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Abstract

A combined Legendre spectral-finite element approximation is proposed for
solving two-dimensional unsteady Navier-Stokes equation. The artificial compress-
ibility is used. The generalized stability and convergence are proved strictly. Some
numerical results show the advantages of this method.
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1. Introduction

There is much literature concerning numerical solutions of Navier-Stokes equations,
e.g., see [1-4]. For semi-periodic problems, some author used combined Fourier spectral-
finite difference and Fourier spectral-finite element approximations (see[5-8]). In fluid
dynamics, most of practical problems are fully non-periodic. But the sections of domain
might be rectangular in certain directions. For example, the fluid flow in a cylindrical
container. In this paper, we consider combined Legendre spectral-finite element ap-
proximation for the two-dimensional, non-periodic, unsteady Navier-Stokes equation.
The method in this paper can raise the accuracy by Legendre spectral approximation
in some directions and so saves work. On the other hand, such approximation is suit-
able for complex geometry in the remaining directions. Surely it is not necessary to
use this approach for such two-dimensional problem. But it is easy to generalize it to
three-dimensional problems with complex geometry.

2. The Scheme

Let I, = {z/0 <z <1}, I, = {y/ — 1 <y < 1} and Q = I, x I, with
the boundary 9€2. The speed vector and the pressure are denoted by U(x,y,t) and
P(x,y,t) respectively. v > 0 is the kinetic viscosity. Ug(x,y), Py(z,y) and f(z,y,t)
are given functions. Let T > 0,0, = %,81 = %’ and 9, = % The Navier-Stokes
equation is as follows

U+ (U-V)U +VP —vV3U = §, in Q x (0,7],
V.-U=0, in Q x (0,77, (2.1)
U(T,y,O) = Uﬂ(zay)v P(.Z',y,O) = P()(l',y), in
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Suppose that the boundary is a non-slip wall and so U = 0 on 0f). In addition, P
satisfies the following normalizing condition:

/ P(z,y,t)dzdy = 0, vt € [0,T].
Q

Let D be an interval (or a domain) in R!(or R?). We denote by (-,-)p and ||-||p the
usual inner product and norm of L?(D). For simplicity, (-,-)q and || - || are replaced
by (-,-) and || - || respectively. H"(D) and H{(D) denote the usual Hilbert spaces with
the usual inner products and norms. We also define

L4(D) = {ne 12D) / [ nap=0}.

To tackle the incompressible constraint (i.e., the second equation of (2.1)), we adopt
the idea of artificial compression, that is, to approximate the incompressible condition
by the equation

oP
g +V U =0

where 8 > 0 is a small parameter.
In order to approximate the nonlinear term, we introduce a trilinear form J(-,-,-) :

[(H'(22))%]® — R! as follows:

T .6 = 3l((e- 9)m.8) -~ (¢ Ve

Clearly, we have

J(n,9,8) + J(& p.n) =0, (2.2)
and if V- ¢ =0, then

J(n,¢,8) = ((¢- V)n, ).

Now we construct the scheme. For any integer k£ > 0, we denote by Py the set of all
polynomials of degree < k, defined on R'. Suppose N is a positive integer, we define

Vn(ly) ={v(y) € Pn / v(-1) = o(1) = 0}.

Next, we divide I, into M}, subintervals with the nodes 0 = 2o <z < --- < zp, = 1.

Let I, = (z;_1,2;),hy =2, — 21, h = max h;and b’ = min h;. Assume that there
1<I< M), 1<I< M,

exists a positive constant d independent of the divisions of I,, such that h/h' < d. Let
Sh(ly) = {v(@) [ v(x) [1,€ Pr,1 <1< My}, Sp(L) = Sk(L) () Hy(Ly).

The trial function spaces for the speed and the the pressure are defined respectively as
follows

Xp () = {8371 (L) ® Viv (L)} x {8 (1) ® Viv(L)},

Yiin(Q) = {55 (1) ® Py—2(I,)} (| L5 ().
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We denote by Hk+1 the piecewise Lagrange interpolation of order k + 1 from C(I)
onto SFTY(I,)NH' (1), Pun : L3(Q) — thN(Q) be the L?—orthogonal projection.
We also introduce the operator Qn : C(I,) — Pn(I,) such that for any v € C(I,,),

Qnu(£1) = v(£1),
S5 (v = Qnv)gdy =0, Vg€ Py s(ly).

Let 7 be the mesh size in time ¢ and S, = {t = I7 / 0 < < [L]}. For simplicity,
u(x,y,t) is denoted by u(t) or u usually. Let

1Mﬂ:%m@+ﬂ—u@)

A fully discrete Legendre spectral-finite element scheme for (2.1) is to find the pair
(u(t),p(t)) € X,];’N(Q) X th,N(Q) for all ¢t € S; such that

(ug,v) + J(u + d1ug, u,v) + v(V(u + oTug), Vo)

+(V(p +07p1),v) = (f,v), Vo € Xjy v (9),
(Bpt,v) + (V- (u+ O1uy),v) =0, Vv € Yh’fN(Q),
u(0) = I QnUy, p(0) = Py Py,

(2.3)

where d,0 > 0 and 6 > % are parameters.

3. Some Lemmas

For error estimations, we need some notations. Let B be a Banach space with the
norm | - || g. Define

L*(D,B) = {v(z) :D — B/ wv is strongly measurable, |v||52p,p) < oo},
C(D,B) = {v(z):D— B/ wv is strongly continuous, |||v|||p < oo}
where
s = ([ 1) il — max ol
2€D

Moreover for all integer p > 0, define
HY(D, B) = {v(2) € LD, B) / ||v]|gup.;) < o0}
with the norm

p 3
||U||Hu D,B) (Z ”8 k”L? DB)

For real 1 > 0, we define the space H*(D, B) by the complex interpolation between
HWM(D, B) and H*1(D, B).
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We also introduce some non-isotropic Sobolev spaces. Let
H™(Q) = L*(Iy, H' (I,)) (| H (I, L*(I)), r,s>0
equipped with the norm

1
lollzrme ey = (10132, e (rayy + 10 W30s 1, 12000)

Also let
M™(Q) = H'(l,,H (L)) \H*(I,, H'(I;)), r, s>0,
A™(Q) = H* (Iy,HT“(II))ﬂHs“(Iy,HT(Ix)) r,s > 0.
Their norms are defined in the way similar to || - || gr.s ()
Besides, we denote by L>® (1), L>=(Q) and W>°(Q) the usual Sobolev spaces with
the usual norms ||-||loo.7,, || - |loc @and || -]|1,0c respectively. The corresponding semi-norms
are denoted by | - |oo,1,, ] * |00 and | - |1 00, €tc..

For simplicity, we denote throughout this paper by C a positive constant inde-
pendent of h, N,7 and any function, which may be different in different cases. Let
7 = min(r, k + 2) and 7 = min(r, k + 1).

Lemma 3.1. There exists a positive constant cq depending only on the value of d,
such that for all u € (H'(I,) N SFT™(I,)) @ Pn(1,), m=1,2,

4
of? < (cah™ + SN ol

Proof. Let u, and ugl) be the coefficients of Legendre expansions of v € Py and

d
d—u respectively. By (2.3.15) of [9],
Y

ull) = (29 + 1) Z w, ¢=0,1,---,N—1.

l=q+1

I+godd
Thus

1 N

(u))? < SN +1)(20+1)* > wf
=0
and
du 1 = N(N +1)(2N +1)(2N - 1) 4

Hd—yl\?y < 5(N+1) > (2g+1)*ullf, = 6 lul?, < §N4IIUHZ-

q=0

Therefore for any v € (H'(I;) N SF™™ (1)) ® Pn(I,), m = 1,2, we have

4
9,012 < SN ol
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On the other hand, we have from the inverse inequality (3.2.30) of [10] that
2 2 [N 21,0112
0,01 < cah™® [ vl dy < ca™[o]*

Then the conclusion follows.
Lemma 3.2. For any v € Sit™(I,) ® Py(1,), m=1,2,

N
olloo < Xl
Vh

Proof. By the inverse inequality (3.2.30) of [10] and (9.4.3) of [9], we have

|| || =S || || > S || || > (/1 S )% ¢ ” ”
V|loo = SUp ||V||oo,7, up ||v||1, up v dy v|.

yely h yer y yely

Let Py : L*(I,) — Pn(I,) and Lj, : L?(I,) — SF(I,) be the L?— orthogonal
projection operators. We know from (9.4.6) of [9] that for any u € H*(I,) with s > 0,

Ju — Prals, < ON~*[lullss,. (3.1)
Also by Lemma A.5 of [1], we get that for any v € H"(I,) with r > 0,
lv = Lyollr, < Ch |vls. 1, - (32)

Clearly, if v € L3(2), then
Ly Py ov € L3(Q). (3.3)

Lemma 3.3. For any v € H™*(Q) N L}(Q) with r,5 > 0,
lo = Po,yoll < C(A" + N7*)[[0]| 7.0

(3.3) leads to the conclusion.

Proof. The combination of (3.1)-
(1,) N H?*(I,) with s > 1,

Lemma 3.4. For any v € H}
v = Qnv|ly1, £ CN**|vls1,, pn=0,1.
Proof. Firstly, the definition of QQ implies that for any w € Py (I),
1 1
/ (v — Qnv)'w' dy = —/ (v — Qnv)w" dy = 0.
1 1
Thus

1 1
by = [ ewva= [ o=y - v ay

Prn_1(0")|1,-

Che

IN

v —
Furthermore, we have from (3.1) that

lv— Qnvlr1, < |lv' = Py_a0|lr, < CN'""*||v|sr, -
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Next, by means of the duality, we can show the conclusion for the case p = 0.
To analyze the convergence of Scheme (2.3), we introduce the operator Qy : (Hg(1;))? —

SKHY(I,) x SF*2(I,) such that for any n = (nM), n?)) € (H{(1,))?,
Qnn = Q™ QP € SE1(1,) x SE+2(1,)
where Q;lm)n(m) € S,’i+m, m = 1,2, are defined by
QY (™ () = nm (z)),  0<1< My,
QY 0™ (@) — g™ (2)]w(z) dz = 0, VY € Pryma(l), 1 <1< M,

Lemma 3.5. (Lemma 3 of [7]) Let 7, = min(r,k+m+1), m = 1,2. Then for any
n € HY(I,) N H" (I,) with > 1,

I~ Q" llr, < CH™ Hlalyr: 1=10,1,
Lemma 3.6. There ezists a linear operator Qp n : (Hj())? — X}f’N(Q) such that

(i) (V-(n=Qn,nm),w) =0, Yw € V' n(Q), Vn € (Hj())%. (3.4)
(ii) If r,s > 1, then we have for all n € (M"™*(Q))? that

I~ Qunlt < C(" + N Inll arrs(a)s (3.5)

In = Quvnll < C(R"+ N=*)llnllarrs(s), (3.6)

Proof. Define Qn n = QnQn. Hence (3.4) follows from the definitions of @, and
@ n- By using Lemma 3.4 and Lemma 3.5, we can prove (3.5) and (3.6).
Lemma 3.7. Let Nh < C. Then for any v € H'(1,, H'(1,)),

1@n.nvllco < Cllvll a1 (1))
If in addition v € A" (Q) with r > L, then

1Qn,NV1,00 < Cllv|lar1(a)

Proof. We have from Sobolev inequality together with Lemma 3.4 and Lemma 3.5
that

lQnulloo1, < Cllullir,.  Vue HY (L), (3.7)

1Qnulloc,r, < Cllully,r,,  Yu€ HY(I). (3.8)

Then the first conclusion follows from (3.7) and (3.8). We now prove the second one.
Observing that HF’IQN = QNH'fLﬂ, by Lemma 3.2, Theorem 3.1.5, Theorem 3.2.1 and
Theorem 3.2.6 of [10], (9.4.3) of [9] and previous estimates of Qn and @, we obtain
that

10:Qn n0lloo < [10:QnQNY — BT Quolloo + [|Qn (1T} 0
*HT_IBIU)HOO + ||H§+1QNazv||oo

< G 10:(Qn = @) o, p2n)

+%||3 o — T 0,0 g ry r2 ) + Clloll e r, e (1))

< Cllo]l + Cllollg a1,y + Cllola w1

HI(1,,H? (Ix))

< C||U||H1 (Iy,H™ (1))
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and
10y QnNVlloe < 110yQuQnv — 0TI Qu vl
HO,I Qo — T Qndyvlloe + 1T QuOyvll
< %H(Qh — I (8, Q)| + CN(|9,Qnv — QnOyoll 121, 1 (1,)) + Cllollm2er, e (1))
< CNhllvl|
HY(
< Ol

Loty T Clloll g1, 17 (1,))

HY (1, HE (1) H? (1 H7 (1))

Lemma 3.8. (Lemma 4.16 of [2]). Suppose that the following conditions are fulfilled
(i) Z(t) is a non-negative function defined on S,, Di,Dy and p are non-negative

constants;
(i) H(¢) is a real-valued function defined on R', such that H(¢) < 0 for &€ < Day;
(iii) for allt € S; and t > 0,

Zt)y<p+1 Y. (D1Z()+ H(Z());

t'<t—r

(iv) Z(0) < p and pePrt < Dy for some t; € S,.
Then for all ¢ € S and t < 1, we have

Z(t) < pePit,

4. Error Estimation

We first analyze the generalized stability of Scheme (2.3). Assume that the ini-

tial values and the right terms of Scheme (2.3) have the errors @(0),p(0), f(¢) and
g(t) respectively, which induce the errors of wu(¢) and p(t), denoted by @(t) and p(t)
respectively. They satisfy
(g, v) + J(u+ d1Tug, a,v) + J(a + 070, u + 4, v) + v(V(a + oriy), Vo)
+(V(p+ 0mpy), v) = (f,v), Vo € Xf y(9), (4.1)
(/Bﬁtav)+(v'(ﬂ+07-at)7v) = (gav)a VIUGY}EN(Q)

Let € > 0, and m be an undetermined positive constant. By taking v = 2a(t) +
m7a(t) in the first formula of (4.1), we have from (2.2) that
(Ial*)e + 7(m = 1= €)@ + 2vlalt + vr(o + Z)(|al)e + vr?(om — o — F)| @}
3 . -
+ (VB +07p1), 24 + mTi) + ) Fi(t) < [lall* + (1 + =) | £11?
]:
(4.2)
where
Fl(t) = J(u+57ut,ﬂ,2ﬂ+m77jt),
Ey(t) = 7(m —20)J(a,u,u,),
Fi(t) = 7(m—20)J(u,a,uy).
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Similarly, we get by taking v = 2p + m7p,; in the second formula of (4.1) that

BUBI) + Br(m — 1 =) lpel|* + (V - (@ + O711y), 2 + m7py)

5112 L o7m?y|512 (43)
< Blipl* + (5 + F5=)lgll™
By (4.2) and (4.3), we obtain
(Il + Blpl?)e + 7(m — 1= e)(lael® + Blpell?) + 2valf
3
+vr(o + %)(\ﬂ\%)t +vri(om — o — %)\ﬂtﬁ + Zl F;(t)+ H(t) (4.4)
]:

- . 2 ~ -
< flall® + Blpl* + 1+ T2 AF1 + 5llal?)
where

H(t) = (V(@+07mp), 20+ mruy) + (V- (4 + O11),2p + mTp;)

Let |[Jull|1,00 = max u(t)][1,00, etc.. We now estimate | F;(t) | (j =1, 2, 3). It is
€S-
easy to show that,

| F(@) | = CA+)lllu]

100 |20 4+ mTiy |||
C(1462)(1+m?)
EV

IN

ev|afi + evr?|ai + allF oo 1.
By integrating by parts in Fy(t), we have from ||a;|| < C|a|; that

| Bo(t) [ < Crlm —26] [[Jull]1,00 |t 1] a]]
C(m — 26)?
v

< 5u72|ﬂt\% +

ulllf oo l1alf*.

By Lemma 3.2, we get furthermore that
| F5(t) |

IN

Crlm — 20| [[afloo a1 ||l

A

et || +

Cr(m — 28)2N?, _ ., _
=,

By substituting the above estimations into (4.4), we have

([all® + BlBIIP)e + 7(m — 1 = 2e) (|G| + Blpell?) + v(1 — e)lali + vr(o + F)(|alf)e
+vr(om — o — B — 2e)|a |3 + H(t)

< My(|lall* + BlIpl1*) + B(llal))alf + G1(#)
(4.5)

where
C[(m—26)2+(1+62)(1+m2)] 9
1,007

My =1+

e

eV
N Crt(m —20)°N? _
B([lall) = —v+ ]|,

eh
Tm?2
4

Gi(t) = (1+ ) A + 51317,
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Now we choose the constants m and . Take m = 26 and rg > 0 to be sufficiently

1
small. If o > 2 and 0 > 5 ? T then we can take € and rg to be so small that
o _
2 2
20 > max(1+2€+r0,M).
20 — 1
Ifo <
Ny and
4 20 — 1
h24_NHYy< — — 4.6
vrlcah =+ 3N < i 20y (46)

then we take ¢ and rg to be so small that
o, 4
20 —1—2e —rg > v7r(0+ 6 — 200 + 2¢)(cqgh +§N )
By Lemma 3.1, we have in both cases that
~ ~ m., . ~ ~
r(m = 1= 2e)(lla|* + Blpell*) + vr?(mo — o — Z)lauli > ror(llal® + Bllpl ).
Thus we obtain from (4.5) that

(all® + BlBIP)e + ror (adll® + Bllpel*) + 5laff +v7(o + Z)(|af)e

(4.7)
< My(flall* + BlIplI*) + B(llal)|alf + Gi(t)
Let
E(i,p,t) = [a@®)|*+ BN +7 > {ror(la()* + Bl5:()*) + %Iﬂ(t’)l?},
teS, t'<t
p(t) = [la(0)]® + BlIp0)|*> + vr(o + %)Iﬂ(U)I? +7 > Gi(t).

tesS, t'<t

By summing (4.7) for all ¢ € S; and t' < t, we obtain

E(u,p,t) <pt)+7 Y AMiE(a,p,t')+ B(|a))|a)[}-
t'eSy U<t

By Lemma 3.8, we have the following result.
Theorem 4.1. Assume that

h
D) p(T)eMi? < v .
() p(T)e — CTN?%(m — 26)?

In addition, either of the following two conditions is satisfied:

(ii) o >

20— 1’ ,
and vt(cgh 2 + §N4) <

20 — 1
o+0(1 —20)

7
RN
(iii) o < 59 — 1
Then for all t € S,,
E(a,p,t) < p(t)e?.
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Next, we consider the convergence of Scheme (2.3). Let the pair (U, P) be the
solution of (2.1). Let

U*(t) = QunU(t), P*(t) = Py nP(1).
Then we have from (2.1) and (3.4) that

( (U}, v) + J(U* + 67U;,U*,0) + (V(P* + 07F}), v)

FUTW" +01U), Vo) = (foo) + LB, Yo e XEA(@), s
B(Pf,v) + (V- (U*+01U;),v) = Eg(v), Yo EY,f,N(Q),

L U*(0) = Qu.nUy, P*(0) = Py P,

where
Ei(v) = (Ut oU,v), Es(v)=JU*,U*,v)— J(U,U,v),
E3(v) = 07J(Uf,U*,v), E4(v) = (V(P* = P),v),
Bs(v) = (VPEZ ); Eg(v) =
(v) (v)

v(V(U* = U), V),
or(VU;, V), B(
Let the pair (u,p) be the solution of (2.3). Define

E7’U

Eg (% Pt*7 ’U)
U=u—-U*, P=p— P~
By subtracting (4.8) from (2.3), we obtain that
[ (U, v) + J(U* +67U;,U,v) + J(U + 670;, U* + U, v)
. . . . 7
v(V(U 4 o1Uy), Vu) + (V(P + 07F),v) = = > Ej(v), Yo € XF \(9),
=1 ’

B(P;,v) + (V- (U + 670;),v) = —Fs(v), V= th'c’]\](g)7
L U(0) =113 QnUo — Qu nUo, P(0) = 0.

We estimate |Ej(v)|, | =1,2,---,8. First we have

B0 +mrly)| < U] +er| 1% + (1 + Z2)|UF — U |2,
\Ey (20 +mrUy)| < |J(U,U* —U,2U + mTUt)| + [J(U* — U, U*,2U0 + mr0;)|
< C(IU1,00 + |U*lh,00) 120 + mrU i |U* — U]
< ev|U|} + evr?|U[] + i(IIUH + TR )T = U

Next, it is not difficult to show that

5 . . - .
l;))|El(2U+mTUt)| < ev|U + evr?|Uy3 + (1+ T ){52 2Ur3IU* %

+ || P* — P|* +0°7°|| Pf|?},
\E;(20 + mrU,)| < vor|Uf1|20 + mrUy
~ ~ 2.2 2
< ev|U3 + evr?|Up | + L2 (1 + =) |U; |2
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and
|Es(2P + m7Py)| < B PF| 2P + m7P|

< BIPI? + BTl PP + 61+ T2) | Py 2.
The definitions of Qn and @Qp imply that for any v € X,’iN(Q),
(V(U* - = [ 0:(QnQNU — U)0yv dzdy + [, 0y(QrQnU — U)0dyv dzdy

= Jo 8I(Qh(QNU) — QnU)0yvdady + [(Qn(0.U) — 0,U)0,v dxdy
+ fQ 8y[QN(QhU) - QhU]ayv dzdy + fQ[Qh(ayU) - 8yU]8yU dzdy
My,
=— 121 fly{fll [Qn(QNU) — QnU]0ggvdztdy + [o[Qn(0,U) — 0,U]0,v dzdy
- f[z{fly [@n(QrU) = QuU]0yyv dy}dz + [o[Qn(9,U) — 8,U]0,v dzdy
= [o(Qn(0,U) — 0,U)0pvdzdy + [(Qn(0,U) — 0,U)0yv dzdy.
Finally
|E6(20 + mrUy)| < v<||QN(a U) ~ .U +11Qn(0,U) — 3,U)[2U + m7Uys
< ev[U[} +evr?| U} + (1 + 5)[|Qn (0.U1) — 0:U || + 1 Qn(9,U2) — 0,Ua ]
So far, we can obtain a conclusion similar to Theorem 4.1, but with
p(t) = 1UO)|* + (o + )\U( Wi+7 > Galt),
teS, t'<t
where
Ga(t) = (1+ =) ([Uf — aU|1? + 127 |1?)
+ S0+ T){(HUIIl,oo + U )NV = UlP? + 72| UF [} U*]15

Ev

[P PI2 + 6272 | P |2 4+ 12022 |UF 2
+ (| Qu(0:U) — .U +11Qu(9,U) — 9,U1)2}.

i1) =0 (). (19)

It means that if

then we have for all t € S, o
E(U, P,t) = O(p(t)).

Thus, in order to obtain the convergence, we only need to estimate the order of p(t)
and verify (4.9).

By Lemma 3.4-3.6 and Theorem 3.2.1 of [10], we have

1UO)] = 1Qn(TE = Qn)U(0)]]

< [T 0) = U(0) + (U©0) = QuUO) i 1,.2(1)) < CHTINIU O a1, 171,

T(0)1 < [18,Qn (3*" = QuUO)| + |Qn:(T3+ — Qr)U(0)]

< Chf?luUHHl(Iy,HT(Iz))a

[U* =U[| < C(h" + N7)|[U |l mrs ()



506 S.N. HE AND C.P. YANG

and
|QN (0:U1) = O] + 11Qu(8,Us) = 8,Usl] < O + N™*)||U [ age. e
Besides, we have from Lemma 3.3 that
|P* = P|| < C(h" + N )| Pl gr.a(0-
By using Lemma 3.7, we obtain
0% 0 < CIUNanr(@y, > 5

On the other hand, we have from Lemma 3.6 that

1 t+7 1 t+7 1
Ui = I aveyarh <o ([ o) ar)?
T Jt t

IN

_i (M Pl "2 de')z
T Z(t 10U @) 5 (1,1 (1,)) dF) 2

1 t+T 1
177 < 2] < 775(/ |0 P(t)]]* dt')=
t
Since o 2207
o) - v =1 [Twrr-95 0P ae
Then
U (t) —aU@)| < [[U) - U @) +[|U(t) — aU@)|
<

1z g [T 1
Crd 0+ N[ 10U ) ey 13

1o U 82U/2 ni
rori [ gz )P at)?

Thus we have from the above estimates that
ﬁ(t) S MQ(T2 +5+7_h21772+h2f +N72S)

where M, is a positive constant depending only on v and the norms of U and P in the
spaces mentioned in the above. Finally by an argument similar to the proof of Theorem
1, we have the following result.

Theorem 4.2. Assume that
(i) Nh < C, and TN?*h ' < C;
(ii) condition (ii) or (iii) of Theorem 4.1 holds;

1
(iii) For r,s > 1 and a > oL

Ue C(0,T;(Hg(2)? N(M™*(2))? N(A%H(€2))2 N(WH>(2))?),

%—g € L2(0,T; (M™*(2))?),

82U 2 2 2

a2 €L (0,7 (L7(€2))),
oP

Pe CO,T:H™(Q), € L%(0,T; L*(Q)).
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Then there exists a positive constant M3 depending only on v and the norms of U and
P in the spaces mentioned in the above, such that for all ¢t < T,

U () —u®)|]> < M3(8+ 7% + 7h¥ 2 + b + N=29),

5. The Numerical Results

In this section, we examine the numerical performances. We choose the function f
in such a way that the solution of (2.1) is of the form

U = AePle(z —1)(2z — 1)(y% - 1)%,
U, = —2AeBt.T2(.T — 1)2(y3 — ),
P = 4A4e*PN(22% - 32% +0.5)(y® - 3y).

We use the Legendre spectral-finite element scheme(LSFM) (2.3) with & = § =
0 and § = 0 = 1. Besides, we take v = 0.001 and 7 = 0.005. I, is subdivided
uniformly. For comparison, we also solve (2.1) by finite element scheme(FEM), in which
2 is divided into M N congruent small rectangles, each with the length h, = 1/M and
the width h, = 2/N. The finite element scheme is constructed similarly to (2.3) by
artificial compression and the trial spaces for v and p are piecewise biquadratic and
piecewise constant separately.

For describing the errors of numerical solutions, let

>

z:{xj/xj:jhw OSJSM}7
I,=1y; | yj=—-1+jh,, 0<j< N}

and

(SIS

2
; Z Z ‘uz(xuyut)_Ul(xuyut) ‘2

i=1gc], yefy

BU(1) = .
lzlzelzyely
Y% I pla.y,t) - Pla,y.t) [2\ 2
o zel, yely
P = > % Py P
z€l yely

According to Theorem 4.2, we would choose the parameter 3 = O(7?) so that the
convergence order is not be lowered. But if 8 is too small, then the stability may be
affected. Indeed, we can see the fact from Theorem 4.1.

The numerical results are shown in Table I and Table II. We find that scheme LSFM
gives better results than scheme FEM.
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Table. A=0.2, B=0.1, §=0.001

Scheme LSFM, M =10, N =4 | Scheme FEM, M = N = 10
t | BE(U(®) E(P(t)) E(U(t)) E(P(1))
0.5 | 0.1268E-2 0.1508E-2 0.2726E-2 0.8294E-2
1.0 | 0.2427E-2 0.1584E-2 0.5291E-2 0.8717E-2
1.5 | 0.3445E-2 0.1668E-2 0.7721E-2 0.9165E-2
2.0 | 0.4360E-2 0.1751E-2 0.1003E-1 0.1012E-1
2.5 | 0.5183E-2 0.1841E-2 0.1224E-1 0.1063E-1
Table I. A =0.2, B=0.1, A =0.0001
Scheme LSFM, M =10, N =4 | Scheme FEM, M = N = 10
t | BE(U(®) E(P(t)) E(U(t)) E(P(1))
0.5 | 0.1279E-2 0.1585E-2 0.2975E-2 0.8719E-2
1.0 | 0.2490E-2 0.1750E-2 0.5392E-2 0.9133E-2
1.5 | 0.3631E-2 0.1935E-2 0.7822E-2 0.9690E-2
2.0 | 0.4702E-2 0.2139E-2 0.1034E-1 0.1053E-1
2.5 | 0.5713E-2 0.2363E-2 0.1281E-1 0.1110E-1
References

[1] V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and
Algorithms, Springer- Verlag, Berlin, 1986.

[2] Ben-yu Guo, Difference Methods for Partial Differential Equations, Science Press, Beijing,
1988.

[3] Y. Maday, A. Quarteroni, Spectral and pseudospectral approximations of the Navier-Stokes
equations, SIAM, J. Numer. Anal., 19 (1982), 761-780.

[4] Ben-yu Guo, Spectral method for solving Navier-Stokes equation, Scientia Sinica, Series
A, 28 (1985), 1139-1153.

[5] C. Canuto, Y. Maday, A. Quarteroni, Combined finite element and spectral approximation
of the Navier-Stokes equations, Numer. Math., 44 (1984), 201-217.

[6] Wei Huang and Ben-yu Guo, The spectral-difference for Navier- Stokes equations, North-
eastern Math. J., 8 (1992), 157-176.

[7] Ben-yu Guo and Wei-ming Cao, A combined spectral-finite element method for solving
two-dimensional unsteady Navier-Stokes equations, J. Comp. Phys., 101 (1992), 375-385.

[8] Ben-yu Guo and He-ping Ma, Combined finite element and pseudospectral method for the
two-dimensional evolutionary Navier-Stokes equations, SIAM J. Numer. Anal., 30 (1993)
1066-1083.

[9] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Method in Fluid Dynamics,
Springer-Verlag, Berlin, 1988.

[10] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,

1978.

3



