N_{∞} after a diagonal scaling is

$$
\begin{equation*}
\kappa\left(D^{-1 / 2} N_{\infty} D^{-1 / 2}\right)=O(1) . \tag{17}
\end{equation*}
$$

The relation between M_{∞} given by (11) and N_{∞} given by (14) is $N_{\infty}=W M_{\infty} W^{-1}$ where W is the wavelet transform matrix between two orthonormal wavelet bases \mathcal{B}_{1} and \mathcal{B}_{2}. We then solve the Toeplitz-Hankel system (11) by solving its equivalent form $\left(W M_{\infty} W^{-1}\right) W x=W b$ i.e., $N_{\infty} y=d$ where $y=W x$ and $d=W b$. We use the PCG method with the diagonal preconditioner D to solve the preconditioned system $D^{-1} N_{\infty} y=D^{-1} d$. Since by (17), the condition number of the preconditioned system is $O(1)$, the convergence rate will be linear, see [5].

In practice, we usually use a finite interval instead of $(-\infty,+\infty)$. We then have an n-by- n system

$$
\begin{equation*}
M_{n} x=b \tag{18}
\end{equation*}
$$

where M_{n} is the finite section of M_{∞}. Let W_{n} be the finite section of the wavelet transform matrix W. The system (18) can be solved by solving its equivalent form

$$
\left(W_{n} M_{n} W_{n}^{-1}\right) W_{n} x=W_{n} b
$$

i.e.,

$$
\begin{equation*}
N_{n} y=d \tag{19}
\end{equation*}
$$

where N_{n} is the finite section of $N_{\infty}, y=W_{n} x$ and $d=W_{n} b$. The PCG method is applied to solve the system (19) with the diagonal preconditioner D_{n} which is the finite section of D. In each iteration of the PCG method, we have to compute the matrixvector multiplication $N_{n} v$ for some vector v and solve the system $D_{n} z=t$, see [5]. For $N_{n} v$, we know that

$$
N_{n} v=\left(B_{n}+C_{n}\right) v=B_{n} v+C_{n} v
$$

For $C_{n} v=W_{n} T_{n} W_{n}^{-1} v$, By using the FWT, $u=W_{n}^{-1} v$ could be computed in $O(n)$ operations. The $T_{n} u$ could be computed by using the fast iterative Toeplitz solver in $O(n \log n)$, see [1] and [9]. By using FWT again, we note that the operation cost for $C_{n} v$ will be $O(n \log n)$. Similarly, $B_{n} v$ could also be computed in $O(n \log n)$ operations. Hence, the operation cost for $N_{n} v$ will remain $O(n \log n)$. It requires only $O(n)$ operations to solve the system $D_{n} z=t$. Thus, the total operation cost per iteration is $O(n \log n)$. Since the number of iteration is independent of n, we therefore can solve the system (19) and also the system (18) in $O(n \log n)$ operations.

Acknowledgement. The authors would like to thank Dr. F. Lin from the Department of Mathematics, Shantou University for his very helpful discussion.

References

[1] R. Chan, G. Strang, Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Statist. Comput., 10(1989), 104-119.
[2] C. Chui, An Introduction to Wavelet, Academic Press (1992).
[3] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41(1988), 909-996.
[4] L. Delves, J. Mohamed, Computational Methods for Integral Equations, Cambridge University Press (1985).
[5] G. Golub, C. Van Loan, Matrix Computation, 3nd Edition, Johns Hopkins University Press (1996).
[6] S. Jaffard, Ph. Laurencot, Orthonormal Wavelets, Analysis of Operators, and Applications to Numerical Analysis, Wavelets-A Tutorial in Theory and Applications, C. Chui (ed.) 543-601, Academic Press (1992).
[7] X. Jin, J. Yuan, A wavelet method for the first kind integral equations with kernel $k(x-y)$, Taiwanese Journal of Mathematics, 2(1998), 427-434.
[8] Y. Meyer, Wavelets and Operators, Cambridge University Press (1992).
[9] G. Strang, A proposal for toeplitz matrix calculations, Stud. Appl. Math., 74(1986), 171176.
[10] C. Vogel, Solution of linear systems arising in nonlinear image deblurring, Scientific Computing, G. Golub, S. Lui, F. Luk and R. Plemmons (ed.) 148-156.

[^0]: * Received February 19, 1997.
 ${ }^{1)}$ Research supported by the grant $\operatorname{RC} 034(96 / 97)$ from the University of Macau.

