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A WAVELET METHOD FOR THE FREDHOLMINTEGRO-DIFFERENTIAL EQUATIONS WITH CONVOLUTIONKERNEL�1)Xiao-qing Jin Vai-Kuong Sin(Faulty of Siene and Tehnology, University of Maau, Maau)Jin-yun Yuan(Department of Mathematis, Universidade Federal do Parana, Curitiba, Brazil)AbstratWe study the Fredholm integro-di�erential equationD2sx �(x) + Z +1�1 k(x� y)�(y)dy = g(x)by the wavelet method. Here �(x) is the unknown funtion to be found, k(y) isa onvolution kernel and g(x) is a given funtion. Following the idea in [7℄, theequation is disretized with respet to two di�erent wavelet bases. We then havetwo di�erent linear systems. One of them is a Toeplitz-Hankel system of the form(Hn + Tn)x = b where Tn is a Toeplitz matrix and Hn is a Hankel matrix. Theother one is a system (Bn + Cn)y = d with ondition number � = O(1) after adiagonal saling. By using the preonditioned onjugate gradient (PCG) methodwith the fast wavelet transform (FWT) and the fast iterative Toeplitz solver, wean solve the systems in O(n logn) operations.Key words: Fredholm integro-di�erential equation, Kernel, Wavelet transform,Toeplitz matrix, Hankel matrix, Sobolev spae, PCG method.1. IntrodutionIn this paper, we study the Fredholm integro-di�erential equationA(�(x)) � D2sx �(x) + Z +1�1 k(x� y)�(y)dy = g(x) (1)by the wavelet method. The appliations of the equation in image restoration ould befound in [10℄. For the history of numerial methods for the Fredholm integro-di�erentialequations, we refer to [4℄. Following the idea in [7℄, the equation is disretized withrespet to two di�erent orthonormal wavelet bases B1 and B2 of L2(R). The B1 omesfrom the father wavelet '(x) and the B2 omes from the mother wavelet  (x). Afterdisretizing of the equation with respet to B1 and B2 on a �nite interval, we then have� Reeived February 19, 1997.1) Researh supported by the grant RC034(96/97) from the University of Maau.



436 X.Q. JIN, V.K. SIN AND J.Y. YUANtwo di�erent n-by-n linear systems. One of them is a Toeplitz-Hankel system of theform (Hn + Tn)x = b (2)where Tn is a Toeplitz matrix and Hn is a Hankel matrix. The other one is a system(Bn + Cn)y = d (3)with ondition number �(D�1=2n (Bn + Cn)D�1=2n ) = O(1) (4)after a diagonal saling Dn. The relation between Hn + Tn and Bn +Cn is Bn +Cn =Wn(Hn + Tn)W�1n where Wn is the wavelet transform matrix between B1 and B2.We then solve (2) by solving its equivalent form (3) with y = Wnx and d = Wnb.For solving (3), we use the PCG method with the diagonal preonditioner Dn. Theondition number of the preonditioned system is, by (4),�(D�1n (Bn +Cn)) = �(D�1=2n (Bn + Cn)D�1=2n ) = O(1):When the PCG method is applied to solve the preonditioned system, the onvergenerate will be linear, see [5℄. By using the FWT, see [2℄, and fast iterative Toeplitz solver,see [1℄ and [9℄, we an solve the system (Bn + Cn)y = d and also (Hn + Tn)x = b inO(n log n) operations.2. Disretization of Fredholm EquationThe Fredholm integro-di�erential equation is given as follows, A� = g, where Ais de�ned by (1), g 2 L2(R) and k(x � y) 2 L2(R) is symmetri and positive, i.e.,k(x � y) = k(y � x) > 0. For solving the equation, we need to �nd � 2 C2s0 (R) suhthat (1) is to be satis�ed. The equivalent variational form of (1) is: �nd � 2 Hs0(R)suh that B(�; �) = F (�) (5)for 8� 2 Hs0(R). Here B(�; �) = B0(�; �) +B1(�; �) withB0(�; �) = Z +1�1 Dsx�(x)Dsx�(x)dx;B1(�; �) = Z +1�1 Z +1�1 k(x� y)�(y)�(x)dydxand F (�) = Z +1�1 g(x)�(x)dx:We assume that B(�; �) is a ontinuous ellipti bilinear form on Hs0(R)�Hs0(R), i.e.,there exist two onstants � � � > 0, suh that �k�k2Hs0 � B(�; �) and B(�; �) ��k�kHs0 k�kHs0 . For instane, when s = 0 (or s = 1) and +1 > C � k(x� y) �  > 0,then obviously, B(�; �) is a ontinuous ellipti bilinear form on L2(R) � L2(R) (orH10 (R)�H10 (R)).



A Wavelet Method for the Fredholm Integro-di�erential Equations with Convolution Kernel 4372.1 Wavelet BasesNow, following the idea in [7℄, we are going to disretize the Fredholm integro-di�erential equation with respet to two di�erent orthonormal wavelet bases B1 and B2of L2(R). First of all, we introdue a funtion '(x) 2 L2(R) alled the father wavelet(or saling funtion), with a ompat support [0; a℄, a > 0, see [3℄. The '(x) has theproperty that '(x� k); k 2 Z (6)form an orthonormal sequene in L2(R). Let V0 be the losed linear subspae of L2(R)generated by (6). A hain of losed subspaes in L2(R) is given as� � � � Vj�1 � Vj � Vj+1 � � � � :The multiresolution analysis (MRA), depending on '(x), is given as follows:(i) f(x) 2 V0 if and only if f(2jx) 2 Vj ;(ii) � � � � V�1 � V0 � V1 � � � �;(iii) S1�1 Vj = L2(R) and T1�1 Vj = 0;(iv) The sequene (6) forms an orthonormal basis of V0.Let Wj denote the orthogonal omplement of Vj in Vj+1, i.e., Vj+1 = Vj �Wj.From MRA (iii), we also have �1�1Wj = L2(R). There exists at least one funtion (x) 2 W0 suh that  (x � k), k 2 Z form an orthonormal basis of W0, see [2℄and [8℄. The  (x) is alled the mother wavelet. We then onstrut following twowavelet sequenes: 'j;k(x) = 2j=2'(2jx � k), j; k 2 Z, and  j;k(x) = 2j=2 (2jx � k),j; k 2 Z. The f'j;k(x)g and f j;k(x)g form two wavelet bases of L2(R) and f j;k(x)galso onstruts an orthonormal basis of Hs0(R) for 0 � s < r where r is the regularityof the MRA, see [6℄ and [8℄. The bilinear form B de�ned by (5) an be projeted onthe subspae VJ (J is �xed) with respet to the following two bases in VJ :B1 = f'J;k(x)g and B2 = [�1<j�J�1f j;k(x)g:The following lemma ould be found in [6℄ and [8℄.Lemma 1. Let f =Xj;k hf;  j;ki j;k. Then f 2 Hs0(R) if and only ifkfk2Hs0 �Xj;k jhf;  j;kij2(1 + 22j)s < +1; 0 � s < r (7)where r is the regularity of the MRA.2.2 Projetion of B with respet to B1 and B2Let BJ denote the projetion of B(�; �) on VJ � VJ . The matrix representation ofBJ orresponding to the basis B1 has the elements given bymp;q = B('J;p; 'J;q) (8)where 8p; q 2 Z. For 8�; � 2 Hs0(R), let �J , �J denote the the projetions of �, � onVJ respetively. Then the equation (5) beomesB(�J ; �J) = F (�J) (9)



438 X.Q. JIN, V.K. SIN AND J.Y. YUANLet �J = Xp2Z xp'J;p and �J = 'J;q; 8q 2 Z: (10)Substituting (10) into (9), we have the following linear systemM1x = b (11)where (M1)p;q = mp;q is given by (8), and(x)p = xp; (b)q = Z +1�1 g(x)'J;q(x)dx:Let H1 and T1 be matries with (H1)p;q = hp;q and (T1)p;q = tp;q where hp;q =B0('J;p; 'J;q) and tp;q = B1('J;p; 'J;q). Then we have M1 = H1 + T1. Beause,hp;q = hq;p = B0('J;p; 'J;q) = 12� Z +1�1 dDsx'J;p(�) dDsx'J;q(�)d�= 12�4J Z +1�1 (i�)2se�i(p+q)2�J �j'̂(2�J�)jd� = hp+q:Hene, H1 is a Hankel matrix. For matrix T1, sine k(x� y) is symmetri and '(x)has the ompat support [0; a℄, we havetp;q = B1('J;p; 'J;q)= 2J Z +1�1 Z +1�1 k(x� y)'(2Jx� p)'(2Jy � q)dydx= 2J Z 2�J (a+p)2�Jp Z 2�J (a+q)2�Jq k(x� y)'(2Jx� p)'(2Jy � q)dydx= 2�J Z a0 Z a0 k[2�J(x� y + p� q)℄'(x)'(y)dydx = tp�q = tq;p:Hene, T1 is a Toeplitz matrix. Therefore, (11) is a Toeplitz-Hankel system.The matrix representation of BJ orresponding to the basis B2 has the elementsgiven by np;l;q;m = B( p;q;  l;m) (12)for �1 < p; l < J and �1 < q;m <1. Let�J =Xp;q yp;q p;q and �J =  l;m; �1 < l < J; 8m 2 Z: (13)Substituting (13) into (9), we have the following linear systemN1y = d (14)where (N1)p;l;q;m = np;l;q;m, given by (12), denotes the (p; l)th entry of the (q;m)thblok of N1, y = (yp;q)T and d = (dp;q)T are vetors with dp;q = R +1�1 g(x) p;q(x)dx.Let B1 and C1 be matries with(B1)p;l;q;m = B0( p;q;  l;m) and (C1)p;l;q;m = B1( p;q;  l;m):



A Wavelet Method for the Fredholm Integro-di�erential Equations with Convolution Kernel 439Then we have N1 = B1 + C1.3. Condition Number and Operation CostNow we onsider the ondition number of the system (14) by following the idea in[6℄. Let � 2 VJ with � =Xj;k wj;k j;k. We haveB(�; �) =Xj;k Xp;q wj;kwp;qnj;p;k;q = wTN1w (15)where w = (wj;k)T is a vetor. By the assumption that B(�; �) is a ontinuous elliptibilinear form on the spae Hs0(R)�Hs0(R), we haveC1k�k2Hs0 � B(�; �) � C2k�k2Hs0 (16)where C2 � C1 > 0 are onstants. Combining (15) and (16), we haveC1k�k2Hs0 � wTN1w � C2k�k2Hs0 :By using (7), one an easily obtainC3Xj;k j2jswj;kj2 � wTN1w � C4Xj;k j2jswj;kj2where C4 � C3 > 0 are onstants. After a diagonal saling D, we haveC3kwk2 � wTD�1=2N1D�1=2w � C4kwk2where k � k is the l2-norm. Thus, the ondition number of N1 after a diagonal salingis �(D�1=2N1D�1=2) = O(1): (17)The relation betweenM1 given by (11) and N1 given by (14) is N1 =WM1W�1where W is the wavelet transform matrix between two orthonormal wavelet bases B1and B2. We then solve the Toeplitz-Hankel system (11) by solving its equivalent form(WM1W�1)Wx = Wb i.e., N1y = d where y = Wx and d = Wb. We use thePCG method with the diagonal preonditioner D to solve the preonditioned systemD�1N1y = D�1d. Sine by (17), the ondition number of the preonditioned systemis O(1), the onvergene rate will be linear, see [5℄.In pratie, we usually use a �nite interval instead of (�1;+1). We then have ann-by-n system Mnx = b (18)where Mn is the �nite setion of M1. Let Wn be the �nite setion of the wavelettransform matrix W . The system (18) an be solved by solving its equivalent form(WnMnW�1n )Wnx =Wnb
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