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Abstract

Interior error estimates are derived for nonconforming stable mixed finite ele-
ment discretizations of the stationary Stokes equations. As an application, interior
convergences of difference quotients of the finite element solution are obtained for
the derivatives of the exact solution when the mesh satisfies some translation in-
variant condition. For the linear element, it is proved that the average of the
gradients of the finite element solution at the midpoint of two interior adjacent
triangles approximates the gradient of the exact solution quadratically.
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1. Introduction

Interior error estimates for finite element discretizations (conforming) were first
introduced by Nitsche and Schatz' for second order scalar elliptic equations in 1974.
They proved that the local accuracy of the finite element approximation is bounded
in terms of two factors: the local approximability of the exact solution by the finite
element space and the global approximability measured in an arbitrarily weak Sobolev
norm on a slightly larger domain. Since then, interior estimates of this nature have
been obtained by Douglas, Jr. and Milner for mixed methods of the second order
scalar elliptic equations!®, Douglas, Jr., Gupta, and Li for the hybrid method!”, by
Gastaldi for a family of elements for the Reissner-Mindlin plate model®?, by Arnold
and Liu for conforming finite element methods for the Stokes equations!!, and by Liu for

nonconforming methods for the second order elliptic equations!'?!

. For a comprehensive
review on this subject, see [17].

Recently, some quite interesting applications of interior estimates have been found
in the areas of a posteriori error analysis and adaptive mesh refinement. In 1988
Eriksson and Johnson!'" introduced two a posteriori error estimators based on local
difference quotients of the numerical solution. Their analysis was based on the inte-
rior convergence theory in [14] and [15]. In 1991, Babuska and Rodriguez/? studied
the estimators of Zhu and Zienkiewicz'%, [20] by using the interior estimate results of

Bramble and Schatz!'%l. For other applications in this direction, please refer to [9], [10]

* Received November 6, 1995.
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and [3]. Through these investigations, it is now widely believed that the asymptotic
exactness of a posteriori estimators essentially depends on some kind of superapproxi-
mation property of the finite element method. Interior error estimates, however, offer
a standard approach to derive interior superconvergences.

The aim of this paper is to establish interior error estimates for nonconforming
finite element approximations to solutions of the Stokes equations. Note that noncon-
forming methods are attractive for the Stokes problems for two reasons: (1) the inf-sup
condition is easy to satisfy; (2) divergence-free nodal bases can be constructed. In
addition, since the pressure can be eliminated first (when discontinuous functions are
used to approximate the pressure), the velocity can be found through solving a positive
system and thereafter, some preconditioned multigrid methods may be incorporated
for constructing fast solvers.

The method used here and the structure of this paper closely follows that in [1].
Section 2 presents notations and preliminaries. Section 3 introduces hypotheses for
the finite element spaces, which actually apply for both nonconforming and conforming
methods. In Section 4, we introduce the interior equations and derive some basic
properties of their solutions. Section 5 gives the precise statement of our main result
and its proof. In Section 6 we prove interior convergences of difference quotients of the
finite element solution to the derivatives of the exact solution when the finite element
space is defined over meshes with certain translation invariant property. An interior
superconvergence is obtained as an example application.

2. Notations and Preliminaries

Let © denote a bounded domain in R? and 02 its boundary. We shall use the usual
standard L2-based Sobolev spaces H™ = H™(2), m € Z, with the norm || - ||, o. Recall
that for m € N, H ™ denotes the normed dual of /™, the closure of C§e(Q2) in H™.
We use the notation (-, -) for both the L?(€)-innerproduct and its extension to a pairing
of H™ and H™™. 1f 0 = |9 for some disjoint open sets §2;, then let H"(€2) = {u €

J
L2(92) and ulo, € H™(%), for all j} with the norm [[ull, o = (3 [lull2,0,)"". 16 is
J
any subspace of L?, then X denotes the subspace of elements with average value zero.
We use boldface type to denote 2-vector-valued functions, operators whose values are
ector-valued or tensor-valued functions, and spaces of vector-valued functions. This is
illustrated in the definitions of the following standard differential operators:

op/0x _ (0¢1/0x O¢1/0y
8;0/81/) - grad ¢ = <8¢>2/8:r Bcbz/@y) '

For any function ¢ that is differentiable on each ; where Q = U Q;, a family of disjoint

div¢ = 0¢1/0x + O¢o /0y, grad p = <

i
open sets €;, we define the piecewise version (with notation divy) of its divergence to
be the function obtained by computing div¢ element-wise. The piecewise version of the
gradient operator can be defined similarly and is denoted by grady,.
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The letter C denotes a generic constant, not necessarily the same in each occurrence,
but always independent of the meshsize parameter h.

Let G be an open subset of Q and s an integer. If ¢ € H*(G), v € H *(G), and
w € C§°(G), then

[(we, )| < Cliglls.alldll-s.c
with the constant C' depending only on G, w, and s. For ® € H*(G), ¥ € H *T1(Q)
define
R(w,®,¥) = (®(grad w)’, grad ¥) — (grad ®, ¥(grad Q)*). (2.1)
Then
|B(w,®, V)| < O[5l V] -st16- (2.2)

If, moreover, ¥ € H 52 we have the identity
(grad (w®), grad V) = (grad ®, grad (w¥)) + R(w, P, ).

The following lemma states the well-posedness and regularity of the Dirichlet prob-
lem for the generalized Stokes equations on smooth domains. (Because we are interested
in interior estimates we really only need this results when the domain is a disk.) For
the proof see [16, Chapter I, §2].

Lemma 2.1. Let G be a smoothly bounded plane domain and m a nonnegative
integer. Then for any given functions F € H™ '(G), K € H™(G) N L%*(Q), there exist
uniquely determined functions

¢ H"U(G)NHNG), p e H™G) N L2(G),
such that

— A¢ —gradp = F,
divg = K.

Moreover,
[8llm+1.c + [Pllme < CUFIm-1.6 + 1Klma),

where the constant C is independent of F' and K.

3. Nonconforming Finite Element Spaces

In this section we collect assumptions on the nonconforming mixed finite element
spaces that will be used in the paper.

Let Q C R? be the bounded open set on which we solve the Stokes equations and let
h denote a mesh size parameter. We denote by V, the finite element space that is used
to approximate the velocity, and by W), the finite element subspace of L?(Q) that is
for the pressure. Let Z; denote the finite element space of continuous piecewise linear
functions (for triangular elements) or bilinear functions (for rectangular elements), and
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Y, the space of piecewise constants or continuous linear functions. Remember that
V=V, xVyand Z, = Z, x Zp,. For Qy C 2, define

V() = {dlay|d € Vil V() = {§ € Vi/suppe C 0o}

Sets Wi (%), W 1(%), Zn(Q), Z 1(), and Vi ()o can be defined similarly.
If G}, C € is a union of elements, let

Vi (Gh) = {¢|¢ € V1(G}p) and vanishes at the nodes on G, }.

Let Gy and G be concentric open disks with Gy € G € Q, i.e, Gy C G and G C €.
We assume that there exists a positive real number hy such that for h € (0, hg], the
following properties hold.

A1l. Approximation property. We will assume that V', contains Zj and W}, contains
Y,,. Consequently,

(1) If ¢ € H?(G), then there exists a continuous function ¢’ € V'), such that

lp = ¢" . < Chlglac
(2) If p € H'(G), then there exists a p’ € W}, such that

lp = p'llo.c < Chllplh.c-

Furthermore, if ¢ and p vanish on G\Gj, respectively, then ¢’ and p’ can be chosen to
vanish on Q\G.
A2. Superapproximation property. Let w € C§°(G), ¢ € Vi, and p € W),. Then

there exists ¢ € V,(G) and g € I/;/h(G), such that
lwg = 9lI o < ChIIT o
lwp = gllo.0 < Chlpllo.c:

where C depends only on G and w.
A3. Stability property. There is a positive constant -y, such that for all h € (0, hg]
there is a domain G}, Gy € G, € G for which

divy ¢,
inf sup  —AWadple,
pevzgégcrh) oV, (Gp) ||¢||1,Gh||p||U,Gh
$#0
A4. Inverse property. For the set G in A3 and each nonnegative integer m ther is

a constant C for which

111, < Ch™ ™ ¢ll-mc,, for all g € Vi,
Ipllo.c,, < Ch™™[lpll-m.c,, for all p € Wi

A5. Consistency property. Let Gy, be the set in A3. Then

Z / Y -nds =0, forally € V,(Gy) (3.1)
oT

TCGy
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o J—
Moreover, if ¢ € H'(G}) and ¢ € V}, or ¢ € H'(G},) and ¢ € V,(G},), then

| X [ éempds] < ChIlo, + Idiv gl 41, (32

TCGy

and

Y[ s < O plla o,

TCG

for p € }oll(Gh) and 9 € V,(Gh). Here « is a real positive number, the constant C
depends only on the minimal angle of elements in G, and n = (n1,n)! is the outward
normal direction of 0T

When Gj, = Q, property A3 is the standard stability condition for Stokes elements.
It will usually hold as long as G}, is chosen to be a union of elements. The following
result will be used from time to time to construct local projections.

Lemma 3.1. Let Gy, be a subdomain for which the stability inequality in A3 holds.
Then for ¢ € H}(Gh) and p € L*(Gy,), there exist unique 7¢ € V(Gp), and mp €
Wi(G}) such that

(grad), (¢ — ¢),grad,y) — (divpyp,p — 7p) =0,  for all 4 € V(Gh),

(3.3)
(div, (¢ — ¢),q) =0, for all ¢ € Wy(Gp).
(3.4)
Moreover,
h h
el ], <y 0 s
6=l g+ |p=mo= [ pao], , <C( [ le=vlta] o lpdl)

In addition, the function mp can be found with the property / (p— mp)dx = 0 and the
JG

h
space Wi,(Gy) in (3.4) can be replaced by Wi, (Gy) if the function ¢ is in ﬁl(Gh) and
(3.1) in A5 holds.
Proof. The unique existence is guaranted by Prop 2.15 in [5]. The estimate can be
obtained by using a similar argument as in Prop 2.16 of [5].

For conforming methods, Z / ¢Yn;ds equals zero. So A5 can be considered as
oT
TeG),
a measurement on the degree of continuity of the finite element space. It is well-known

that the Crouzeix-Raviart family elements(® satisfy (3.2) with o = 1.

The superapproximation property is discussed as Assumptions 7.1 and 9.1 in [17]
for conforming elements, but the arguments can be carried over to most nonconforming
ones. The inverse inequality property for the continous elements is well-known!!7. A
proof that holds for both conforming and nonconforming elements can be found in [13].
Many finite element spaces are known to have the superapproximation property. In
particular, it was verified in [4] for Lagrange and Hermite elements.

We need two technical results for the analysis in Section 5.
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Lemma 3.2. Let G}, be a union of elements, p € L*(G},), and ¢' € V,,(Gy). Then
there is a constant C, independent of h,p, and ¢' such that

(2, ¢"a, < C(h*lpllo.c, + Ipl-1.6) 16" 17 6, (3.5)

where the constant « is as in A5. .
Proof. If we can prove that for any ¢’ € V},(G}), there exists a function ¢ € H(G},)
with the properties:

I16ll1c, < Clld" 1T g, (3.6)
¢ — ¢ llo.cyn < Ch1B" 111 2, - (3.7)

Then a straighforward computation yields (3.5):

(0. ¢ )l <0, 8" = D)aul + (0. | < O plloc, 16711, + Ipll-1,6,10l1.6,)
<Ch®llpllo.c, + lIpll-1,6) 14" 11,

To prove the existence of such a function, consider a variational problem: find a
function ¢ € H '(G}) such that

(grad¢, grady) = (grad,¢', grady), for ally € H ' (Gy). (3.8)
Obviously this is uniquely solvable. Moreover,

lgradélloc, < |grad,d’|lo.c,-

So (3.6) is satisfied. To prove (3.7), note that

(¢ - ¢17K)G
¢ = llo,c, = sup TR L
KeL2(Gy) || ||U,Gh
K#£0

For any K € L?(G}), consider the boundary value problem:
—AP =K, inGp, ®=0, onJdG.
It is easily seen that the solution ® € IO—II(Gh) and A® € L?(G}p,) with the estimate
1216, + 1A®]J0,c, < CllK]lo,c)- (3.9)

Applying integration by parts yields

(¢ — d)la K)Gh = Z {(grad(d) - d)I)a grad®); — / (¢ — ¢I)n . grad@ds}

TCG or

= Z/ ¢'n - graddds,
oT

TCGy
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where we use (3.8). Then, by (3.2) and (3.9) we obtain
(¢~ ¢'. K)a,| < Ch*(lgrad@lloq, + |A%[lo,c,) 14" [1., < ChK o, 4" |11,

which results in (3.7).
Lemma 3.3. Let G be a disk, Gp, Gy, € G, be a union of elements, and w €
C§(Gy). Further assume that ¢ € Vi,(Gp) and 1 € V,,. Then we have

|R(w,¢,9)| < C(I19llo., +he11T.cn) 1617, - (3.10)
Proof. By definition (Ref. (2.1))

R(UJ, d)a /l:b) = (d)(gradw)tv gradhad)) - (gradhd)ad)(gradw)t)a

so it is enough to prove that the first tem above is bounded by the right hand side of
(3.10). From the proof of Lemma 3.2, there exists a function ¢¥ € }oll(Gh) with the
properties

1%, < ClglT > Nl¢ = lo.cmn < ChOIISIIT G, - (3.11)

Obviously

(¢(gradw)’, grad, ) = ((¢ — ¢°)(gradw)’, grad,y) + (¢ (gradw)’, grad,y) (3.12)
and
(¢ — ¢°)(gradw)’, grad,¥)| < Ch%|911 , 1911, - (3.13)
In addition,
(¢°(gradw)’, grad, y) = — > {(div(¢"(gradw)"), v)r / n'¢" (gradw)'yids}
TCG T
<Cll#° e, IWllo.c, +h 91T, ), (3.14)
where we used (3.2) in the last step. Combining (3.11)—(3.14) yields the desired result.
Before we get to the next section, we introduce some notations. Let L and () be

liner functionals on the space V ,(G) and Wj(G), respectively, we define

L
e = sup 12O
e T
PF#0
wn Q)
q
||QH0,G: || || .
qu;h(G) qllo,G
q#0

4. Interior Duality Estimates
Let (¢,p) € H' x L? be some solution to the generalized Stokes equations

— A¢p+ gradp = F,



482 X.B. LIU
div ¢ = K.

Regardless of the boundary conditions used to specify the particular solution, (¢,p)
satisfies

(gradg, gradd) — (divip,p) = (F,4), forallyp € H',
(dive, q) = (K,q), forall ¢ € L2

Similarly, regardless of the particular boundary conditions, the finite element solution
(¢n,pn) € V5, x Wy, satisfies

(gradpd)hagradhw) - (divhd)aph) = (F,’lﬁ), for all d) € Vha
(divhd)ha q) = (Ka q)a for all q € Wh.

Applying integration by parts yields

(gradh(gZs - ¢h)7 gradhw) - (divhuwap - ph)

- ' - for all ¢ € V .
%/{ﬁn (grad¢ — pl)ipds, forallyp € Vi (4.1)
(dlvh(d) - d)h)a q) =0, for all q € Wh, (42)

where [ is the two by two identity matrix. The interior error analysis only depends on
the above interior discretization equations.

Our goal here is to estimate function satisfying (4.1) and (4.2). We will use the
same duality techniques as in [1] and [14]. To simplify notations, we consider a pair of
functions (¢,p) € (H' 4+ V) x L? that satisfies

(grad, ¢, grad, ) — (divy, 4, p) = L(¢), for all ¢ € Vi (4.3)
(divpg,q) = Q(q), for all g € Wy,

for some given linear functionals L and @), which may represent consistency errors out
of using nonconforming elements or numerical integrations.

Theorem 4.1. Let Gy € G be concentric open disks with closures contained in )
and s an arbitrary nonnegative integer. Then there exists a constant C such that if
(¢, p) € (H' + V) x L? satisfies (4.3) and (4.4), we have

Igllo.co + NIl -1.60 SC(h®IBIIT ¢ + h*[Ipllo.c + 6] -s.6
+lplse + 1Ll -16 + 1Qllo.c), (4.5)

where « is defined in A5. Moreover, if L(1) = 0 for all ¢ € %h(G) and Q(q) = 0 for
any q € Yy, then

1llo.co + lIpll-1.60 < C(h%[I6117  + h%llpllo.c + 6l -s.c + [Ipll-1-s.)- (4.6)

In order to prove the theorem we first establish a lemma.
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Lemma 4.2. Under the hypotheses of Theorem 4.1, there exists a constant C for
which

18ll-s.Go + 2]l —s-1,60 SCASIIT ¢ +h%lIpllo + 9] —s-1.
+ llpll—s—2.¢ + 1Ll -1, + Qllo.c)-

Moreover, the last two terms can be taken away if L(v) = 0 for any ¢ € Z, and
Qq) = 0 for any g € Y.

Proof. Let G' be a disk such that Gy € G’ C G. Choose a function w € C§°(G")
which is identically 1 on Gy. Also choose a function 6 € C§°(Gy) with integral 1. Then

wp,
I i R —— —”(” 9 | (4.7)
gGI?IS+1(G) glls+1,G
9#0

Now
(wp,g) = (wp. g~ 5/ gdx) + (wp, 0) / gdx
JG JG

and clearly

(@) [ gdx| < Clpll--2clgloe

Since g — (5/ ddx € H*tY(G) n L*(@) it follows from Lemma 2.1 that exist ® €
G

H**(G) N HY(G) and P € H*1(G) N 12(G) such that

— A® + gradP =0, (4.8)
div® =g — (5/ gdx. (4.9)
G
Furthermore,
[@lls+2,6 + [1Plls+1,6 < Cllglls+1,6- (4.10)

Then, by (4.9), we obtain

(g — (5/ngx,wp) =(div®, wp) = (div(w®), p) — (gradw, pP)

—(div(w®)",p) + {(div[w®d — (w)"],p) ~ (gradw,p®)}
A+ B (4.11)

Here the superscript [ is the approximation operator specified in property A1l of Section
3. Choosing 9 = (w®)’ in (4.3), we get

A12

(div(w®)’,p) = (grad,¢, grad(w®)’) — L((we)’)

=(grad, ¢, grad(w®)) + (grad, ¢, grad[(w®)’ — w]) — L((w¢)")
=(grad, (w¢), grad®) — L((wg)") + {R(w, . ¢)

+ (grady,, ¢, grad[(w®)" — w®])}
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=: Ay — L((wg)") + By, (4.12)

where R is defined in (2.1). Next, by using (4.8) and integration by parts we obtain

Ay :=(grad, (w¢), grad®) = (divj,(we), P) + { > /E)T wn'(grad® — PI)d)ds}
TCGy

=: (divp¢,wP) + (gradw, P¢) + As
={(diva¢. wP — (wP)") + (gradw, P¢)} + Q((wP)") + A3
=: B3+ Q((wP)") + A3

where we applied (4.4) in the last step.
Applying the approximation property Al, the consistency property A5, (2.2), and
the Cauchy-Schwartz inequality, we get

|B1| < C(hl|@]l2,cllplloc + [¢lls+2.clpl-s—2,6),

|Bao| < CI¢]l-s-1,6l1@ls12.6 + PllT ol @ll2,0),

B3| < ChlIglIT allPlhe + 18l -s 1 1Plls+1.6), (4.13)
|43 < CR(|@]l2,¢ + |1 Plh.a) 1l -

IL(w®)")]| < CIL] 16106 + h®[l2e),

1QUwP)) < ClQloc(IPlloc + hllPle).

Substituting (4.10) into (4.13) and combining the result with (4.7), (4.11), and (4.12),
we arrive at (4.5) (note that usually o < 1). Using a similar duality argument, one can
prove that ||¢|| s G, is also bounded above by the right hand side of (4.5). We omit it
here. For the treatment when V', is conforming, please refer to [1].

Inequality (4.6) is obvious from the above proof.

Proof of Theorem 4.1. This can be achieved by iteriation ([1], [14]).

5. Interior Error Estimates

In this section we state and prove the mian result of this paper, Theorem 5.3. First
we obtain in Lemma 5.1 a bound on solutions of the homogeneous discrete system. In
Lemma 5.2 this bound is iterated to get a better bound, which is then used to establish
the desired local estimate on disks. Finally Theorem 5.3 is extends this estimate to
arbitrary interior domains.

Lemma 5.1. Let L be a linear functional on Vi, and Q a linear functional on W,.
Assume that (¢p,p) € Vi, x Wy, satisfies

(grad, ¢, grad, ) — (div, $,p) = L(s), for all 9 €V, (5.1)
(divag,q) = Qg), forallge W (5.2)

Then for any concentric disks Gyo € G € €0, and any nonnegative integer t, we have

1117, + lIplo,coe <CR 1T 6 +h lIplloc
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Hll-ra +lpl-t-1.6 + 1L1-1.6 + 1@llo,c), (5.3)

where C = C(t, Gy, G).

Proof. Let Gp, Gy € G, € G, be as in Assumption A4. Let G' and G; be
disk concentric with Gy and G, such that Gg € G1 € G), € G' € G, and construct
w e CP(G)) with w =1 on Gy. Set ¢ = wp € H}(Gh), p = wp € L*(Gp,). By Lemma
3.1, we cna define functions ¢ € V;,(G}) and 7p € W, (Gp,) by the equations

(grad, (¢ — n¢), grad,y) — (divyp — 7p) =0, for all ¢ € V,(G}),

(divy, (¢ — wh),q) =0, for all ¢ € Wj,(Gp). (5.5)
Furthermore, there exists a constant C' such that
16 wdllt, + |5~ 75 [ x|
Jay,
<c( inf [|[Z9lis + inf  |Ip—qloc
(oot Pl nf, 15— dluc)
<Ch(|¢llIt & + lIpllo.cr), (5.6)

0,Gp

where we used the superapproximation property in the last step.
To prove (5.3), note that

11T, + Ipllo.e <SIIT G, + 1Blloc, < 16— 7l g,

o-m— [ pax|,, +Imdlt, + lmilog, + | [ wpax]
Gh 0.Gn JGy

G,

<Ch(l|¢llY e + IPllo.cr) + ol 1,00 + 7¢Il , + I7Bllo.g,-  (5.7)

Next, we bound ||7r<£||’th In (5.4) we take 1) = m¢ to obtain, for a positive constant
Cla

Ci(llmg|t ¢,)* <(grad,n4,grad, )
=(grad, ¢, grad,r¢) — (div,md,p — p). (5.8)
For the first term on the right hand side of (5.8), we have
(grad, ¢, grad, n¢) =(grad, (w¢), grad,r¢)
=(grad, ¢, grad,(wr¢)) — R(w, ¢, ¢) = (grad, ¢, grad, (wre)’)

+ {(grad, ¢, grad[wn$ — (wr)']) — R(w, m¢)}
::G1—|—H1. (59)

To bound G, we take ¢ = (wng)’ in (5.1) to get

Gy =(diva(wrd)'.p) + Liwrd)) ~
= (divy(rd).p) + (dival(@nd) - wrd.p) + L((wn))
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=(divy7é, wp) + {(gradw, prd) + (div|(wnd)' — wrd],p)} + L((wrd)")
= (divyme, p) + Hy + L((wng)"’). (5.10)

Combining (5.8), (5.9), and (5.10), we obtian

Cillngl3q, <(divymd,p) + Hy + Hy — (divyrd, p — 75) + L((wnd)!)
=(divywg, 7p) + L((wrd)’) + Hy + H,. (5.11)

Taking ¢ = 7p in (5.5) yields

(dthWd;, ﬂ—ﬁ) :(divhdga ﬂ—ﬁ) = (divh(wd))a Wﬁ) = (divhd)a w’”ﬁ) + (gradwa Wﬁd))
—{(divpg, wrp — (wrp)") + (gradw, 7pg)} + Q((wmp)”)
=: Hy + Q((wmp)") (5.12)

where we used (5.2) at the last step. Applying he Schwarz inequality, Lemma 3.3,
inequality (5.6), and the superapproximation property A2, we get

H| < C(°¢llE o + l1gllo.c) ol g,
[Hy| < Cllpll 1,6, + b Ipllo,c) 17l G,
Hy| < Ol o + I llo,c) mllo,c,
L((wrd)")| < CIL| -1 6lmdl g, -
QUwrd)")| < ClQllo.cI7dllo.c

Combining the above three inequalities with (5.11) and (5.12), and using the arithmetric-
geometry mean inequality, we arrive at

(Il ¢, )* <CLE**(IBl1T )? + Il + B> plS , + Il 1.c:,)
+ Ca(llgllo,c + RISIT v + 1QNl0.c) B0,
+OlILl -1 6lmdli g, - (5.13)

Next we estimate ||7rﬂ0,Gh. By using the inf-sup condition,

di b
Ilog, <C  sup vt mPIG,

¢€Vh(Gh) ||¢”1 G
Y#0

(5.14)

To deal with the numberator on the right hand side of (5.14), we apply (5.4),

(divyep, wp) =(divaep, ) — (grad,,(¢ — 7¢), grad, )

=(divy, wp) — (grad, (¢ — 7¢), grad,y)

(divy,(wy),p) — (grad,(¢ — 7¢), grad,y) — (gradw, py)
=(divy(wy)’,p) — (grad, (¢ — 7¢), grad, )

+ (divy (wp — (wip)"),p) — (gradw, py). (5.15)
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We use (5.1) to attack (divy(wt)’,p) and get

(divy(wip)’,p) =(grad, ¢, grad(wy)') — L((wy)")
=(grad, ¢, grad, (wi))) + (grad, ¢, grad,[(wy))" — wyp]) — L((wy)")
=(grady,(w¢), grad, ) + {R(w,, ¢) + (grad,¢, grad[(wip)" — wip])}
— L((wy)") =: (grad,, ¢, grad,y) + My — L((wi))"). (5.16)

Combining (5.13) and (5.16), we get
(divyy, np) =(grad,m¢, grad, ) + {(divy, (w — (wip)'), p)

~ (gradw, py)} + My — L((wy)')
= (grad,n¢, grad, ) + Mo + M, — L((wi)"). (5.17)

Then applying the superapproximation property, the Schwarz inequality, and Lemma
3.3, we arrive at

(M| < Clldllo,c +hlllT ) [I1T ¢,
M| < C(h|Ipllo.c, + a9 6,
(grad, ¢, grad,y)| < Cllndl g, 1011 q,
L((w))] < CILl 16,111 -

Combining (5.14) and (5.17) with the above three inequalities, we obtain

I7pllo,cn <CRIBIIT cr + I 8llo,60 + R lIpllo.c,
+lpll -1, + IILl-16 + 71T, )- (5.18)
Substituting (5.18) into (5.13), we obtain
In |t G, <Ch 1817 e +lIgllo.cr + h*lpllo,c,
+llpll- 1, + 1Ll -1, + 1RQllo,)- (5.19)

Thus, substituting (5.19) back into (5.18), we find that ||7p||o,q, is also bounded above
by the right hand side of (5.19). Therefore, from (5.7) we obtain

h h
16117 .G + llpllo.co <C(RNNT 60 + [[8llo,cr + A [Ipllo,cs

+llpll 1.6, + 1Ll 1,6 + 1 Qllo.c)-

Applying Theorem 4.1 for the case with G’ inplace of Gg, we finally arrive at
1117 o + lIpllo,co <C(RIBIIT ¢ + [0l -e.c + h*IIpllo.c
+lpl—i—r.e + 1L]-1.¢ + 1Qllo,¢)-

By a standard iteration argument, one can prove the following!!'4],
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Lemma 5.2. Suppose the conditions of Lemma 5.1 are satisfied. Then

1617 o + lIploGo < CUIdl-1.6 + lIpll-t-1.6 + 1Ll -1.6 + 1Qllo.c)- (5.20)

We now state the main result of the paper.

Theorem 5.3. Let Qy € Q; € Q. Suppose that (¢p,p) € H' x L? (the exact
solution) satisfies ¢lo, € H™(Qy) and plo, € H™ 1 (Q) for some integer m > 0.
Assume that (¢, pn) € Vi, x Wy, (the finite element solution) is given so that (4.1) and
(4.2) hold. Let t be a nonnegative integer. Then there exists a constant C depending
only on q,Q and t, such that

6 — ¢nllt oy + lp — palloge <([ll10: + Ipllog: + x(d,p, )
+ 116 = dnll-t.00 + P = pPall-t-1.0,);
(5.21)
¢ — dnllta, + P — pall-1.00 < [Sll1,0, + % (Ipllos: + A X(b,p, Q)

+ Hd) - d’tht,Ql + ”p - ph”*i*l,!h)a
(5.22)

with x(¢,p, 1), defined in (5.32) below, represents the consistency error of the finite
element space V', (the order of this term depends on both V', and the smoothness of
solution (¢, p) on 1), and « is given in (3.2).

This theorem will follow easily from a slightly more localized version.

Lemma 5.4. Suppose the hypotheses of Theorem 5.3 are fulfilled and, in addition,
that Qo = Gy and Q1 = G4 are concentric disks. Then the conclusion of the theorem
holds.

Proof. Let Gy @ G' be further concentric disks strictly contained between Gy and
G and let G}, be a domain strictly contained between G’ and G for which properties
A3 and A4 hold. Thus

GoeGyeG eG el

Take w € C°(G') identically 1 on G and set ¢ = we¢, p = wp. Let 7d € V1, (Q),
mp € Wi(G) be defined by

(grad, (¢ — 7¢), grad,y) — (divyy,p — 7p) =0, for all ¢ € V,(Gy),

(5.23)
(div, (¢ — 7¢),q) =0, for all ¢ € W, (G}).
(5.24)
together with mpdx = / pdx. Then using Lemma 3.1 and Al we have
Gy, G
¢ — 7dn|" ., +|Ip — mhnllo,c, < C inf ¢ Plte + inf  |Ip—qloe
16 =l + 1o~ mmnlloc, <O( w19 9lha, + nf 15 dlba,)

<C(lIgl,c, + lIpllo,c,)- (5.25)
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Let’s now estimate ||¢ — ¢pll1,¢, and ||p — pnllo,g,- First, the triangle inequality
gives us
ok - < gk -
16— dnlli o + P — prllo.go < llbn — w¢ll¥ G, + lIpn — 7Dllo.co
+11md — dnllt Gy + 7P — pallo.cy
<¢ -1l G, + 1P = willo.c, + 176 — dulli., + 175 = pallo.co
<C(I91" g, + llpllo,c, + 7 — dullt ¢, + 175 — pallo.co)- (5.26)

From (5.23), (5.24) and (4.3), (4.4) we find

(grady,(¢n — 7T¢ grad,?) — (divpy), pp, — 7p)
Z / n'(grad¢ — pI)yds, for all ¢ € ‘o/'(Gf]),

TCG
(divy,(¢n — 7¢),q) =0, for all ¢ € W (G}).

Define
> / n'(grad$ — pI)ipds
TCGy
X(¢.p.Gp) = sup — o (5.27)
veV(ay) LG
P#0

We next apply Lemma 5.2 to ¢p — m% and p, — mp with G replaced by Gj,. Then it
follows from (5.20) that
lén — 7l + lpn — 7llo,c < C(|ldn — 7T<5|Lt,cg + llpn — 7Bl ——1.ay) + x (b, p, Gp)
Cll¢ = dnll ., + llp = pall 1,6 + ldon — 77(%“4,(}{)
+ lpn = 7l 1.6y + x(, P, Gh))
Cllg — dnll—t.c + Ip — pull -1, + l6 — 7@l ¢,
+ 5 = 7pllo,c, + x(¢,p, Gp)).

In the light of (5.26), (5.25), and the above inequality, we have

l¢ — eullt .y + llp — Palloce <lglrc + lploc + x(¢.p. G)

+ ¢ — dull-t,a + o — pall—t-1,0)-
(5.28)

To prove a local version of (5.22), we note that L(i) = 0 for any continuous function
1. Then apply Theorem 4.1 to the disks Gy and G’ and get

16 — ¢nllo,co + 1P — Pall—1.60 < C (%1 — dullt o + h*|lp — pallo,r
+ ¢ — dull—r,ar + lp — ol —t—1,67)-

Then, applying (5.28) with G replaced by G’, we obtain the desired result

¢ = dnllo,go + Ip — prll-1,60 < C(R*||9ll1,c + h%|pllo,c + h*x(¢,p, G)
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+ ¢ — dull-t,a + 0 — pull—t-1,0)-

Proof of Theorem 5.3. The argument here is same as in Theorem 5.1 of [14] and
[1]. We skip it here.
Let U p, denote the largest subspace fo continuous functions in V' . Then it is easily

seen that we can derive the following result from Theorem 5.3.
Corollary 5.5. Under the conditions of Theorem 5.3, we have

16~ dnllt g, + o~ pallos, <C(inf 119~ b, + inf Ip—alos,
h
pelU

+X(6,0, ) + ¢ = $nll -0 + Ip = pall 110,

1¢ — dnlloge + P — pall-1,0, <C(A* inf [|¢ —Pllio, + 4 inf [|p—qlloe,
o qgeEW},
'(/)EUh

+ hOchi(g.p, ) + ¢ — dnll vy + [0 — pall-r-10,).

Now we apply the above result to the case when the velocity is approximated by the
k-h order Crouzeix-Raviart elements and the pressure by the discontinuous piecewise
functions of order £ — 1. It is easy to check that the properties A1 A5 are satisfied.
Moreover, the following holds!®:

x(¢,p, ) < CR (| Plligs + pllq,),  with 1 >1>k,

for the k-th order element, if ¢ € H''(Q) and p € H'(Q;). We then have (one can
also check that a = 1):

Theorem 5.6. Let V', be the space of the k-th order Crouzeiz-raviart nonconform-
ing triangular elements and Wy, the space of discontinuous (k—1)-th order polynomials.
For some domians Qo € Q; € §, assume that ¢ € H'(Q1) and p € H' — 1(Q) with
1 <I<k+1. Let t be an arbitrary integer. Then there is a constant C depending only
on Qq, 4, and t, and a positive number hy such that for h € (0, hq]

16 — dnllta, + Ilp — prllooo SCRMBllio, + B Hiplli1,0,
+ ¢ — dulleo, + llp — pall-t-1.0,)
¢ — dnllo.ao + P — prll-1.00 <C(BYBll,0, + BIPli—1 .00
+ ¢ — dull 1,00 +llp — pall—t-1,0,)

6. Convergence of Difference Quotients

This section is based onthe fundamental investigation in Nitsche and Schatz [14,
Section 6]. Our goal is to obtain the convergence of difference quotients of the fi-
nite element solution to the derivative fo exact solution in some interior domain for
which the finite element space is translation invariant. Here we will only consider the
Crouzeix-Raviart family of elements. As an application, we will prove the interior su-
perconvergence of some class of difference quotients of the finite element solution to the
derivatives of the exact solution.
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The notations used here follow those in [16, Section 6].
Let v = (v1,12) and a = (aq, ay). For any function f(z), let

Ty f(z) = f(z + vh).
A general difference operator can be written as
Dif= Y Cu(WT}f. (6.1)
lvl<M

for some integer M. Here the notation convention is that D f approximates D f with
D“ the differential operator. As usual, the vector version of D}’ is expressed by a bold
face symbol, i.e., D}

We will say that the mesh is uniform and translation invariant on a neighborhood
of Qq, 4, if there is an h; (in general depending on v, €, and €;) such that for all
h € (01 h‘l]a

TV € V() for all ¢ € V (), and TVq € W () for all g € W (),  (6.2)

with |[v| < M for some fixed integer M (as in (6.1)).

We have the following result.

Theorem 6.1. Let V}, be the space of the k-th order Crouzeiz-Raviart element
and W}, the space of the (k — 1)-th order discontinuous element. Moreover, suppose
that the mesh is uniform and translation invariant on a neighborhood of Qq, i.e., (6.2)
is satisfied. Let Dj(Dyp) be a finite difference operator in the form of (6.1), and t
any nonnegative integer, fived and arbitrary. If 1 <[ < k+1, ¢ € HH'“"‘(Ql), and
p € H-1Hel(Qy), then there exist an hg such that for all h € (0, ho]

ID5 (¢ — dn)llo.0o + 105 (2 — )l -1.00) < CB Dl jal0 + h 1Pl 141021

+ 1o — dnll-t.00 +lp —prllt—1.0, + 1P — Pull+-1,0:),
(6.3)

with C = C(t,Qg, 1, |af).
Proof. Choose two intermediate domains ) and Q) such that Qy € Q[ € Q] e
Q1. Then, by using the fact that the differentiation and the finite difference operator

commute, it is easily seen that for h sufficiently small and ) € V' ;,(€g) and ¢q € I/;/ 1 (0)

(grad,Dj (¢ — ¢n), grad, ) — divyep, Dj (p — pr)) = (grad,(¢ — ¢n), D)
— (divp D", p — pp) =: L(D}"9)
and
(divpy Dy (¢ — én),q) = (divi(¢ — ¢n), Dy"q) =0,

where D{*(D7*) denotes the difference operator adjoint to Df(Dj') with respect to the
L? inner product. On the other hand, from using integration by parts, we get for any

b eV a(),

LD} = 3 | n'(gradg - pI)Dy s

TCQl
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= Z/ n'(gradD$ ¢ — Dpl)epds.
TC or

Therefore

L[ 10 < Chl(HD%éZSHz,Q'I + 1 Dyplli-107) < Ch (1plitial0, + IPIi=14/al.0,)-

Then applying Theorem 5.6 for ¢ = ¢ + |« yields

IDR (¢ — dn)llo.y + DR (0 = pr)ll-1,00 < CRH(ID3 Bl + 2IDRPli-1.0,
+ 1Dy (¢ = dn)ll-v.0f + 1Dy (0 = pr)ll -1 —1,01)
Sc(th(f)HzHa\,m + thlelea\,Ql +1l¢ — dnllt.0r +lp — prllt-1,0:),

where we use the fact that

1Dy (¢ = dn)ll—v 0y < Cli¢ = ¢nll-1.0,

and
D5 (p = p)ll - 1.0, < Cllp — prll—1-1.0:,
with C independent of h, ¢ and p, and ¢, and p. So (6.3) is proved.

The difference operator D} is said to approximate a derivative D with order of
accuracy r in L? if for any pair of domains Qg € 4

1D = Di fllo.oy < C(Q0, QA fllr 4100215

for all h sufficiently small and « € H" 1/ (Q;). We have the following results:

Theorem 6.2. Suppose that the conditions of Theorem 6.1 are satisfied and let
Dg(D$) approzimate D*(D®) with order of accuracy r in L?. Furthermore, let t be
a nonnegative integer, fivzed but arbitrary. Then there exists an hi such that for all
h € (0,hy]

1D%¢ — Diy¢nllo.oe + 11D = Dypnll-1,00
SC [ @llrrial00 + A Iplr—141a100 + 116 = dull -t + [lp = pall-t-1.0,),

with C' = C(t, Q[], Ql)

As a concrete example of the above Theorem, let us assume that V', is the space
of nonconforming linear elements and W), the space of piecewise constants. Let {2 be a
convex polygon. Assume further that F' is smooth. Then for any Q¢ € Q and Dj (DY)
a difference operator of second order accuracy (r = 2 and |a| = 1),

1D%¢ — Diy¢nllo.o, + [[Dp — Dypall-1.00
<Ch*(|glls.0, + lIpll20y + [ ¢ll20 + Iplh.0),

with Qp € Q; @ Q. This is an interior superconvergence result in energy norm. To
obtain similar result in maximum norm, we use the technique of Bramble, Nitsche,
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and Wahlbin [bramble nitsche wahlbin] where interior estimates in maximum norm
were obtained by using only the inverse inequalities and the interior error estimates in
energy norms, we obtain

ID%¢ — Dj¢llc,00 < Ch.

This also implies that the average of the gradients of the finite element solutin at the
midpoint of two adjacent triangles approximates the gradient of the exact solution in
the order of h2.
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