THE NUMERICAL STABILITY OF THE θ -METHOD FOR DELAY DIFFERENTIAL EQUATIONS WITH MANY VARIABLE DELAYS*

Lin Qiu Taketomo Mitsui

(Graduate School of Human Informatics, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8601, Japan)

Jiao-xun Kuang

(Department of Mathematics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China)

Abstract

This paper deals with the asymptotic stability of theoretical solutions and numerical methods for the delay differential equations (DDEs)

$$\begin{cases} y'(t) = ay(t) + \sum_{j=1}^{m} b_j y(\lambda_j t) & t \ge 0, \\ y(0) = y_0, \end{cases}$$

where a, b_1, b_2, \ldots, b_m and $y_0 \in C$, $0 < \lambda_m \le \lambda_{m-1} \le \ldots \le \lambda_1 < 1$. A sufficient condition such that the differential equations are asymptotically stable is derived. And it is shown that the linear θ -method is ΛGP_m -stable if and only if $\frac{1}{2} \le \theta \le 1$.

Key words: Delay differential equation, Variable delays, Numerical stability, θ -methods.

1. Introduction

In this paper, we will investigate the numerical solutions of the following initial value problems for DDEs with many variable delays

$$\begin{cases} y'(t) = ay(t) + \sum_{j=1}^{m} b_j y(\lambda_j t) & t \ge 0, \\ y(0) = y_0, \end{cases}$$
 (1.1)

where a, b_1, b_2, \ldots, b_m and $y_0 \in C$, $0 < \lambda_m \le \lambda_{m-1} \le \ldots \le \lambda_1 < 1$. It is difficult to investigate numerically the long time dynamical behaviour of the exact solution due to limited computer memory. To avoid this problem we transform (1.1) into the differential

^{*} Received August 19, 1996.

equations with constant time lags in the following way. (see [3]) Let $x(t) = y(e^t)$ for $t \ge \log \lambda_m$. Then x(t) satisfies the following initial value problems

$$\begin{cases} x'(t) = ae^{t}x(t) + \sum_{j=1}^{m} b_{j}e^{t}x(t + \log \lambda_{j}) & t \ge 0, \\ x(t) = y(e^{t}) := \Phi(t) & t \in [\log \lambda_{m}, 0], \end{cases}$$
 (1.2)

where y(t), $0 \le t \le e^0 = 1$, can be obtained numerically by using θ -method to (1.1). Then, let us consider the following linear test equations which were introduced in [4],

$$\begin{cases} y'(t) = a(t)y(t) + b(t)y(t-\tau) & \tau > 0, t \ge 0, \\ y(t) = \Phi(t) - \tau \le t \le 0, \end{cases}$$
 (1.3)

where $y: [-\tau, +\infty) \to C$, $a, b: [0, +\infty) \to C$

If a(t) and b(t) are continuous and satisfy

$$Re(a(t)) \le -\beta < 0,$$
 (1.4a)

$$|b(t)| \le -q \cdot Re(a(t)), 0 \le q < 1 \tag{1.4b}$$

and $\Phi(t)$ is continuous, then the solution y(t) of (1.3) is asymptotically stable, namely, $y(t) \to 0$, as $t \to \infty$.

In [4], the authors introduced two definitions of stability based on the test equations (1.3) as follows.

Definition 1. A numerical method for DDEs is called TP-stable if, under the condition (1.4), the numerical solution y_n of (1.3) satisfies

$$\lim_{n \to \infty} y_n = 0 \tag{1.5}$$

for every stepsize h such that $h = \tau/l$ where $l \ge 1$ is a positive integer.

Definition 2. A numerical method for DDEs is called TGP-stable if, under the condition (1.4), the numerical solution y_n of (1.3) satisfies (1.5) for every stepsize h > 0.

It is the purpose of this paper to investigate the asymptotic stability behaviour of the theoretical solution and the numerical solution of (1.1). In Section 2, we derive a sufficient condition for (1.1) such that the solution of (1.1) is asymptotically stable. In Section 3, it is proven that the linear θ -method is ΛGP_m -stable if and only if $\frac{1}{2} \leq \theta \leq 1$.

2. Asymptotic Stability Of The Theoretic Solution Of DDEs

Now we consider the following equations:

$$\begin{cases} x'(t) = a(t)x(t) + b_2(t)x(t - \tau_2) + b_1(t)x(t - \tau_1) & t \ge 0, \tau_2 \ge \tau_1 > 0, \\ x(t) = \Phi(t) & t \le 0, \end{cases}$$
(2.1)

where $x: R \to C$, $a, b_1, b_2: [0, +\infty) \to C$, and $\Phi: (-\infty, 0] \to C$.

Theorem 2.1. Assume that the continuous functions $a, b_1 \text{ and } b_2 : [0, +\infty) \rightarrow R, \text{ and satisfy}$

$$b_1(t), b_2(t) \ge 0, \Phi(t) \ge 0,$$
 (2.2a)

$$a(t) \le -\beta < 0, \tag{2.2b}$$

$$b_1(t) + b_2(t) \le -q \cdot a(t) \quad 0 \le q < 1,$$
 (2.2c)

then all exact solutions to (2.1) satisfy $\lim_{t\to\infty} x(t) = 0$.

Proof. At first, let $\tau = \tau_1$ and if $\tau_2/\tau_1 = 2$, then when $t \in [0, \tau], (2.1)$ reads

$$\begin{cases} x'(t) = a(t)x(t) + b_2(t)\Phi(t - 2\tau) + b_1(t)\Phi(t - \tau) & t \in [0, \tau], \\ x(0) = \Phi(0). \end{cases}$$
 (2.3)

The solution of (2.3) is

$$x(t) = e^{A_0(t)} \cdot \Phi(0) + e^{A_0(t)} \int_0^t e^{-A_0(s)} \cdot [b_2(s)\Phi(s - 2\tau) + b_1(s)\Phi(s - \tau)] ds, \qquad (2.4)$$

where $A_i(t) = \int_{i\tau}^t a(s)ds$, $t \in [i\tau, (i+1)\tau], i = 1, 2, ...$ Since (2.2 a)~ (2.2 c) we have

$$x(t) \le [e^{-\beta t} + q(1 - e^{-\beta t})] \cdot M$$

= $G_0(t) \cdot M$, (2.5)

where $M = \max_{-2\tau \le t \le 0} \Phi(t)$, $G_0(t) = e^{-\beta t} + q(1 - e^{-\beta t})$.

When $t \in [\tau, 2\tau]$, then (2.1) reads

$$\begin{cases} x'(t) = a(t)x(t) + b_2(t)\Phi(t - 2\tau) + b_1(t)x(t - \tau) & t \in [\tau, 2\tau], \\ x(\tau) = x(\tau). \end{cases}$$
 (2.6)

Then the solution of (2.6) is

$$\begin{split} x(t) &= e^{A_1(t)} \cdot x(\tau) + e^{A_1(t)} \int_{\tau}^{t} e^{-A_1(s)} [b_2(s) \Phi(s - 2\tau) + b_1(s) x(s - \tau)] ds \\ &\leq \{e^{A_1(t)} \cdot G_0(\tau) + e^{A_1(t)} \int_{\tau}^{t} e^{-A_1(s)} [b_2(s) + b_1(s) G_0(s - \tau)] ds\} \cdot M \\ &= \{e^{A_1(t)} \cdot G_0(\tau) + e^{A_1(t)} \int_{\tau}^{t} e^{-A_1(s)} b_2(s) ds \\ &\quad + e^{A_1(t)} G_0(\xi_0) \int_{\tau}^{t} e^{-A_1(s)} b_1(s) ds\} \cdot M \quad (\xi_0 \in [0, \tau]) \\ &\leq \{e^{A_1(t)} \cdot G_0(\tau) + e^{A_1(t)} \int_{\tau}^{t} e^{-A_1(s)} b_2(s) ds \\ &\quad + e^{A_1(t)} G_0(0) \int_{\tau}^{t} e^{-A_1(s)} b_1(s) ds\} \cdot M \\ &= \{e^{A_1(t)} \cdot G_0(\tau) + e^{A_1(t)} \int_{\tau}^{t} e^{-A_1(s)} [b_1(s) + b_2(s)] ds\} \cdot M \\ &\leq \{e^{A_1(t)} \cdot G_0(\tau) + q e^{A_1(t)} \int_{\tau}^{t} e^{-A_1(s)} [-a(s)] ds\} \cdot M \\ &\leq \{e^{A_1(t)} \cdot G_0(\tau) + q (1 - e^{A_1(t)})\} \cdot M \\ &\leq \{e^{-\beta(t-\tau)} \cdot G_0(\tau) + q (1 - e^{-\beta(t-\tau)})\} \cdot M \\ &= G_1(t-\tau) \cdot M, \end{split}$$

where $G_1(t) = e^{-\beta t} \cdot G_0(\tau) + q(1 - e^{-\beta t}).$ When $t \in [2\tau, 3\tau]$, then (2.1) reads

$$\begin{cases} x'(t) = a(t)x(t) + b_2(t)x(t - 2\tau) + b_1(t)x(t - \tau), t \in [2\tau, 3\tau] \\ x(2\tau) = x(2\tau). \end{cases}$$
 (2.8)

Then we can get

$$x(t) = e^{A_{2}(t)} \cdot x(2\tau) + e^{A_{2}(t)} \int_{2\tau}^{t} e^{-A_{2}(s)} [b_{2}(s)x(s - 2\tau) + b_{1}(s)x(s - \tau)] ds$$

$$\leq \{e^{A_{2}(t)} \cdot G_{1}(\tau) + e^{A_{2}(t)} G_{0}(\xi_{1}) \int_{2\tau}^{t} e^{-A_{2}(s)} b_{2}(s) ds$$

$$+ e^{A_{2}(t)} G_{1}(\xi_{2}) \int_{2\tau}^{t} e^{-A_{2}(s)} b_{1}(s) ds \} \cdot M \quad (\xi_{1}, \xi_{2} \in [0, \tau])$$

$$\leq \{e^{A_{2}(t)} \cdot G_{0}(\tau) + e^{A_{2}(t)} G_{0}(\xi_{1}) \int_{2\tau}^{t} e^{-A_{2}(s)} b_{2}(s) ds$$

$$+ e^{A_{2}(t)} G_{0}(\xi_{2}) \int_{2\tau}^{t} e^{-A_{2}(s)} b_{1}(s) ds \} \cdot M$$

$$\leq \{e^{A_{2}(t)} \cdot G_{0}(\tau) + e^{A_{2}(t)} \int_{2\tau}^{t} e^{-A_{2}(s)} [b_{1}(s) + b_{2}(s)] ds \} \cdot M$$

$$\leq \{e^{A_{2}(t)} \cdot G_{0}(\tau) + e^{A_{2}(t)} \int_{2\tau}^{t} e^{-A_{2}(s)} [b_{1}(s) + b_{2}(s)] ds \} \cdot M$$

$$\leq \{e^{-\beta(t-2\tau)} \cdot G_{0}(\tau) + q(1 - e^{-\beta(t-2\tau)}) \} \cdot M$$

$$= G_{1}(t - 2\tau) \cdot M.$$

When $t \in [3\tau, 4\tau]$, then we have

en
$$t \in [5\tau, 4\tau]$$
, then we have
$$x(t) \leq e^{A_3(t)} \cdot x(3\tau) + e^{A_3(t)} \int_{3\tau}^t e^{-A_3(s)} [b_2(s)x(s-2\tau) + b_1(s)x(s-\tau)] ds$$

$$\leq \{e^{A_3(t)} \cdot G_1(\tau) + e^{A_3(t)} G_1(0) \int_{3\tau}^t e^{-A_3(s)} [b_1(s) + b_2(s)] ds\} \cdot M$$

$$\leq G_1(0) \{e^{A_3(t)} + q(1 - e^{A_3(t)})\} \cdot M$$

$$\leq G_0(\tau) \{e^{-\beta(t-3\tau)} + q[1 - e^{-\beta(t-3\tau)}]\} \cdot M$$

$$= G_0(\tau) G_0(t-3\tau) \cdot M.$$

$$(2.10)$$

When $t \in [4\tau, 5\tau]$, we have

$$x(t) \le G_0(\tau)G_0(t - 4\tau) \cdot M.$$
 (2.11)

When $t \in [5\tau, 6\tau]$, we get

$$x(t) \le G_0(\tau)G_1(t - 5\tau) \cdot M.$$
 (2.12)

By induction for $k = 0, 1, 2, \ldots$, we obtain

$$\begin{cases} x(t) & \leq [G_0(\tau)]^k G_0(t - 3k\tau) \cdot M & \text{for } t \in [3k\tau, (3k+1)\tau] \\ x(t) & \leq [G_0(\tau)]^k G_1(t - (3k+1)\tau) \cdot M & \text{for } t \in [(3k+1)\tau, (3k+2)\tau] \\ x(t) & \leq [G_0(\tau)]^k G_1(t - (3k+2)\tau) \cdot M & \text{for } t \in [(3k+2)\tau, (3k+3)\tau], \end{cases}$$
 (2.13)

where $M = \max_{-2\tau < t < 0} \Phi(t)$, $G_0(t) = e^{-\beta t} + q(1 - e^{-\beta t})$, $G_1(t) = e^{-\beta t} \cdot G_0(\tau) + q(1 - e^{-\beta t})$

If $\tau_2/\tau_1=s\in Z$, where Z is the integeral set, then for $k=0,1,2,\cdot\cdot\cdot$, we can obtain

$$s \in \mathbb{Z}, \text{where } \mathbb{Z} \text{ is the integeral set, then for } k = 0, 1, 2, \cdots, \text{we can obtain}$$

$$\begin{cases} x(t) & \leq [G_0(\tau)]^k G_0(t - (s+1)k\tau) \cdot M \\ & \text{for } t \in [(s+1)k\tau, ((s+1)k+1)\tau] \end{cases}$$

$$x(t) & \leq [G_0(\tau)]^k G_1(t - ((s+1)k+i)\tau) \cdot M \\ & \text{for } t \in [((s+1)k+i)\tau, ((s+1)k+i+1)\tau] \end{cases}$$

$$(i = 1, 2, \dots, s),$$

$$(2.14)$$

where $M = \max_{-s\tau < t < 0} \Phi(t)$.

If τ_2/τ_1 is not an integer, then there exists $s, s \in \mathbb{Z}$, such that $s < \tau_2/\tau_1 < s+1$. We let

$$P_0 = 0,$$

$$P_i = (k+1)\tau_2 - [(k+1)(s+1) - i]\tau_1$$

$$i = k(s+1) + 1, k(s+1) + 2, \dots, (k+1)(s+1)$$

$$(k = 0, 1, 2, \dots).$$

We can get

$$\begin{cases} x(t) & \leq [G_0(\tau_2 - s\tau_1)]^k G_0(t - P_{(s+2)k}) \cdot M \\ & \text{for } t \in [P_{(s+2)k}, P_{(s+2)k+1}] \\ x(t) & \leq [G_0(\tau_2 - s\tau_1)]^k G_{\tau_2 - s\tau_1}(t - P_{(s+2)k+i}) \cdot M \\ & \text{for } t \in [P_{(s+2)k+i}, P_{(s+2)k+i+1}] \\ & (i = 1, 2, \dots, s+1), \end{cases}$$

$$(2.15)$$

where $G_{\tau_2 - s\tau_1}(t) = e^{-\beta t} \cdot G_0(\tau_2 - s\tau_1) + q(1 - e^{-\beta t}), M = \max_{-\tau_2 \le t \le 0} \Phi(t).$

Since $G_0(\tau)$, $G_0(\tau_2 - s\tau_1) < 1$, from (2.13), (2.14), (2.15) we can obtain $\lim_{t\to\infty} x(t) = 1$

0. This completes the proof of this theorem.

Analogous to the proof of the previous theorem, we have the following Theorems.

Theorem 2.2. Assume that Re(a(t)), $|b_1(t)|$, $|b_2(t)|$ are continuous and

$$Re(a(t)) \le -\beta < 0,$$
 (2.16a)

$$|b_1(t)| + |b_2(t)| \le -qRe(a(t)) \quad 0 \le q < 1,$$
 (2.16b)

then the solution to (2.1) is asymptotically stable.

Proof. From (2.4), we can get

$$|x(t)| \le |e^{A_0(t)}|M + |e^{A_0(t)}|M \int_0^t |e^{-A_0(s)}|[|b_1(s)| + |b_2(s)|]ds,$$

since $|e^{-A_0(s)}| = e^{-\int_0^s Re(a(u))du}$, and $|b_1(s)| + |b_2(s)| \le -qRe(a(s))$, then we obtain

$$|x(t)| \le [e^{-\beta t} + q(1 - e^{-\beta t})] \cdot M$$

= $G_0(t) \cdot M$,

where $M = \max_{-\tau_2 \le t \le 0} |\Phi(t)|$, $G_0(t) = e^{-\beta t} + q(1 - e^{-\beta t})$. The remaining parts can be proved analogously.

Theorem 2.3. Assume that $Re(a(t)), |b_1(t)|, |b_2(t)|, \ldots, |b_m(t)|$ are continuous and

$$Re(a(t)) < -\beta < 0, \tag{2.17a}$$

$$\sum_{j=1}^{m} |b_j(t)| \le -qRe(a(t)) \quad 0 \le q < 1, \tag{2.17b}$$

then the solution to

$$\begin{cases} x'(t) = a(t)x(t) + \sum_{j=1}^{m} b_j(t)x(t - \tau_j) & t \ge 0, \\ x(t) = \Phi(t) & t \le 0, \end{cases}$$
 (2.18)

for any $\tau_m \geq \tau_{m-1} \geq \cdots \geq \tau_1 > 0$ is asymptotically stable.

Corollary 2.4. Assume that $a, b_1, b_2, \ldots, b_m \in C$, and

$$Re(a) < 0, (2.19a)$$

$$\sum_{j=1}^{m} |b_j| < -Re(a), \tag{2.19b}$$

then the solution to (1.2) is asymptotically stable, i.e., the solution to (1.1) is asymptotically stable for any $0 < \lambda_m \leq \lambda_{m-1} \leq \ldots \leq \lambda_1 < 1$.

Proof. Since (2.19a) and (2.19b) hold, we get

$$Re(ae^t) \le -\beta < 0, \quad t \ge 0,$$

 $\sum_{i=1}^{m} |b_j e^t| \le -qRe(ae^t) \quad t \ge 0, 0 \le q < 1,$

(For instance, we can take $\beta = -Re(a)$,and $q = \sum_{j=1}^{m} |b_j|/(-Re(a))$.)

Then we use Theorem 2.3 to prove this corollary.

3. Numerical Stability Of The Linear θ -method

For the initial problem

$$x'(t) = f(t, x(t), x(\alpha_1[t]), \dots, x(\alpha_m[t])) \quad t \ge 0,$$
 (3.1a)

$$x(t) = \Phi(t) \quad t \le 0, \tag{3.1b}$$

we consider the following method called the linear θ -method

$$x_{n+1} = x_n + h\theta f((n+1)h, x_{n+1}, x^h(\alpha_1[(n+1)h]), \dots, x^h(\alpha_m[(n+1)h])) + h(1-\theta)f(nh, x_n, x^h(\alpha_1[nh]), \dots, x^h(\alpha_m[nh])),$$
(3.2)

for n = 0, 1, 2, ..., here θ is a parameter with $0 \le \theta \le 1, h > 0$ is the stepsize. $x_0 = \Phi(0), x^h(t) = \Phi(t)$, for $t \le 0$, and $x^h(t)$ with $t \ge 0$ is defined by piecewise linear interpolation, i.e.

$$x^{h}(t) = \frac{t - nh}{h} x_{n+1} + \frac{(n+1)h - t}{h} x_{n}, \text{ for } nh \le t \le (n+1)h, n = 0, 1, \dots$$
 (3.3)

Applying (3.2) and (3.3) to (1.2), we arrive at the following recurrence relation

$$x_{n+1} = R_n \cdot x_n + \sum_{i=1}^m S_n^{(i)} \{ (1 - \theta)[(1 - \delta_i)x_{n-l_i} + \delta_i x_{n+1-l_i}] + \theta e^h [(1 - \delta_i)x_{n+1-l_i} + \delta_i x_{n+2-l_i}] \},$$
(3.4)

where $R_n = (1 + (1 - \theta)ahe^{t_n})/(1 - \theta ahe^{t_{n+1}})$, $S_n^{(i)} = (b_i he^{t_n})/(1 - \theta ahe^{t_{n+1}})$, $-\log \lambda_i = (l_i - \delta_i)h$, $\delta_i \in [0, 1), l_i \in \mathbb{Z}$, (i = 1, 2, ..., m). At once we can find one important observation is that

$$R := \lim_{n \to \infty} R_n = -\frac{1 - \theta}{\theta e^h}, S^{(i)} := \lim_{n \to \infty} S_n^{(i)} = -\frac{b_i}{\theta e^h a} \quad (i = 1, 2, \dots, m).$$
 (3.5)

Definition 3. Let

 $a, b_i \in C(i = 1, 2, \dots, m), and \delta_i \in [0, 1)$ $(i = 1, 2, \dots, m), which are defined in (*).$

Then a numerical method for DDEs is called $\Lambda(\delta_1, \delta_2, \dots, \delta_m)$ -stable at $(a, b_1, b_2, \dots, b_m)$, if any application of the method to (1.1) or (1.2) yields approximation $x_n \to 0$ as $n \to \infty$, whenever λ_i , $(i = 1, 2, \dots, m)$ and stepsize h satisfy $0 < \lambda_i < 1, h > 0$, and

$$\delta_i = l_i + h^{-1} \log \lambda_i, (i = 1, 2, \dots, m).$$
 (*)

The set consisting of all $(a, b_1, b_2, \ldots, b_m)$ at which the method is $\Lambda (\delta_1, \delta_2, \ldots, \delta_m)$ stable is called $\Lambda (\delta_1, \delta_2, \ldots, \delta_m)$ -stability region. For the linear θ -method we denote
it by $S_{\theta, \delta_1, \delta_2, \ldots, \delta_m}$. The stability region S_{θ} of the θ -method is defined by

$$S_{ heta} = \bigcap_{0 \leq \delta_1, \delta_2, ..., \delta_m < 1} S_{ heta, \delta_1, \delta_2, ..., \delta_m}.$$

Define

$$H = \{(a, b_1, b_2, \dots, b_m) : (a, b_1, b_2, \dots, b_m) \text{ satisfies } (2.19)\}.$$

Definition 4. The linear θ -method for DDEs (1.1) is called ΛP_m -stable if and only if $H \subset S_{\theta,0,0,\dots,0}$.

Definition 5. The linear θ -method for DDEs (1.1) is called ΛGP_m -stable if and only if $H \subset S_{\theta}$.

A polynomial is said to be Schur type if all of its roots are less than 1 in modulus. Now we will prove the following lemma.

Lemma 3.1. Under the condition (2.19), if $1 \ge \theta \ge \frac{1}{2}$, the characteristic polynomial of

$$\tilde{x}_{n+1} = R \cdot \tilde{x}_n + \sum_{i=1}^m S^{(i)} \left\{ (1 - \theta) [(1 - \delta_i) \tilde{x}_{n-l_i} + \delta_i \tilde{x}_{n+1-l_i}] + \theta e^h [(1 - \delta_i) \tilde{x}_{n+1-l_i} + \delta_i \tilde{x}_{n+2-l_i}] \right\}$$
(3.6)

is a Schur polynomial.

Proof. The characteristic polynomial of difference equation (3.6) is

$$P(z, \delta_1, \delta_2, \dots, \delta_m) = Q_{m+1}(z) \cdot z^{l_m} - \sum_{j=1}^m Q_j(z, \delta_j) z^{l_m - l_j}$$
(3.7)

where

$$Q_{m+1}(z) = z - R,$$

$$Q_{j}(z, \delta_{j}) = S^{(j)} \cdot [\theta \epsilon^{h} z + (1 - \theta)] [\delta_{j} z + (1 - \delta_{j})] \quad j = 1, 2, \dots, m.$$

The following proof is always under the condition $1 \ge \theta \ge \frac{1}{2}$.

(i) we can easily get that |R| < 1,

(ii) we will show that
$$\sum_{j=1}^{m} |Q_j(z, \delta_j)| < |Q_{m+1}(z)|, \forall z \in c.$$

Here c denotes the unit circle in the complex plane. Let $z=e^{i\phi}$. Since

$$|\delta_j e^{i\phi} + (1 - \delta_j)| \le |\delta_j e^{i\phi}| + |1 - \delta_j| \quad (\delta_j \in [0, 1), j = 1, 2, \dots, m)$$

 $\le \delta_j + 1 - \delta_j$
 $= 1,$

we can get

$$\begin{split} \sum_{j=1}^{m} |Q_{j}(z, \delta_{j})| &\leq \sum_{j=1}^{m} |-\frac{b_{j}}{a} (e^{i\phi} + \frac{1-\theta}{\theta e^{h}})| |\delta_{j} e^{i\phi} + (1-\delta_{j})| \\ &\leq \sum_{j=1}^{m} \frac{|b_{j}|}{|-a|} |e^{i\phi} - (-\frac{1-\theta}{\theta e^{h}})| \\ &< |z-R| \\ &= |Q_{m+1}(z)|. \end{split}$$

From (i),(ii),we can get that the $p(z, \delta_1, \dots, \delta_m)$ is a Schur polynomial (see [2] or [5]). **Theorem 3.1.** Suppose that $1 \geq \theta \geq \frac{1}{2}$, then the linear θ -method is ΛGP_m -stable. Proof. Let

$$\mathcal{L}[x_n] = x_{n+1} - R \cdot x_n - \sum_{i=1}^m S^{(i)} \left\{ (1 - \theta)[(1 - \delta_i)x_{n-l_i} + \delta_i x_{n+1-l_i}] - \theta e^h[(1 - \delta_i)x_{n+1-l_i} + \delta_i x_{n+2-l_i}] \right\}.$$

Then the equation (3.4) can be written as

$$\mathcal{L}[x_n] = F_n \quad n \ge 0, \tag{3.8}$$

where

$$F_{n} = (R_{n} - R)x_{n} + \sum_{j=1}^{m} (S_{n}^{(j)} - S^{(j)}) \left\{ (1 - \theta)[(1 - \delta_{j})x_{n-l_{j}} + \delta_{j}x_{n+1-l_{j}}] + \theta e^{h}[(1 - \delta_{j})x_{n+1-l_{j}} + \delta_{j}x_{n+2-l_{j}}] \right\} \quad n \geq 0.$$

$$(3.9)$$

Let

$$X_n = x_n + \sum_{j=1}^m \frac{b_j}{a} [(1 - \delta_j) x_{n-l_j} + \delta_j x_{n+1-l_j}].$$
(3.10)

It follows from (3.8) that

$$X_{n+1} = RX_n + F_n, \qquad n > 0,$$

from which we deduce by iteration that

$$X_{n+1} = \sum_{k=0}^{n} R^k F_{n-k} + R^{n+1} X_0, \qquad n \ge 0.$$
(3.11)

Let M be a positive constant such that

$$|F_k| \le Me^{-kh} \cdot \max_{-l_m \le j \le k} |x_j|, \qquad k \ge 0.$$

If $-Re(a) > \sum_{j=1}^{m} |b_j|$, then we obtain from (3.11) that

$$|x_{n+1}| \le (1 + M(n+1)e^{-nh}) \max_{-l_m \le k \le n} |x_k| + |R|^{n+1} |X_0|, n \ge 0$$

which implies that

$$|x_{n+1}| \le \{ \prod_{k=0}^{n} (1 + M(k+1)e^{-kh} + |R|^{k+1}) \} \max \{ \max_{-l_m \le i \le 0} |x_i|, |X_0| \}, n \ge 0.$$

Since the product in the previous inequality converges as $n \to \infty$, the solution sequence of (1.2) is bounded. If $-Re(a) > \sum_{j=1}^{m} |b_j|$, then x_n tends to zero as $n \to \infty$. This is because that $\{x_n\}_{n=0}^{\infty}$ satisfies equation (3.8) whose right hand side term F_n tends to zero with the exponential form as $n \to \infty$, and that the corresponding characteristic

Corollary 3.2. The linear θ -method is ΛGP_m -stable if and only if $1 \geq \theta \geq \frac{1}{2}$. Proof. The "if" part is obtained from Theorem 3.1. The "only if" part can be reached by checking the case where $b_j = 0, (j = 1, 2, \dots, m)$.

polynomial of (3.8) is of Schur type. This completes the proof of this theorem.

References

- [1] Z. Jackiewicz, Asymptotic stability analysis of the θ -methods for functional equation, Nu-mer.Math., 43 (1984), 389-396.
- [2] M.Z. Liu, M.N. Spijker, The stability of the θ -methods in the numerical solution of delay differential equations, $IMA\ J.Num.Anal.$, 10 (1990), 31-48.
- [3] Y. Liu, Stability analysis of the θ -methods for neutral functional-differential equations, Numer.Math., **70** (1995), 473-483.
- [4] H.J. Tian and J.X. Kuang, The stability analysis of the θ -methods for delay differential equations, J.C.M., 14 (1996).
- [5] H.J. Tian and J.X. Kuang, The stability of the θ -methods in numerical solution of delay differential equations with several delay terms, *J. Comput. Appl. Math.*, **58** (1995), 171-181.