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Abstract

For the large sparse systems of linear and nonlinear equations, a new class
of generalized asynchronous parallel multisplitting iterative method is presented,
and its convergence theory is established under suitable conditions. This method
not only unifies the discussions of various existing asynchronous multisplitting it-
erations, but also affords new algorithmic and theoretical results for the parallel
solution of large sparse system of linear equations. Besides its generality, this
method is also much more suitable for implementing on the MIMD multiprocessor
systems.
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1. Introduction

To solve large sparse systems of linear and nonlinear equations on the multiprocessor
systems, many authors presented and studied various parallel iterative methods in the
sense of multisplitting in recent years. For details one can refer to [1]-[9] and references
therein. Among these methods the chaotic multisplitting iterative methods proposed
by Bru, Elsner and Neumann[4] are meaningful on both theory and application since it
aims at avoiding the synchronous wait among processors of a multiprocessor system and
making use of the efficiency of the MIMD parallel computer. However, because more
restrictions are imposed upon these chaotic multisplitting iterative methods (see [7,6]),
the maximum efficiency in exploiting the resources of the multiprocessor systems has
not yet been attained. To overcome this shortcoming, Evans, Wang and Bai (see [2,7])
further modified and developed Bru, Elsner and Neumann’s work from the angles of
both algorithmic model and theoretical analysis, and presented a series of asynchronous
parallel multisplitting iterative methods. Recently, Su[6] also presented another gener-
alization of Bru, Elsner and Neumann’s chaotic multisplitting methods, which is called
as generalized multisplitting asynchronous iteration. Since the designs of these asyn-
chronous multisplitting methods take into account not only the good parallelism of the
multiple splittings, but also the concrete characteristics of the multiprocessor systems,
they can sufficiently exploit the parallel computational efficiency of the multiprocessor
systems.

In this paper, by summarizing the advantages of the aforementioned asynchronous
multisplitting iteration methods, we propose a new asynchronous parallel iterative
method in the sense of multiple splittings, called as a new generalized asynchronous
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multisplitting iterative method (GAMI-method), for solving large sparse systems of
linear and nonlinear equations. This new method has the properties of convenient im-
plementation, and flexible and free communication, etc., and can also make full use of
the efficiency of the multiprocessor systems. Meanwhile, the above stated existing asyn-
chronous parallel multisplitting iterative methods are its special cases. Under similar
conditions to [7] and [6], we establish convergence theory for our new method.

Since a system of equations can be equivalently transformed to several fixed point
equations having a common fixed point by the multisplitting technique under certain
conditions, without loss of generality, in the sequal we will mainly consider the iteration
for getting a common fixed point of an operator class.

2. Description of the GAMI-Method

To mathematically describe our new generalized asynchronous multisplitting itera-
tive method for parallely solving system of equations, we first introduce the following
notations and concept.

Assume (1 < « < n) be a given positive integer. For all i € {1,2,--- a}, let

: R" — R"(p = 0,1,2,---) be mappings having a common fixed point z* € R",

and E; be nonnegative, nonzero, diagonal matrices satisfying Z E; = F nonsingular.

Denote Ny := {0,1,2,---} and Op = {1}, : R" — R" | i € {1, 2 -,at;p € Ng}. For
any p € Ny, we let J(p) be a nonempty subset of the number set {1,2, -+, a}, and
sy) (p), t 5)( )(j=1,2,---,n;i=1,2,---, @) be nonnegative numbers satisfying:

(a) for Vi € {1,2,---,a}, the set {p € Ny |i € J(p)} is infinite;

(b) for Vi € {1,2,---,a}, Vj € {1,2,---,n}, Vp € Ny, there hold sy)(p) < p and
) (p) < p:

(c) for Vi € {1,2,---,a}, Vj € {1,2,---,n}, there hold pli}rgosy)(p) = oo and

s 4By
plggotj (p) = oc.
If we additionally define

r(p) = min {s(). ()},
1<i<a

then there obviously have 7(p) < p and lim 7(p) = 0.
p—o0

With the above preparations, we can now describe the generalized asynchronous
multisplitting iterative method (GAMI-method) for parallely solving systems of equa-
tions as follows.

GAMI-method. Given an initial vector 2° € R", and suppose that we have got
approzimations xz',x%, - 2P of a common fized point x* € R" of the operator class
Or ={Tp;: R" = R" | i € {1,2,---,a};p € No}. Then the next approzimation zP+
of ©* can be got by the following formula:

2P — Z BT, (s() ) (I— Z E):Ep_i_ Z (I-E ( :Et(l)(i”)),
i€J(p) i€J(p) i€J(p)
(2.1)
where
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. (i) (i) ; T
(4) (1)
7257 — (l.il (P)’$;2 (p)’...’zzn (p)> ,
. (i) (i) ; T
£ 1" () ty(p) ne
z ®) = <'T11 a'T22 y Ty ®) )

and I is the n x n identity matriz.
Clearly, when we let £ = I, the GAMI-method naturally reduces to a generalized
version of the asynchronous parallel multisplitting iterative methods studied by Bai,

Wang and Evans in [2], and when t(z)(p) =p(j =12, ,n;i=1,2,---,a;p € Nyp),

J
it automatically turns to the one discussed by Su in [6]. Moreover, the case tgl)(p) =
s(-i)(p)(j = 1,2,---.mi = 1,2,--- Ja;p € Np) really produces a new asynchronous

J
parallel multisplitting method for solving systems of equations.

3. Preliminary Knowledge

For a vector z € R™, x > 0(> 0) will denote that all its components are positive
(nonnegative). Similarly, for z,y € R", z > y(z > y) will mean that x —y > 0(z —y >
0). For z € R", |z| will denote the vector whose components are the absolute value of
the corresponding components of x. We shall employ similar notations for matrices.

Let v = (v1,v2, --,v,)Y > 0. Then the monotone norm || e ||, of a vector z =
(z1,29,---,2,)7 is defined as
T
l#]ls = max |21,
1<j<n |v;

This vector norm is monotone in the sense that |z| < |y| implies ||z], < ||yll,. If we
denote by ||B]|, the matrix norm of B € L(R") induced by the monotone vector norm
| ® ||y, then there obviously holds |||B|v|, = ||B|l,- Moreover, it easily follows that
|z]|, < B if and only if |z| < Buv, and ||B||, < B if |Blv < Buv, where 8 € R! is some
nonnegative constant. The monotone norm and its properties will play an important
role in the establishment of the convergence theorem of the GAMI-method.
Write
PZ:ElEja i:1727"'7a7

L= Y Ei. I,=1Ll, p € Ny,
i€J(p)

where EZ+ and I't denote the Moore-Penrose inverses of the matrices E; and I, respec-
tively. Then we easily know that these matrices have the following useful properties:

(1) PiE; = E;Pi = E;, P,E = E}P; = E,i=12,--- o

(2) Z,1, = 1,7, = I, IPI; = II‘,"IP = IZ‘,", p=20,1,2,--

(3) LB = Ei, (I —1,)E; = 0,4 € J(p), p € No.

In addition, define an infinite integer sequence {m,};cn, according to the following
rule: my is the least positive integer such that Uy<,(p)<p<mo (P) = 1{1,2,---, a}, and in
general, m 1 is the least positive integer such that U, <7(p)<p<m,, /(P) = {1,2,- -+, a}.

By the definitions of the set J(p) and the nonnegative integer sequences {sy) (p)},

{tgi)(p)} (j=1,2,---,n;i=1,2,---, ) and {7(p)}, this nonnegative integer sequence
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{m;} is well-defined and possesses the following properties (For their proofs, one can
refer to [6] for detail):
ml+171
(1) > Z,(I=0,1,2,---) are nonsingular diagonal matrices;
p=my
ml+171
2 II (I-1Z, =0, 1=0,1,2,---.
p=my
The following fact cited from [2] is elementary for our subsequent discussion.
Lemma 3.1 (see [2]). Given z* € R" and {z7},_, C R"(Vp € Ny). Assume that
forallt € {0,1,2,--- p}, there exist positive number 6 and positive vector v € R" such
that ||zt — z*||, < 8. Then there identically hold

provided sgl)(p) <p and tgl)(p) <p(j=1,2,---,n;i=1,2,--, ), where

_g(@) _
75(p) _ F*

<6

_ (9 _
Hzt () _ z*
v

<6

(4

3 ) 7':]-127"'aaa

; (i) (i) ; T
—s(@) _s1°(p) ~s5°(p) —s,(f)
757 (P) — <.r11 B2 B ®))
(')( ) (')( ) (7) T Z_1’2’”.’a‘
4 _ti(p) _t(p i
) — (5’311 Lz e Eh (p)> ’

Lemma 3.2. Let z* € R™ be a common fized point of the operator class Or, and
the sequence {zP},en, be generated by the GAMI-method. Assume that there hold

Lzt — 2% < AT
{px | < ATy, p=01,2-", (3.1)

(I = T)a"*" — 2| < (I = Tl — 2,
where v € R™ is a positive vector, and {A,} is a nonnegative number sequence satisfying
Api1 <Ay, p=0,1,2,---. (3.2)

Then, for any positive integer ¢ > my(l € {—1} U Ng,m_1 = 0), there hold

(I - ﬁ (I - I,,)) \x‘J“ —

p=my

q
< (I— 11 (I—Ip)> Apo, m=-1,0,1,2,---.

p=my
(3.3)
Proof. Analogously to the proof of Theorem 1 in [6], we can inductively demon-
strate this lemma.
Lemma 3.3. Let z* € R" be a common fized point of the operator class Oy, and
the sequence {xzP},cn, be generated by the GAMI-method. If we denote

()
25 P) _ p*

}7 VpeNOu
v

(1)
,  max th (p) _ g

‘= max < ||z — z* max ‘
FYP {” ||U7 v iEJ(p)

i€J(p)

then, for p=0,1,2,---, there hold

(1) IP|$p+1 - $*| < Z El Tp,i (ms(i)(l’)) —x*
i€ (p)
(i) (1 = B = a'| = (1 = T,) o =,

+[Z, — 2min{l, '} — I) 1] ypv;
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where we use the notation

min{l, E~'} = diag (min{l, eﬁl}, min{1, 6521}, -+, min{1, 6;71}) ,

with B = diag(e11, €29, , €np)-
Proof. Equivalently, we can express (2.1) as

= 3 BT (7P + Y (- BB B0 (1 -y ElEi) P
i€J(p) i€J(p) i€J(p)
(3.4)
Note that * € R" is a common fixed point of the operator class Or, according to (3.4)
we have

= > ET, )+ > (I-E)E 'Ea* + (I— > ElEi) z*. (3.5)

i€J(p) i€J(p) i€J(p)

Now, subtracting (3.5) from (3.4) we immediately obtain

Pl Z E; ( ( s (p) ) )+ Z I E Ez' (zt(i)(iﬂ) 7‘,13*)

i€J(p i€J(p

(3.6)
+(I Z EIEZ-) (2P — x¥), p=0,1,2,---.

i€J(p)

By making use of the properties of the operators Z,(p € Ny) and P;(i = 1,2,---, ),
and through direct manipulations we have

()
Lt g

T, P! Ty (°70)) - I —E|E z
i€J(p) i€J(p)
(I - > E 1E) 2P — z*|
i€J(p)

( st )(p)) _

Up to now, to prove (1) we only need to test that there holds

+ |1~ BB+ (T, - B7'L)| o

i€J(p

I~ BB 'L+ (T, B'L) =T, (2min{l,B"'} - I) I, (3.7)
In fact, for any j € {1,2,---,n}, if e;jl > 1, we easily know that

(1= BB L+ (L, = B8] =11 = ejjleg) L)y + (ks — &' 1))

= (ej; = Dhplj5 + ([Ip]jj —ej) [Ip]jj)
= [Ip]]] [Ip]jj

= [ - (2min{r. By~ 1) 1))
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where we use [e ]” to denote the j-th diagonal component of the corresponding diagonal
matrix; and if e ! < 1, we easily see that

(1~ BB+ (T, - B =11 em%[ 1N+([Ip] e o))

:(1—6 ]]-I—( [I]J])
= [Lp)j; — (2¢5; — DL ]
= [Ip* (me{I’E g 71) ”]jj'

Therefore, the identity (3.7) holds, and we have fulfilled the proof of (i).
From (3.6) we can directly get (ii) by applying the properties of the operators
Z,(p € Ny) and P;(i = 1,2,-- -, a), too.

4. Convergence Theory of the GAMI-Method

Theorem 4.1. Let z* € R", and assume that for Vi € J(p), there exist constant
B € (0,1) and § € (0,1) independent of i and p such that for any z € R", when
|z — z*|l, <9, there holds either

[Tp,i(2) — 2™ [lo < Bllz — ="l (4.1)

or

1Pi(Tp,i(2) — 2")llo < BIPi(z — z7)||o- (4.2)

Then for any 2° € R"™ satisfying ||z° — z*||, < J, the sequence {zP} generated by the
GAMI-method converges to x* provided E < 2I/(1 + 3).

Proof. Evidently, each of the inequalities (4.1) and (4.2) implies that z* is a com-
mon fixed point of the operator class Or. In accordance with Lemma 3.2 and Lemma,
3.3, to fulfill this proof we only need to demonstrate that there exists a nonnegative
number sequence {Ap} such that

(a) ( (p)) _

0,1,2,

(b) Ap+1 S Apu D= 07 1727 T and

(c) plggo A, =0.

As a matter of fact, in light of the properties of the operators P;(i = 1,2, -+, «) as
well as the assumptions (4.1) and (4.2) we get for all ¢ € {1,2,---,«a} and all z € R"
satisfying ||z — z*||, < § that there hold

+ [Z, - Cmin{l, E"'"} - )] v,v < ATy, p =
zeJ)

EilTyi(2) — 27| = EiPi|Tpi(2) — «*| < Eiffl|lz — 2™ [0 (4.3)
Now, define

{emm:min{[Ei]jj | [Eilj; >0, j=1,2,--,n;i=12-- a},

' W (4.4)
Q=2min{l, B~} — (1 + B)I, I'=1-eninfd,

and
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Ay =Ty, p=0,1,2,---. (4.5)

Then we easily see that it holds [Q];; > 0 and [I'];; € [0,1), j = 1,2,---,n, when
E < 2I/(1 + B). Moreover, through direct computations we obtain by (4.3) that

> B
i€J(p)

Tp,’i (msz‘(l’)) —x*

+ |7, (2min{Z, B}~ 1) L] yv

T (om0 0) ]
= [Z, — QL] ypv
hold for both cases (4.1) and (4.2). Note that for any p € Ny and any j € {1,2,---,n},
[Z,];; = 0 if and only if [1,];; = 0, we see that
[Z, — QL] vpv = [I, — QL] v Lyv
< TypZyv = ApZyv.
Therefore, (a) holds for all p = 0,1,2,---. In accordance with Lemma 3.3 we know that
there have
Ty|2P ™ — ¥ < Ty, p=0,1,2,---.

To test (b) we only need to demonstrate the validity of the inequalities

Tp+1 S Yps b= Oa 172a Tt (46)

Because of

= o = [ — ) + (1 - T) (@ — o))
< Tyl — 2|+ (I = ) |2P T — ¥
< TypLpv + (I = Ip)|a? — 27|
< TyIyo + (I = L) ypo
= [Ty, + (I = Zp)ypv
S 7}?“7
by applying Lemma 3.1, we easily see that when p = 0 there holds v; < 7. Now, based
upon (4.7) and Lemma 3.1 again, and by making use of induction, we can immediately
deduce the validity of (4.6).
Now, we turn to (c). Evidently, we only need to verify that it holds
Yp SFZF)/Ua szmlu l:071727"" (48)

In fact, when [ = 0, (4.8) is trivial. Suppose that (4.8) holds for all p > m;. Then,
when p > my1, from Lemma 3.2 we see that

2P — 2% < Ao = Ty,

and from the definition of {7,} as well as the induction assumption we get that

Tp+1 < F’)’ml <TI'x Fl70 = Fl+170-
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That is, (4.8) also holds for all p > m;;1. The above discussion shows the validity of
(4.8).
(4.7) and (4.8) immediately give le 2P = z*, and the proof of this theorem is
p—00

hence completed.

We use the following remarks to end this paper.
Remark 4.1. The iteration formula (2.1) can be equivalently expressed as

= 3 (BB [ET (2070) + (1 - B)2t" @]

i€J(p)
+ 3 (E*Ei) 2, p=0,1,2, .
i¢J (p)
[e]
Note that 3. E~'E; = I, we see that the requirement that the sum of the weighting
i=1
matrices E;(i = 1,2,---,a) does not equal to the identity matrix is just equivalent to

relaxing the original iteration with the diagonal matrix F, the sum of the weighting
matrices. Hence, whether £ = [ or not is not relevant for multisplitting iterative
methods from the theoretical point of view.

Remark 4.2. Different constructions of the operator class Op can result in various
asynchronous parallel multisplitting iterative methods for solving systems of linear and
nonlinear equations. Some representatives of the choices of the operator class Op have
been shown in [1, 3, 9].

Remark 4.3. The existing results in the papers [1-9] are special cases of that in
this paper.
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