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Abstract

A singularly perturbed linear convection-diffusion problem for heat transfer

in two dimensions with a parabolic boundary layer is solved numerically. The

numerical method consists of a special piecewise uniform mesh condensing in a

neighbourhood of the parabolic layer and a standard finite difference operator

satisfying a discrete maximum principle. The numerical computations demonstrate

numerically that the method is ε-uniform in the sense that the rate of convergence

and error constant of the method are independent of the singular perturbation

parameter ε. This means that no matter how small the singular perturbation

parameter ε is, the numerical method produces solutions with guaranteed accuracy

depending solely on the number of mesh points used.

Key words: Linear convection-diffusion, parabolic layer, piecewise uniform mesh,

finite difference.

1. Introduction

Singularly perturbed differential equations are characterised by the presence of a

small parameter ε multiplying the highest order derivatives. Such problems arise in

many areas of applied mathematics. The solutions of singularly perturbed differential

equations typically have steep gradients, in thin regions of the domain, whose mag-

nitude depends inversely on some positive power of ε. Such regions are called either

interior or boundary layers, depending on whether their location is the interior or the

boundary of the domain. The location and width of these layers depend on the lo-

cal asymptotic nature of the solution of the differential equation. Layers described by
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an ordinary, parabolic or elliptic differential equation are called respectively regular,

parabolic or elliptic layers. Numerical methods for which the error bounds are inde-

pendent of the singular perturbation parameter ε are called ε-uniform methods. In

most previous work ε-uniform methods have been constructed and tested numerically

only for singular perturbation problems with regular layers. In this paper, numerical

results are presented for a singularly perturbed linear convection-diffusion problem with

a parabolic layer. These results confirm numerically that numerical methods composed

of a standard finite difference operator satisfying a maximum principle on a special

piecewise-uniform mesh are ε-uniform. In fact it has been established theoretically in

[9] that such numerical methods are ε-uniform for a wide class of singularly perturbed

problems, including the problem considered here. Special piecewise-uniform meshes

were first introduced and analyzed by Shishkin in [8]. The first computations using

such methods were presented in [4].

2. Statement of the problem

Letting θ denote the temperature, ~u = (u1, u2) the velocity field of the fluid and

ε =
1

Pe
(where Pe is the Peclet number) the coefficient of diffusion, the transfer of heat

in a two-dimensional region Ω is described by the following linear convection-diffusion

equation (in dimensionless form)

∇ · (−ε∇θ + ~uθ) = f in Ω (2.1a)

where it is assumed that Ω is a bounded domain with Lipshitz continuous boundary

Γ. Let ΓD and ΓN respectively denote the parts of Γ where Dirichlet and Neumann

boundary conditions are specified, where Γ = ΓD ∪ΓN and ΓD ∩ΓN = ∅. Let ~n denote

the outward unit normal on Γ. The inflow and outflow boundaries Γi and Γo are defined

respectively by

Γo = {(x, y) ∈ Γ : (~u · ~n)(x, y) > 0}, Γi = {(x, y) ∈ Γ : (~u · ~n)(x, y) < 0}

It is assumed that ΓD ⊃ Γi, that the diffusion coefficient ε is positive and that ∇ ·
~u = 0. The latter condition means that the velocity of the fluid ~u corresponds to

an incompressible flow. When ε ≪ 1, the differential equation (2.1a) is singularly

perturbed and the flow is said to be convection dominated.

The solution of this linear problem with general boundary conditions can be de-

composed into the sum of a smooth and a singular part for each kind of singularity. In

this paper we choose boundary conditions so that there is just one kind of singularity,

namely a parabolic boundary layer. The purpose of this paper is to obtain ε-uniformly

accurate solutions for this special problem. Because of the linearity, it is clear that

the same numerical method will solve any general linear problem having this type of

singularity.
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The following boundary conditions are taken on Γ:

θ = g on ΓD (2.1b)

∂θ

∂n
= 0 on ΓN (2.1c)

The streamlines of the reduced equation corresponding to (2.1a) are in the direction ~u.

The boundary is said to be characteristic at a point (x, y) ∈ Γ if the tangent to Γ at

that point is in the direction ~u. Equivalently, Γ is characteristic at each point (x, y) ∈ Γ

such that

(~u · ~n)(x, y) = 0

In what follows Ω = (−1, 1) × (0, 1) and ~u, f are taken to be[10]

~u(x, y) = (2y(1 − x2),−2x(1 − y2))T (2.1d)

f(x, y) ≡ 0 (2.1e)

(See Fig. 2.1). Consequently, Γi = {(x, 0) : −1 < x < 0} and Γo = {(x, 0) : 0 < x < 1}.
The Neumann part of the boundary is taken to be

ΓN = Γo (2.1f)

The Dirichlet boundary conditions on ΓD are defined by

g(x, y) =

{

1 − y, on Γe

0, on ΓD \ Γeq
(2.1g)
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Fig. 2.1 Geometry specification and streamlines for the test problem (2.1, a–g)

where Γe = {(1, y) : 0 < y < 1}. This choice of boundary conditions ensures that they

are compatible and that the only boundary layer in the solution is a parabolic layer in

a neighbourhood of the edge Γe.

In [3] Hutton considered a similar problem with the Dirichlet boundary conditions

g(x, y) =

{

1 + tanh(20x + 10), on Γi

0, on ΓD \ Γi

With this choice the solution has no boundary layers. This problem demonstrates the

effects of cross-stream diffusion when the streamlines are not parallel to the co-ordinate

axes. A further study of the problem was made by Scotney in [5] with the Dirichlet

boundary conditions

g(x, y) =











1 + tanh(20x + 10), on Γi

100, on Γe

0, on ΓD \ (Γi ∪ Γe)

The solution of this problem exhibits a parabolic boundary layer in a neighbourhood of

the edge Γe, but it also has an additional discontinuity arising from an incompatability

of the boundary conditions at the corner point (1,1). Our choice of Dirichlet bound-

ary conditions (2.1g) is more suitable for the investigation of the effect of a parabolic
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boundary layer, because it is not complicated by any further effect due to an incom-

patability in the boundary conditions, as is the case with Scotney’s choice. Numerical

experiments using higher-order finite difference schemes on problems similar to those

considered by Hutton and Scotney were reported by Smith and Hutton in [10] and by

Thompson and Wilkes in [11].

Both uniform and piecewise-uniform meshes ΩN,N ≡ {(xi, yj): i = 0, 1, · · ·N ; j =

0, 1, · · ·N} are used to discretize the domain Ω. Mesh functions defined on the mesh

ΩN,N are denoted by θN , and various mesh parameters by

hi ≡ xi − xi−1, h̃i+1 ≡ (hi+1 + hi)/2,

kj ≡ yj − yj−1, k̃j+1 ≡ (kj+1 + kj)/2. (2.2)

We write θi,j = θN(xi, yj). On ΩN,N the following upwind finite difference operator is

defined

−ε(δ2
x + δ2

y)θ
N + D̃x(u1θ

N) + D̃y(u2θ
N ) = 0, for i = 1, · · · , N − 1; j = 1, · · · , N − 1;

(2.3a)

where D̃x is the first order upwind finite difference operator

D̃x(u1θ
N ) ≡ u1;i,j − |u1;i,j|

2
D+

x θi,j + u1;i,j + |u1;i,j|2D−
x θi,j (2.3b)

D−
x θi,j ≡

θi,j − θi−1,j

hi
and D+

x θi,j ≡
θi+1,j − θi,j

hi+1
(2.3c)

The operator D̃y is defined analogously. The standard second order centered finite

difference is

δ2
xθi,j ≡

D+
x θi,j − D−

x θi,j

h̃i+1

(2.3d)

and δ2
y is defined analogously. The boundary conditions are discretized as follows.

θi,1 − θi,0

k1
= 0 for i =

N

2
+ 1, · · · , N − 1 (2.3e)

θi,0 = 0 for i = 0, · · · , N

2
(2.3f)

θi,N = 0 for i = 0, · · · , N − 1 (2.3g)

θ0,j = 0 for j = 1, · · · , N − 1 (2.3h)

θN,j = 1 − yj for j = 0, · · · , N (2.3i)

Since the matrix associated with the numerical method (2.3 a-i) is an M-matrix, the

upwind finite difference operator in (2.3a) satisfies a maximum principle and the finite

difference method (2.3a-i) is stable. In this paper an iterative method is used to solve

the discretized equations. The Relaxed Incomplete LU-Factorisation method[1] and the

preconditioned conjugate gradient squared method are used, where the convergence

criteria on the residuals is taken to be ‖rk‖∞ ≤ 10−6.
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3. Numerical results on a uniform mesh

In this section, the problem (2.1a-g) is solved using a numerical method composed

of the upwind difference operator (2.3) on a sequence of uniform meshes ΩN,N , with

N = 8, 16, 32, 64, 128, 256, 512. Since the exact solution of this problem is not known,

the pointwise errors |θ(xi, yj) − θN(xi, yj)| are approximated for successive values of ε

on the five coarser meshes by eN
ε (i, j) = |θN (xi, yj)−θ512(xi, yj)|, where the superscript

indicates the number of mesh elements used in the x-direction. For each ε the maximum

nodal error is approximated by

Eε,N = max
i,j

eN
ε (i, j) (3.1)

and for each N , the ε-uniform maximum nodal error is defined by

EN = max
ε

Eε,N (3.2)

Computed values of Eε,N and EN for problem (2.1a-g) are given in Table 3.1 for various

values of ε and N .

It is seen from the table that, for all values of ε ≤ 2−14, the error grows monotoni-

cally as the mesh is refined. This shows that for small ε an increase of the computational

effort does not yield greater accuracy; on the contrary it increases the pointwise error.

This behaviour is completely opposite to what is expected from a satisfactory numerical

method. Also, note that the error EN does not decrease monotonicaly as the mesh is

refined. These results indicate numerically that this numerical method is not ε-uniform.

It is important to note that the accuracy of the approximations to the error decreases

as we move to the right in the table, because the exact solution has been replaced by

θ512, nevertheless we believe that the qualitative behaviour of the numerical method is

correctly represented by this table of results (see also Remark at the end of §5).

In Fig. 3.1 a contour plot of the numerical solution for the problem with ε = 2−10

is given in a neighbourhood of the edge of the domain where the parabolic boundary

layer occurs. The solution itself on the whole domain is shown in Fig. 3.2. Notice

that the solution is almost zero everywhere except in a neighbourhood of the parabolic

boundary layer. The 0.1 contour intersects the x-axis close to the point x = 0.94.
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Fig. 3.1 Contours of the numerical solution of problem (2.1, a–g) with ε = 2−10 near the edge

of the domain where the parabolic layer occurs using the upwind finite difference

operator (2.3) and the uniform mesh Ω32×32

Fig. 3.2 Numerical solution of problem (2.1, a–g) with ε = 2−10 using the upwind finite

difference operator (2.3) and the uniform mesh Ω32×32
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Table 3.1 Maximum Nodal Errors Eε,N and EN using a uniform mesh

ε N = 8 N = 16 N = 32 N = 64 N = 128

20 4.961E−2 2.904E−2 1.484E−2 7.021E−3 3.079E−3

2−2 3.318E−2 2.781E−2 1.561E−2 7.479E−3 3.176E−3

2−4 6.459E−2 3.288E−2 1.793E−2 8.751E−3 3.852E−3

2−6 5.454E−2 6.486E−2 3.126E−2 1.611E−2 7.215E−3

2−8 1.631E−2 5.283E−2 6.068E−2 2.770E−2 1.323E−2

2−10 4.122E−3 1.565E−2 5.117E−2 5.523E−2 2.291E−2

2−12 1.036E−3 3.986E−2 1.545E−2 4.877E−2 4.695E−2

2−14 2.594E−4 1.001E−3 3.931E−3 1.532E−2 4.391E−2

2−16 6.486E−5 2.506E−4 9.873E−4 3.906E−3 1.505E−2

2−18 1.666E−5 6.669E−5 2.471E−4 9.811E−4 3.894E−3

2−20 4.169E−6 1.676E−5 6.673E−5 2.664E−4 9.782E−4

2−22 4.172E−6 4.191E−6 1.680E−5 6.723E−5 2.658E−4

2−24 2.992E−7 4.191E−6 1.680E−5 1.682E−5 6.720E−5

2−26 2.944E−7 4.191E−6 1.383E−6 1.682E−5 6.721E−5

2−28 2.944E−7 4.191E−6 1.383E−6 1.682E−5 5.672E−6

2−30 2.733E−7 4.192E−6 1.383E−6 1.682E−5 5.674E−6

2−32 2.733E−7 4.191E−6 1.383E−6 1.682E−5 5.672E−6

EN 0.0646 0.0649 0.0607 0.0552 0.0470

4. Condensing Piecewise-Uniform Meshes

Condensing piecewise-uniform meshes Ω∗
N,N are constructed as follows. A piecewise

uniform mesh is taken in the x-direction and a uniform mesh is taken in the y-direction.

The mesh Ω∗
N,N is defined to be the tensor product of these two one-dimensional meshes.

The condensing piecewise-uniform mesh is defined on the interval [−1, 1] by subdividing

it into the three intervals [−1, 0], [0, 1 − σx], [1 − σx, 1] where the transition point

σx ≡ min
{√

ε ln N,
1

2

}

(4.1)

On each subinterval a uniform mesh is constructed using

N

2
mesh points in [−1, 0],

and
N

4
mesh points in both [0, 1 − σx], and [1 − σx, 1].

The condensing piecewise uniform mesh is then defined by

Ω∗
N,N = {(xi, yj) : yj = j/N, 0 ≤ i, j ≤ N} (4.2a)

where

xi =































−1 +
2i

N
, for 0 ≤ i ≤ N/2

4(1 − σx)(i − N/2)

N
, for N/2 < i ≤ 3N/4

1 − σx +
4σx(i − 3N/4)

N
, for 3N/4 < i ≤ N

(4.2b)
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Note that Ω∗
N,N is a uniform mesh on the domain Ω when ε or N are sufficiently large.

The main theoretical result for numerical methods consisting of standard finite

difference operators satisfying a maximum principle and these condensing piecewise

uniform meshes is contained in the following theorem. It states that these methods are

ε-uniform in the sense that the error bound is independent of the singular perturbation

parameter ε.

In order to state a theoretical result, it is necessary to modify the definition of the

problem so that in a neighbourhood of the corner (1, 1) the velocity field is

~u = (2a1(1 − x2),−2a2(1 − y2))

where a1, a2 are positive constants. Then for this slightly modified problem, the fol-

lowing theorem can be proved.

Theorem 1. Let θ be the solution of the problem (2.1a-g) and let θN be the nu-

merical approximation of θ computed using the upwind finite difference operator (2.3)

on the condensing piecewise uniform mesh (4.2). Then the following pointwise error

estimate holds

max
i,j

|θ(xi, yj) − θN(xi, yj)| ≤ C(N−1 ln N)1/7 (4.3)

where C is a constant independent of ε and N .

Proof. This may be proved using the analytical techniques described in Shishkin

[6,7].

It is important to note that we are using the maximum norm in the entire domain to

measure the pointwise error. Therefore, when this is small the error at each point of the

domain is small and since approximately
1

4
of the points are inside the boundary layer,

the results we obtain are accurate not only outside boundary layers but comparably so

within the boundary layers. This is in marked contrast to previous work on problems

of this type, where qualitative rather than quantitative measures of the accuracy were

employed.

5. Numerical results on condensing piecewise uniform meshes

The problem (2.1a-g) is solved using a numerical method composed of the up-

wind difference operator (2.3) on the sequence of condensing piecewise uniform meshes

Ω∗
N,N with N = 8, 16, 32, 64, 128, 256, 512 The errors |θN (xi, yj)−θ(xi, yj)| are approxi-

mated, for successive values of ε, on the five coarser meshes, by eN
ε (i, j) = |θN (xi, yj)−

θ512
I (xi, yj)|, where the superscript indicates the number of mesh elements used and the

subscript denotes bilinear interpolation. For each ε and N the maximum nodal error

is approximated by

E∗
ε,N = max

i,j
eN
ε (i, j) (5.1)

and for each N the ε-uniform maximum nodal error is defined by

E∗
N = max

ε
E∗

ε,N (5.2)
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Computed values of E∗
ε,N and E∗

N for problem (2.1 a-g) are given in Table 5.1 for various

values of ε and N . Note that the superscript ∗ denotes the errors encountered using

the condensing piecewise uniform meshes.

Table 5.1. Maximum Nodal Errors E∗

ε,N and E∗

N

using a piecewise uniform mesh

ε N= 8 N= 16 N= 32 N= 64 N= 128

20 4.961E−2 2.904E−2 1.484E−2 7.021E−3 3.079E−3

2−2 3.318E−2 2.781E−2 1.561E−2 7.479E−3 3.176E−3

2−4 6.459E−2 3.288E−2 1.793E−2 8.751E−3 3.852E−3

2−6 6.599E−2 4.660E−2 2.842E−2 1.611E−2 7.215E−3

2−8 6.318E−2 4.482E−2 2.680E−2 1.537E−2 7.483E−3

2−10 6.172E−2 4.425E−2 2.663E−2 1.532E−2 7.470E−3

2−12 6.085E−2 4.435E−2 2.654E−2 1.530E−2 7.462E−3

2−14 6.039E−2 4.427E−2 2.650E−2 1.529E−2 7.457E−3

2−16 6.015E−2 4.422E−2 2.647E−2 1.528E−2 7.455E−3

2−18 6.003E−2 4.420E−2 2.646E−2 1.528E−2 7.454E−3

2−20 5.997E−2 4.419E−2 2.646E−2 1.527E−2 7.453E−3

2−22 5.990E−2 4.414E−2 2.641E−2 1.523E−2 7.415E−3

2−24 5.986E−2 4.412E−2 2.639E−2 1.521E−2 7.415E−3

2−26 5.985E−2 4.410E−2 2.638E−2 1.521E−2 7.415E−3

2−28 5.984E−2 4.410E−2 2.638E−2 1.520E−2 7.382E−3

2−30 5.984E−2 4.410E−2 2.638E−2 1.521E−2 7.382E−3

2−32 5.984E−2 4.410E−2 2.638E−2 1.521E−2 7.382E−3

EN 0.0660 0.0466 0.0284 0.0161 0.0075

The numerical behaviour indicated by Table 5.1 is quite different qualitatively from

that in Table 3.1. Note that for each fixed value of ε, the errors decrease monotonically

as the mesh is refined. Furthermore, the errors E∗
N also decrease monotonically for

increasing N and at a much faster rate than in Table 3.1. Indeed, for N = 128 the

result is an order of magnitude better. Hence, increasing the computational effort yields

greater accuracy, which is the intuitively correct behaviour for a numerical method to

be considered satisfactory.

Note also that the ε-uniform rate of convergence can be estimated using the double-

mesh principle (see ,e.g., Hegarty et al.[2]). A numerical method for solving (2.1) is

said to have an ε-uniform rate of convergence of order p on the sequence of meshes

{ΩN,N}∞1 if ∃N0, independent of ε, such that for all N ≥ N0

sup
0<ε≤1

‖θ − θN‖ΩN,N
≤ CN−p

(‖w‖ΩN,N
≡ max

(xi,yj)∈ΩN,N

|w((xi, yj))|) where θ is the solution of (2.1), θN is the numerical

approximation to θ, C and p > 0 are independent of ε and N .

These numerical rates of convergence are in agreement with the ε-uniform rate given

in 4.3.

Comparing the contours in Figs 3.1 and 5.1 it can be seen that the solution on

the uniform mesh Ω32×32 is significantly more diffuse than that on the special mesh
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Ω∗
32×32. This numerical diffusion is seen much more clearly in the four graphs in Fig.

5.3 where in each case the dashed line in each graph is a small section of the line

joining the values of the numerical solution at two points of a uniform mesh, while

the continuous line is the piecewise linear interpolant of the numerical solution at five

points of a special piecewise uniform mesh. Assuming that the contours in Fig. 5.4 are

good approximations to the true contours, it follows that the contours in Fig. 5.1 are

better approximations than those in Fig. 3.1.

Fig. 5.1 Controus of the numerical solution of problem (2.1, a–g) with ε = 2−10 near the edge

fo the domain where the parabolic layer occurs using the upwind finite difference

operator (2.3) and the special piecewise uniform mesh Ω∗

32×32.

Fig. 5.2 Numerical solution of problem (2.1, a–g) with ε = 2−10 using the upwind finite

difference operator (2.3) and the special piecewise uniform mesh Ω∗

32×32
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Fig. 5.3 Comparison of the numerical solution of problem (2.1, a–g) with ε = 2−10 near the

edge of the domain where the parabolic layer occurs using the uniform mesh Ω32×32

(indicated by the dashes) and the special piecewise uniform mesh Ω∗

32×32 (indicated

by the continuous line) on the interval 0.95 ≤ x ≤ 1 with (a) y = 0.0 (b) y = 0.25 (c)

y = 0.5 (d) y = 0.75.

Fig. 5.4 Contours of the numerical solution of problem (2.1, a–g) with ε = 2−10 near the edge

of the domain where the parabolic layer occurs using the upwind finite difference

operator (2.3) and the special piecewise uniform mesh Ω∗

256×256 .
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Table 5.2. Numerical rates of conver-

gence for a piecewise uniform mesh

ε N= 8 N= 16 N= 32 N=64

20 0.772 0.969 1.080 1.189

2−2 0.255 0.833 1.062 1.235

2−4 0.974 0.875 1.035 1.184

2−6 0.502 0.713 0.819 1.159

2−8 0.495 0.742 0.802 1.039

2−10 0.471 0.741 0.797 1.037

2−12 0.456 0.741 0.795 1.036

2−14 0.448 0.740 0.793 1.036

2−16 0.444 0.740 0.793 1.036

2−18 0.442 0.740 0.793 1.036

2−20 0.440 0.740 0.792 1.036

2−22 0.440 0.741 0.793 1.039

2−24 0.440 0.741 0.794 1.037

2−26 0.440 0.741 0.794 1.037

2−28 0.440 0.741 0.794 1.044

2−30 0.440 0.741 0.795 1.042

2−32 0.440 0.741 0.795 1.042

Min: 0.255 0.713 0.792 1.036

Remark. In the following table, the maximum nodal errors on a uniform mesh are

given where the exact solution is approximated by the numerical solution θ512
I computed

on the condensing piecewise uniform mesh Ω∗
512,512.

Table 5.3. Maximum Nodal Errors EN on a Uniform Mesh

ε N= 8 N= 16 N= 32 N= 64 N= 128

EN 0.0646 0.0649 0.0614 0.0598 0.0589

6. Conclusions

It has been shown by numerical computation that a numerical method consisting

of an upwind finite difference operator on a uniform mesh gives inaccurate solutions to

a singularly perturbed linear convection-diffusion problem of heat transfer in two di-

mensions when a parabolic boundary layer is present. Further numerical computations

were presented which confirm the known theoretical result that ε-uniform methods can

be constructed for this problem using an upwind finite difference operator on a special

piecewise uniform mesh.
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