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Abstract

In this paper, an optimal V-cycle multigrid algorithm for some famous noncon-
forming plate elements is established.
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1. Introduction

Multigrid methods have become some of the most powerful methods for solving par-
tial differential equations discretized by the finite element and finite difference methods.
(cf. [7][11][14] and reference therein). Multigrid methods for the nonconforming finite
elements have been studied by some reseachers recently. For the second order problems,
some optimal multigrid methods for the P1 nonconforming element and the Wilson
nonconforming element have been established.(cf.[5][18][22]). Mutilgrid methods for
biharmonic problem have also attracted many reseachers attention, in [9][12][17], the
authors presented some optimal order multigrid methods for the Morely element, but
only considered W-cycle multigrid. In [21], Zhang proposed a V-cycle multigrid for
Bonger-Fox-Schmit (BFS) conforming plate element, the convergence of the method
rests on the nestness of the mesh spaces. But until now effictive V-cycle multigrids for
the nonconforming plate elements have not been constructed.

The purpose of this paper is to develop an optimal and effective V-cycle multigrid
method for some well-known nonconforming finite elements such as the Morley element,
the Adini elemet. The basic idea is that no matter how finite element spaces we deal
with, we insist on using the Powell-Sabin (PS) finite element space as correction space
on the level | (I = 1,...,L — 1). The V-cycle multigrid method for the nonconforming
plate elements needs smooth enough steps on the last level L, but on the coarse mesh
I (I =1,...,L — 1) only needs smooth one step. Moreover, because we use the PS
finite element as coarse mesh spaces(l = 1..., L — 1), the intergrid transfer operator only
choose the most simple interpolation opertor, the computation become very cheap.

* Received March 12, 1996.
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2. Plate Bending Problem and Nonconforming Elements

Let © be a convex polygonal domain in R?, the variational form of the plate bending
problem is defined as follows: Find u € HZ(Q)( cf. [10] for Sobolev space notations)
such that

a(u,v) = (f,v), Yo e HX(Q), (2.1)

where f is a function on L?(f2) and

0%u 0% Pud*v  0%*u v
= [ Aul 1-0)(2 —_——— — ——
a(u,v) /Q ubv+ o) 0x10xy 0x10T9 8.@% 8:1:% 8:1:% 8.@% )dz,

(f.0) = [ foda.

and 0 < o < % is the Possion ratio. It is well-known that (2.1) has a unique solution
u € HZ(Q), and
a(u,v) < Clula|v|a, Vu,v € HE(Q), (2.2)

a(v,v) > Clof3, Vv € Hg(9), (2.3)

where | - |3 is seminorm over space H?(f2).

Throughout this paper, ¢, C always denote strictly positive constant independent
of h and L.

We assume the following elliptic regularity for the problem (2.1). For any f €
H () =(HL(Q)), there exists a solution u € H*(Q2) N HZ(£2) and

[ulls < C[If][-1.

It was proved in [2] that the above assumption is true if €2 is a convex polygonal domain.
We assume that I'j, is a quasiuniform triangular or rectangular partition of €2, let
Vi, C L?(Q) be a finite element space with respect to T'j,. Define

0%u 0% 0%u 0%v  0%u 0%

ap(u,v) (Aulv + (1 — e — ————))da,
h( K;h / ( U)( 8T18T2 81‘181'2 8x% 8$% 8$% 8$%))

and

zh_ Z |U|1K7 (2:07172)

Kel'y,

We assume that the above definitions satisfy:
(H1) (1). ap(u,v) < Clulaplvlan, VYu,v € Vp,
(2). ap(v,v) > C|v|2h,Vv € Vi,
(3). |u\2h is a norm over Vj,.
(4). Dy(u,v) < Chlulslv|on, Yu € H}(Q), v € Vj, and

0%u . Ov 0%u v
U’U Z/ AU'I‘ )872)%7(170—)Ma)d8

where T and n denote the unit tangential and outward normal vector along 0K .
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The discretization form of (2.1) is as follows: Find uy, € V}, such that

ah(uh,vh) = (f,vh), Yup, € V. (24)

By (H1), it is easy to check that (2.4) has a unique solution uj, € V},. Define an operator
Ay V, — 'V, as follows

(Apu,v) = ap(u,v), Yu,v € V.

Then (2.4) can be expressed as:
Apup = fn, (2.5)
where fh € Vha (fhav) = (fav)a v € Vh.

3. An Abstract Theory

In order to construct our V-cycle multigrid algorithm, we must choose suitable
coarse mesh finite element spaces. Define S; as the following Powell-Sabin finite element
space (cf.[15][16] for details).

Let I'y(I = 1,...,L — 1) be triangular partition of Q with mesh size h; = 2"~'h.
I'; is obtained by linking the minpoints of two side of all triangle of I';_ ;. Assume
hr—1 = h/2. Now we define the following PS finite element spaces on triangulation I';
(1<I<L-1).

The shape function space P(K) is a piecewise quadratic polynomail space, the
degrees of freedom of this element are given by

Op Op

{p(ai), 8.—m(ai)’ pr.

(ai)u 1= 17273}7

where a; is the vertex of triangle K. Obviously, we have
S CS C---CS.
Now we can define operators Ag,, (s, as follows
Ag : 5 =8, (Agu,v) =a(u,v), Yu,velS (=1,..,L-1).

Qs, : S-1 =S, (Qsu,v) =(u,v), YueS,,ves (I=1,..,L-1).

Let operator J;, 1 : H3(2)N HZ(2) — S;,_1 be the standard interpolation operator
with respect to space Sp_1.
(H2). Assume there exists an opertor 7, : S;,_1 — V}, such that

(1).7pv — vlpp < CR* "|vla, Vv € Sr 1 (r=0,1,2)

(2).]v — T Jr_10|an < Chlv|z, Yo € H¥(Q) N HE(S).

Remark 3.1. In what follows, we can find that the operator m; will be appeared in
the following multigrid algorithm, so its implementation should be cheap, because we
choose S; as PS finite element space, we can find that the construction of operator
is very simple and cheap for any nonconforming plate element spaces.
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Define operators Q1 and Pp_1:Vy, — S as follows:
(Qr._1u,v) = (u,mpv), Yu €Vy, v € Sr q; (3.1)

a(Pr,_1u,v) = ap(u, mpv), Yu €V, wve S (3.2)
By the definition of Py and (H1),(H2), it is easy to check that

[P—1uls < Cluls,p. (3.3)

In order to define our V-cycle multigrid algorithm, we must introduce some smooth-
ing operators. For simplicity, we only consider the following symmetric smoothers.
(H3). Assume that there exists a symmetric smoother Ry, : Vj, — V}, such that

1
(1). C)\—(v,v) < (Rpv,v), Yo € Vp,
h

(2). ap(RpApv,v) < Bap(v,v), Yv € Vy,

where 6 € (0,2) and Aj, is the maximum eigenvalue of A,.
By (H3) and the similar arguments of Theorem 3.6, Theorem 5.1 of [7], we have
Lemma 3.1. For all v € V},, we have

Ao

1
<ap((I - K,%)K,T’U,K,T’U) < C—ap(v,v).
A 0

where Ky =1 — Ry Ay, and m is the number of smoothing.
On the coarse mesh space S;(I =0, ..., L — 1), using the similar idea of chapter 5 in
[7], we can construct symmetric smoothers Rg, : S; — S; which satisfy

1

“N

(v,v) < (Rgv,v),
and
a(Rgs,As,v,v) < Ba(v,v), Vv €V,

where 6 € (0,2) and )\; is the maximum eigenvalue of A;.

In fact, the Richardson, Jacobi and symmtric Gauss-Seidel smoother satisty the
above smoothing condition.(cf.[7] for details)

Now we can define the following V-cycle multigrid algorithm.

V-cycle multigrid algorithm

For any given g € V},, define Brg as follows

(1). Set zg =0, z"=z""'+ Ry(g — Apz™ ), n=1,.,m.

(2). Define ™+! = 2™ + ,q,where

g=M;_1Qr_1(g — Apz™).

(3). Let yo = 2™+ and

Y  =y" "+ Rulg — Apy™ ), n=1,..,m.
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(4). Set Brg = y™.

Moreover the operater My, is defined as follows: Set M, = Agll, for any given
g €8, Mg, (I =2,....,L — 1) is defined by

(1) Set r1 = ngl-

(ii). Define M,g; = z1 + p, where p € S;_; is given by

p=M_1Q1(q — As,z1).
It is easy to check that
I — BLAh = K,T(I — ﬂ—hPLfl + 7rh(I — MLflASLfl)PLfl)K]T. (34)

In what follows, we give an estimate of operator I — M;_;Ag, ;.
Lemma 3.2. Let Qs, = 0, then for any u € Si,_1, we have

L—1
> b Qs — Qs ullf < Clul3.
=1

we refer the proof of this lemma to Theorem 5.1 in [6].

In order to obtain the so-called strengthen Cauchy-Schwarz inequality for the PS
finite element space S, we first introduce the fractional Sobolev space H{"*7(Q) (m =
0,1,2 and 0 < o < 1), which is defined by the completion of C§°(f2) in the following
norm

1
[ollm+a = (ol + [v]710) %,

2 |D(z) — Dv(y)|?
Ve = dzdy.
o= X[y

For a € (0,2], we define H-*(Q) = (H§(2))', the dual of H§(£2). The following inverse
inequality (cf. [20] for details) holds

where

"U‘Q_l_o— < hf”\v\g, Yo € Sl,

lvs < b "lvlle, Vv e S,

where o € (0, ) and s € [0,2].
Lemma 3.3. There exists v € (0,1) such that for any u; € S;, u; € Sj, (i < j), we
have )
a(ui,uj) < C’yjflh;Qa(ui,ui)5||Uj||g,

Proof. Obviously, by Green formulation, we know that A : HZ(Q) — L*(9)
is continuous, and by duality A : L?(2) — H 2(f2) is continuous. By interpola-
tion, for a € (0,3), A : H>*(Q) - H () is also continuous. Hence |Av|_, <
Clvla—a, Vv € HE(Q). Therefore

| Al Aujl—a
J

Cluslzsaltsls—a-

a(uiu u])

IA A
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By the above inverse inequality, we have

a(ui,ug) < Chy ®luila - hy?"|ugllo
1 o 1
< @y "hy?a(ui, ui)? ||ug o,

which yields Lemma 3.3.

Based on Lemma 3.2, 3.3 and the similar arguments of Theorem 4.4, Lemma 6.3 in
[19], we have

Theorem 3.1. For the operator I — My_1As, ,, we have

a((I — Mp_1As, _,)u,u)| < dpa(u,u), Vu€ Sy .

where dg € (0,1) is independent of L and h. In fact, Theorem 3.1 provides a V-cycle
convergence analysis for the PS finite element.

Let {)\j};-v:hl and {goj};-v:hl be the eigenvalues and corresponding normalized eigen-
functions of Ay, i.e.

Ah‘ﬁ] :A](p]a 7 = 17"'aNha

and
where 6;; is Kronecker symbol.

For any vy, € Vj, vy = Z;-Vh cjp;, let AZv = Z;Vh )\;Cj(pj, then we can define the
following discrete norm on the space Vj,

A 1
[vlls,n=(Aj0,0)>.

Note that |lv||2.5 = ap(v, v)%, llv]lo,n = |lv]lo and for any u, v € V}, the following inequal-
ities are not difficult to check

[vlls.n < CR"*|0llep, s>t (3.5)

an(u,v) < lull24enlvllo—in,t € R, (3.6)
1 1

[ollan < [[vlIZpllvll5 - (3.7)

Let I, denote the linear or bilinear finite element interpolation operator with respect
to Fh-
(H4).For the operator Ij,, we assume that Ij, : Vj, — H}(Q) and

‘U — Ihv\l,h < Ch\v\g,h, Yv € Vp,.
Lemma 3.4. Under the assumptions (H3), (H4), we have

[vlln < Clo

1,h-

Proof. By an argument completely similar to the one used to prove proposition 8.1 of
[17], we can show that

[olli.n < C([Invli + hlolgn), Yo € Vi
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Hence, it follows that the inverse inequality and (H4), we have

[vllie < C(hv —vlip+ vl + hlolas)
< C(h"v‘gyh + "U‘l,h) < C|U|1,h.

So this Lemma is true.
Lemma 3.5. Under the assumptions (H1), (H2), (H4), for the operator Pr_;
defined by (3.2), we have

\u — PL,1U|1’h < ChHU”Q’h, Yu € Vj,
Proof. By the triangle inequality, we get
|u — Pr_qulip <|u— Iyulyp + [Iyu — Pr_quli p,

where I, is defined by (H4).
By (H1), (H4), we have

lu — ITpulyp < Chlulyp < Chllullop-

Note that Iyu — Pr,_yu € H(S), then ¢ = A(lu — Pr,_qu) € Hy '(2). Consider the
following auxiliary problem

0= @ =0, on 09, (38)
on

By regularity assumption, we know that

{ A0 =¢, in Q,

101l < Clp|l-1 < ClIhu — Prquls. (3.9)

Furthermore, there holds that (cf.[10] for details)

7/QV(A9)V17d:1: = (A(Iyu — Py _qu),n),

(V(Inyu — Pp_qu),Vn), Vn€ Hy(Q).

Then, we have
\Ihu — PL,1U|% = —/ V(AQ)V(Ihu — PL,1U)d$
Q
= - Z/ V(AO)V (Ihu — u)dz
< I K
- Z/ V(AO)V(u— Pr,_qu)dz=R; + Ry.
K
By (H1), (H4), (3.9), we get

il < =3 [ V(A0 wyda] < Cl0]allyu — ul
)

IN

ChlIpu — Prquli||ul2,n-
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On the other hand

Ry = —;/KV(AH)V(u—PLlu)d:v

S ; /K V(A0)Vuds + ; /K V(AO)Y Py udz

= ap(0,u) — Dp(0,u) — a(B, Pr,_1u)
= ah(G—thL,le,u) -I—CL(JL,19*9,PL,1’U,) th(H,u)
= 6L+ 1+ Is.

By (H1) and the interpolation error estimate of the PS finite element space(cf.[15]), we
have

| 1| 10— Jr10laful2,n < Ch|O]]3]uls,n

Ch\[hu - PL,1

Lhllull2n-
By (H1),(H2), we have

| 11]

‘9 — 7thL,19|2,h|u
Ch\]hu — PL,1

2.n < Chl|0]3]ulo,n

vallull,p-

IN N

By (H1), we have
13| < Ch||0l3]ulo,n < ChlIyu = Proafiplluf2p-

Combined above inequalities, we obtain Lemma 3.5.
Lemma 3.6. Under the assumptions (H1),(H2),(H}), we have

[v = mnPrrvllzp < Chllvllp, Vo € Vi
Proof. By (3.3), (H1), Lemma 3.4 and the inverse inequality, we have

v — 7P 101, [v = T Pr_1v|1,n
1o+ (I = 7)) Pr_qv|1n
ChH’UHQ’h + Ch‘PL,11)|2

Chljv]l2,n-

|v — P,y

[VANVANVARNVAN

On the other hand, for any fixed v € V},, by (3.6) and above inequatily, we have

v = mpPr_qvll2n = sup ap(v — 7, Pr,_1v,w)
wEVh,[[w]|z,,=1

= sup ap(v,w — 7 Pr—yw)
wEVh,[[w]|z,,=1

sup lvllz,nllw — 7p Pp 1wl
wEVh,l|wll2,n=1

Chllvlls,p-

IN

IN

So this Lemma is true.



A V-cycle Multigrid Method for the Plate Bending Problem ... 541

Finally, we can obtain the main result of this paper.
Theorem 3.2. Under the assumptions (H1)-(H/), then for any § € (do,1), if m is
large enough, then we have

lap((I — BLAp)u,u)| < dap(u,u), Yu € V.
Proof. Let @ = K;"u, then by (3.2), (3.4) and Theorem 3.1, we have

lap((I — BpAp)u, u)|
<lap((I = mpPr_1)u, )| + |a(({ — Mp_1As, ,)PrL_1u, Pr_11))
< lap((I — mpPr—1)u,a)| + opla(my Pr,_1a,a)]
< (14 do)|an((I — mpPr_1)a,a)| + dola(a,a)l.

On the other hand, by (3.7), Lemma 3.1, lemma 3.6 and (H3), we get

an(( = TP )@ @)| < Chlalasllen
< oy, = o2 yay,
< Clan((I — KK} w Kfu)) ¥l
< C{l/lﬁah(u,u).

Hence if m large enough, we obtain

\an((I — Br,Ap)u,u)| < (% + do)ap (u,u)
< 6ah(U,U),

which is Theorem 3.2.

4. Applications

In this section, we will apply the abstract theory developed and analyzed in section
3 to Morely element, Adini element. From section 2, it can be seen that we only need
verify them to satisfy the assumptions (H1)-(H4).

(1). Morley element

In this subsection, we will consider the well-known Morley element [10] [13]. whose
shape function is a quadratic polynomial and nodal parameters are function values at
the vertices of the triangle and first nomal derivatives at midpoints of the sides of the
triangle. Morley element is a strong nonconforming element. Let V,” be the Morley
finite element space. We can see that (H1) holds for Morley finite element spaces (cf.
[10][13] for details).

It is easy to show

Lemma 4.1. For anyv € V", K € I'y, we have

3 3
ov
vl x < hx > v*(a;) + hi Z(%(mi))2 < Clollf
i=1 i=1
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where a; is the vertex of K, m; is the midpoint of the edges of K, n is the unit outward

normal vector along OK. For the Morley finite element space V", we define ) :

Sr—1 — V™ as the standard nodal interpolation operator with respect to I'j,.
Lemma 4.2. For any v € S;_1, we have

|ThY — 'U‘r,h < Ch27r|v|2, Yo e Sp1, r=0,1,2.

Proof. For any K € Ty, define AK = {K;, | € I',_1|K;,_1NK # 0}. By the definition
of 7, we have
3

3
v
mol =Y vlai)gi+ Y oy, (M) Yi,
i=1 i=1 9"
where a; and m; are the vertex and midpoint of the edge of K respectively, ¢; and ;
are the associated basis functions.

Because |¢;|, x < ch'™" and |9, k < ch®™" ([8]), we have

imholex < C([vlosearh'™" + |01 coarxh®™")

1
S Z Ch1+sfr "U
s=0

s,00,AK -

Using inverse ineqality, we have
|U|s,oo,AK < Chzl|v|s,AK < Chil"v‘s,AK-

By the approximation theory (cf. [10]) and the fact 7pp|x = p for p € P, where P is
the set of linear polynomials, we get

2

C inf  SRT|o+
peiithrg 21D

IN

v — Tl K s, AK

s=0

2
CZ hsirh2is|v|2’AK < Ch27r"0‘2,AK-
5=0

IN

Squaring and summing up K € 'y, we can see that Lemma 4.2 holds.
Lemma 4.3. Let Jp_1 be a standard interpolation operator with respect to space
Sr,_1, then we have

|U — 7thL711)|2,h < Ch|U|3, Yo € H3(Q) N Hg(Q)

Proof. In fact, we have

v — mpd1vlon < o — mpvlop + TR (v — JL_10)|2,h-
By the standard interpolation error estimate theory (cf. [10]), we obtain

|v — mpola,n < Chlv|s.
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On the other hand, for any K € I'j,, by Lemma 4.1, inverse inequality and interpolation
theory (cf.[15]), we have

it (v — JLAU)\%,K
< ChiMlmn(v — Jp-10)|3,,

JL 1’1))

3
< Chit(h% Z(v — Jr_10)%(a;) + h% Z (m;)?)

< Chy |U—JL 1000 so.nx + Clv = J1— 17)\1ooAK
SCh“v‘E},AKa

Summing up all K € I', and combining above inequalities, we obtain this Lemma.

Based on Lemma 4.2-4.3, we can see that (H2) is true for Morley element.

Using standard interpolation theory, we can see that (H4) is trivial.

Using a similar argument of Chapter 5 in [7], we can easily construct the smoother
Ry, for Morley element which satisfies (H2).

Finally, we have

Theorem 4.1. Theorem 3.2 holds for space V,".

(2). Adini element In this subsection, we will apply the abstract theory to a
nonconforming rectangle element, i.e., Adini element (cf. [10]), whose shape function
is a incomplete bicubic polynomial and the nodal parameters are function values and
two first partial derivatives at the vertices. It is a weak nonconforming element (i.e.,
CY-element). Let V;* be Adini finite element space. We assume that 9§ and all sides
of the rectangles in I'y, are parallel to the coordinate axes.

we can see that (H1) holds for Adini finite element space. For the Adini finite
element space V,', we define m;, : S;, — V! as standard nodal interpolation operator,
then, by a similar argument of Lemma 4.2 and Lemma 4.3, we can show that (H2)
holds for the Adini finite element space V. (H4) is trivial.

Using similar argument of Chapter 5 in [7], we can easily obtain the smoother R},
for Adini element which satisfies (H2).

Theorem 4.2. Theorem 3.2 holds for Adini space V.
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