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A NEW GENERALIZED ASYNCHRONOUS PARALLELMULTISPLITTING ITERATION METHOD�1)Zhong-zhi Bai(State Key Laboratory of S
ienti�
 and Engineering Computing, ICMSEC, Chinese A
ademyof S
ien
es, Beijing 100080, China)Abstra
tFor the large sparse systems of linear and nonlinear equations, a new 
lassof generalized asyn
hronous parallel multisplitting iterative method is presented,and its 
onvergen
e theory is established under suitable 
onditions. This methodnot only uni�es the dis
ussions of various existing asyn
hronous multisplitting it-erations, but also a�ords new algorithmi
 and theoreti
al results for the parallelsolution of large sparse system of linear equations. Besides its generality, thismethod is also mu
h more suitable for implementing on the MIMD multipro
essorsystems.Key words: Systems of linear and nonlinear equations, Asyn
hronous multisplittingiteration, Relaxed method, Convergen
e theory.1. Introdu
tionTo solve large sparse systems of linear and nonlinear equations on the multipro
essorsystems, many authors presented and studied various parallel iterative methods in thesense of multisplitting in re
ent years. For details one 
an refer to [1℄-[9℄ and referen
estherein. Among these methods the 
haoti
 multisplitting iterative methods proposedby Bru, Elsner and Neumann[4℄ are meaningful on both theory and appli
ation sin
e itaims at avoiding the syn
hronous wait among pro
essors of a multipro
essor system andmaking use of the eÆ
ien
y of the MIMD parallel 
omputer. However, be
ause morerestri
tions are imposed upon these 
haoti
 multisplitting iterative methods (see [7,6℄),the maximum eÆ
ien
y in exploiting the resour
es of the multipro
essor systems hasnot yet been attained. To over
ome this short
oming, Evans, Wang and Bai (see [2,7℄)further modi�ed and developed Bru, Elsner and Neumann's work from the angles ofboth algorithmi
 model and theoreti
al analysis, and presented a series of asyn
hronousparallel multisplitting iterative methods. Re
ently, Su[6℄ also presented another gener-alization of Bru, Elsner and Neumann's 
haoti
 multisplitting methods, whi
h is 
alledas generalized multisplitting asyn
hronous iteration. Sin
e the designs of these asyn-
hronous multisplitting methods take into a

ount not only the good parallelism of themultiple splittings, but also the 
on
rete 
hara
teristi
s of the multipro
essor systems,they 
an suÆ
iently exploit the parallel 
omputational eÆ
ien
y of the multipro
essorsystems.In this paper, by summarizing the advantages of the aforementioned asyn
hronousmultisplitting iteration methods, we propose a new asyn
hronous parallel iterativemethod in the sense of multiple splittings, 
alled as a new generalized asyn
hronous� Re
eived O
tober 30, 1996.1)Proje
t 19601036 Supported by the National Natural S
ien
e Fundation of China.



450 Z.Z. BAImultisplitting iterative method (GAMI-method), for solving large sparse systems oflinear and nonlinear equations. This new method has the properties of 
onvenient im-plementation, and 
exible and free 
ommuni
ation, et
., and 
an also make full use ofthe eÆ
ien
y of the multipro
essor systems. Meanwhile, the above stated existing asyn-
hronous parallel multisplitting iterative methods are its spe
ial 
ases. Under similar
onditions to [7℄ and [6℄, we establish 
onvergen
e theory for our new method.Sin
e a system of equations 
an be equivalently transformed to several �xed pointequations having a 
ommon �xed point by the multisplitting te
hnique under 
ertain
onditions, without loss of generality, in the sequal we will mainly 
onsider the iterationfor getting a 
ommon �xed point of an operator 
lass.2. Des
ription of the GAMI-MethodTo mathemati
ally des
ribe our new generalized asyn
hronous multisplitting itera-tive method for parallely solving system of equations, we �rst introdu
e the followingnotations and 
on
ept.Assume �(1 � � � n) be a given positive integer. For all i 2 f1; 2; � � � ; �g, letTp;i : Rn ! Rn(p = 0; 1; 2; � � �) be mappings having a 
ommon �xed point x� 2 Rn,and Ei be nonnegative, nonzero, diagonal matri
es satisfying �Pi=1Ei = E nonsingular.Denote N0 := f0; 1; 2; � � �g and OT = fTp;i : Rn ! Rn j i 2 f1; 2; � � � ; �g; p 2 N0g. Forany p 2 N0, we let J(p) be a nonempty subset of the number set f1; 2; � � � ; �g, ands(i)j (p), t(i)j (p)(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �) be nonnegative numbers satisfying:(a) for 8i 2 f1; 2; � � � ; �g, the set fp 2 N0 j i 2 J(p)g is in�nite;(b) for 8i 2 f1; 2; � � � ; �g, 8j 2 f1; 2; � � � ; ng, 8p 2 N0, there hold s(i)j (p) � p andt(i)j (p) � p;(
) for 8i 2 f1; 2; � � � ; �g, 8j 2 f1; 2; � � � ; ng, there hold limp!1 s(i)j (p) = 1 andlimp!1 t(i)j (p) =1.If we additionally de�ne�(p) = min1�j�n1�i�� ns(i)j (p); t(i)j (p)o ;then there obviously have �(p) � p and limp!1 �(p) =1.With the above preparations, we 
an now des
ribe the generalized asyn
hronousmultisplitting iterative method (GAMI-method) for parallely solving systems of equa-tions as follows.GAMI-method. Given an initial ve
tor x0 2 Rn, and suppose that we have gotapproximations x1; x2; � � � ; xp of a 
ommon �xed point x� 2 Rn of the operator 
lassOT = fTp;i : Rn ! Rn j i 2 f1; 2; � � � ; �g; p 2 N0g. Then the next approximation xp+1of x� 
an be got by the following formula:xp+1 = Xi2J(p)EiTp;i �xs(i)(p)�+0�I � Xi2J(p)Ei1Axp + Xi2J(p)(I �E�1)Ei �xp � xt(i)(p)� ;(2.1)where



A New Generalized Asyn
hronous Parallel Multisplitting Iteration Method 4518>>><>>>:xs(i)(p) = �xs(i)1 (p)1 ; xs(i)2 (p)2 ; � � � ; xs(i)n (p)n �T ;xt(i)(p) = �xt(i)1 (p)1 ; xt(i)2 (p)2 ; � � � ; xt(i)n (p)n �T ;and I is the n� n identity matrix.Clearly, when we let E = I, the GAMI-method naturally redu
es to a generalizedversion of the asyn
hronous parallel multisplitting iterative methods studied by Bai,Wang and Evans in [2℄, and when t(i)j (p) = p(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �; p 2 N0),it automati
ally turns to the one dis
ussed by Su in [6℄. Moreover, the 
ase t(i)j (p) =s(i)j (p)(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �; p 2 N0) really produ
es a new asyn
hronousparallel multisplitting method for solving systems of equations.3. Preliminary KnowledgeFor a ve
tor x 2 Rn, x > 0(� 0) will denote that all its 
omponents are positive(nonnegative). Similarly, for x; y 2 Rn, x > y(x � y) will mean that x� y > 0(x� y �0). For x 2 Rn, jxj will denote the ve
tor whose 
omponents are the absolute value ofthe 
orresponding 
omponents of x. We shall employ similar notations for matri
es.Let v = (v1; v2; � � � ; vn)T > 0. Then the monotone norm k � kv of a ve
tor x =(x1; x2; � � � ; xn)T is de�ned as kxkv = max1�j�n �����xjvj ����� :This ve
tor norm is monotone in the sense that jxj � jyj implies kxkv � kykv . If wedenote by kBkv the matrix norm of B 2 L(Rn) indu
ed by the monotone ve
tor normk � kv, then there obviously holds kjBjvkv = kBkv . Moreover, it easily follows thatkxkv � � if and only if jxj � �v, and kBkv � � if jBjv � �v, where � 2 R1 is somenonnegative 
onstant. The monotone norm and its properties will play an importantrole in the establishment of the 
onvergen
e theorem of the GAMI-method.Write 8><>:Pi = EiE+i ; i = 1; 2; � � � ; �;Ip = Xi2J(p)Ei; Ip = IpI+p ; p 2 N0;where E+i and I+p denote the Moore-Penrose inverses of the matri
es Ei and Ip, respe
-tively. Then we easily know that these matri
es have the following useful properties:(1) PiEi = EiPi = Ei, PiE+i = E+i Pi = E+i , i = 1; 2; � � � ; �;(2) IpIp = IpIp = Ip, IpI+p = I+p Ip = I+p , p = 0; 1; 2; � � �;(3) IpEi = Ei, (I � Ip)Ei = 0, i 2 J(p), p 2 N0.In addition, de�ne an in�nite integer sequen
e fmlgl2N0 a

ording to the followingrule: m0 is the least positive integer su
h that [0��(p)�p<m0J(p) = f1; 2; � � � ; �g, and ingeneral,ml+1 is the least positive integer su
h that [ml��(p)�p<ml+1J(p) = f1; 2; � � � ; �g.By the de�nitions of the set J(p) and the nonnegative integer sequen
es ns(i)j (p)o,nt(i)j (p)o (j = 1; 2; � � � ; n; i = 1; 2; � � � ; �) and f�(p)g, this nonnegative integer sequen
e



452 Z.Z. BAIfmlg is well-de�ned and possesses the following properties (For their proofs, one 
anrefer to [6℄ for detail):(1) ml+1�1Pp=ml Ip(l = 0; 1; 2; � � �) are nonsingular diagonal matri
es;(2) ml+1�1Qp=ml (I � Ip) = 0; l = 0; 1; 2; � � �.The following fa
t 
ited from [2℄ is elementary for our subsequent dis
ussion.Lemma 3.1 (see [2℄). Given �x� 2 Rn and f�xqgpq=0 � Rn(8p 2 N0). Assume thatfor all t 2 f0; 1; 2; � � � ; pg, there exist positive number Æ and positive ve
tor v 2 Rn su
hthat k�xt � �x�kv � Æ. Then there identi
ally hold


�xs(i)(p) � �x�


v � Æ; 


�xt(i)(p) � �x�


v � Æ; i = 1; 2; � � � ; �;provided s(i)j (p) � p and t(i)j (p) � p(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �), where8>>><>>>: �xs(i)(p) = ��xs(i)1 (p)1 ; �xs(i)2 (p)2 ; � � � ; �xs(i)n (p)n �T ;�xt(i)(p) = ��xt(i)1 (p)1 ; �xt(i)2 (p)2 ; � � � ; �xt(i)n (p)n �T ; i = 1; 2; � � � ; �:Lemma 3.2. Let x� 2 Rn be a 
ommon �xed point of the operator 
lass OT , andthe sequen
e fxpgp2N0 be generated by the GAMI-method. Assume that there hold(Ipjxp+1 � x�j � �pIpv;(I � Ip)jxp+1 � x�j � (I � Ip)jxp � x�j; p = 0; 1; 2; � � � ; (3.1)where v 2 Rn is a positive ve
tor, and f�pg is a nonnegative number sequen
e satisfying�p+1 � �p; p = 0; 1; 2; � � � : (3.2)Then, for any positive integer q � ml(l 2 f�1g [N0;m�1 = 0), there hold I � qYp=ml (I � Ip)! ���xq+1 � x���� �  I � qYp=ml (I � Ip)!�mlv; m = �1; 0; 1; 2; � � � :(3.3)Proof. Analogously to the proof of Theorem 1 in [6℄, we 
an indu
tively demon-strate this lemma.Lemma 3.3. Let x� 2 Rn be a 
ommon �xed point of the operator 
lass OT , andthe sequen
e fxpgp2N0 be generated by the GAMI-method. If we denote
p := max(kxp � x�kv; maxi2J(p) 


xs(i)(p) � x�


v ; maxi2J(p) 


xt(i)(p) � x�


v) ; 8p 2 N0;then, for p = 0; 1; 2; � � �, there hold(i) Ipjxp+1�x�j � Pi2J(p)Ei ���Tp;i �xs(i)(p)�� x����+ �Ip � �2minfI; E�1g � I� Ip�
pv;(ii) (I � Ip)jxp+1 � x�j = (I � Ip)jxp � x�j,



A New Generalized Asyn
hronous Parallel Multisplitting Iteration Method 453where we use the notationminfI; E�1g = diag �minf1; e�111 g;minf1; e�122 g; � � � ;minf1; e�1nng� ;with E = diag(e11; e22; � � � ; enn).Proof. Equivalently, we 
an express (2.1) asxp+1 = Xi2J(p)EiTp;i �xs(i)(p)�+ Xi2J(p)(I �E)E�1Eixt(i)(p) +0�I � Xi2J(p)E�1Ei1Axp:(3.4)Note that x� 2 Rn is a 
ommon �xed point of the operator 
lass OT , a

ording to (3.4)we havex� = Xi2J(p)EiTp;i (x�) + Xi2J(p)(I �E)E�1Eix� +0�I � Xi2J(p)E�1Ei1Ax�: (3.5)Now, subtra
ting (3.5) from (3.4) we immediately obtainxp+1 � x� = Xi2J(p)Ei �Tp;i �xs(i)(p)�� x��+ Xi2J(p)(I �E)E�1Ei �xt(i)(p) � x��+0�I � Xi2J(p)E�1Ei1A (xp � x�); p = 0; 1; 2; � � � : (3.6)By making use of the properties of the operators Ip(p 2 N0) and Pi(i = 1; 2; � � � ; �),and through dire
t manipulations we haveIpjxp+1 � x�j � Xi2J(p)Ei ���Tp;i �xs(i)(p)�� x����+ Xi2J(p) jI �EjE�1Ei ���xt(i)(p) � x����+0�Ip � Xi2J(p)E�1Ei1A jxp � x�j� Xi2J(p)Ei ���Tp;i �xs(i)(p)�� x����+ hjI �EjE�1Ip + (Ip �E�1Ip)i 
pv:Up to now, to prove (i) we only need to test that there holdsjI �EjE�1Ip + (Ip �E�1Ip) = Ip � �2minfI; E�1g � I� Ip: (3.7)In fa
t, for any j 2 f1; 2; � � � ; ng, if e�1jj � 1, we easily know thathjI �EjE�1Ip + (Ip �E�1Ip)ijj = j1� ejj je�1jj [Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= (e�1jj � 1)[Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= [Ip℄jj � [Ip℄jj= hIp � �2minfI; E�1g � I� Ipijj ;



454 Z.Z. BAIwhere we use [�℄jj to denote the j-th diagonal 
omponent of the 
orresponding diagonalmatrix; and if e�1jj < 1, we easily see thathjI �EjE�1Ip + (Ip �E�1Ip)ijj = j1� ejj je�1jj [Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= (1� e�1jj )[Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= [Ip℄jj � (2e�1jj � 1)[Ip℄jj= hIp � �2minfI; E�1g � I� Ipijj :Therefore, the identity (3.7) holds, and we have ful�lled the proof of (i).From (3.6) we 
an dire
tly get (ii) by applying the properties of the operatorsIp(p 2 N0) and Pi(i = 1; 2; � � � ; �), too.4. Convergen
e Theory of the GAMI-MethodTheorem 4.1. Let x� 2 Rn, and assume that for 8i 2 J(p), there exist 
onstant� 2 (0; 1) and Æ 2 (0; 1) independent of i and p su
h that for any z 2 Rn, whenkz � x�kv � Æ, there holds eitherkTp;i(z)� x�kv � �kz � x�kv (4.1)or kPi(Tp;i(z)� x�)kv � �kPi(z � x�)kv : (4.2)Then for any x0 2 Rn satisfying kx0 � x�kv � Æ, the sequen
e fxpg generated by theGAMI-method 
onverges to x� provided E < 2I=(1 + �).Proof. Evidently, ea
h of the inequalities (4.1) and (4.2) implies that x� is a 
om-mon �xed point of the operator 
lass OT . In a

ordan
e with Lemma 3.2 and Lemma3.3, to ful�ll this proof we only need to demonstrate that there exists a nonnegativenumber sequen
e f�pg su
h that(a) Pi2J(p)Ei ���Tp;i �xsi(p)�� x���� + �Ip � (2minfI; E�1g � I)Ip� 
pv � �pIpv, p =0; 1; 2; � � �;(b) �p+1 � �p, p = 0; 1; 2; � � �; and(
) limp!1�p = 0.As a matter of fa
t, in light of the properties of the operators Pi(i = 1; 2; � � � ; �) aswell as the assumptions (4.1) and (4.2) we get for all i 2 f1; 2; � � � ; �g and all z 2 Rnsatisfying kz � x�kv � Æ that there holdEijTp;i(z)� x�j = EiPijTp;i(z)� x�j � Ei�kz � x�kvv: (4.3)Now, de�ne( emin = min f[Ei℄jj j [Ei℄jj > 0; j = 1; 2; � � � ; n; i = 1; 2; � � � ; �g ;
 = 2minfI; E�1g � (1 + �)I; � = I � emin
; (4.4)and
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hronous Parallel Multisplitting Iteration Method 455�p = �
p; p = 0; 1; 2; � � � : (4.5)Then we easily see that it holds [
℄jj > 0 and [�℄jj 2 [0; 1), j = 1; 2; � � � ; n, whenE < 2I=(1 + �). Moreover, through dire
t 
omputations we obtain by (4.3) thatXi2J(p)Ei ���Tp;i �xsi(p)�� x����+ hIp � �2minfI; E�1g � I� Ipi 
pv� hIp � �2minfI; E�1g � (1 + �)I� Ipi 
pv= [Ip �
Ip℄ 
pvhold for both 
ases (4.1) and (4.2). Note that for any p 2 N0 and any j 2 f1; 2; � � � ; ng,[Ip℄jj = 0 if and only if [Ip℄jj = 0, we see that[Ip � 
Ip℄ 
pv = [Ip � 
Ip℄ 
pIpv� �
pIpv = �pIpv:Therefore, (a) holds for all p = 0; 1; 2; � � �. In a

ordan
e with Lemma 3.3 we know thatthere have Ipjxp+1 � x�j � �
pIpv; p = 0; 1; 2; � � � :To test (b) we only need to demonstrate the validity of the inequalities
p+1 � 
p; p = 0; 1; 2; � � � : (4.6)Be
ause of jxp+1 � x�j = jIp(xp+1 � x�) + (I � Ip)(xp+1 � x�)j� Ipjxp+1 � x�j+ (I � Ip)jxp+1 � x�j� �
pIpv + (I � Ip)jxp � x�j� �
pIpv + (I � Ip)
pv= [�Ip + (I � Ip)℄
pv� 
pv; (4.7)by applying Lemma 3.1, we easily see that when p = 0 there holds 
1 � 
0. Now, basedupon (4.7) and Lemma 3.1 again, and by making use of indu
tion, we 
an immediatelydedu
e the validity of (4.6).Now, we turn to (
). Evidently, we only need to verify that it holds
p � �l
0; 8p � ml; l = 0; 1; 2; � � � : (4.8)In fa
t, when l = 0, (4.8) is trivial. Suppose that (4.8) holds for all p � ml. Then,when p � ml+1, from Lemma 3.2 we see thatjxp+1 � x�j � �mlv = �
mlv;and from the de�nition of f
pg as well as the indu
tion assumption we get that
p+1 � �
ml � �� �l
0 = �l+1
0:



456 Z.Z. BAIThat is, (4.8) also holds for all p � ml+1. The above dis
ussion shows the validity of(4.8).(4.7) and (4.8) immediately give limp!1xp = x�, and the proof of this theorem ishen
e 
ompleted.We use the following remarks to end this paper.Remark 4.1. The iteration formula (2.1) 
an be equivalently expressed asxp+1 = Xi2J(p) �E�1Ei� hETp;i �xs(i)(p)�+ (I �E)xt(i)(p)i+ Xi=2J(p) �E�1Ei�xp; p = 0; 1; 2; � � � :Note that �Pi=1E�1Ei = I, we see that the requirement that the sum of the weightingmatri
es Ei(i = 1; 2; � � � ; �) does not equal to the identity matrix is just equivalent torelaxing the original iteration with the diagonal matrix E, the sum of the weightingmatri
es. Hen
e, whether E = I or not is not relevant for multisplitting iterativemethods from the theoreti
al point of view.Remark 4.2. Di�erent 
onstru
tions of the operator 
lassOT 
an result in variousasyn
hronous parallel multisplitting iterative methods for solving systems of linear andnonlinear equations. Some representatives of the 
hoi
es of the operator 
lass OT havebeen shown in [1, 3, 9℄.Remark 4.3. The existing results in the papers [1-9℄ are spe
ial 
ases of that inthis paper. Referen
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