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Abstract

In this paper we study the higher accuracy methods — the extrapolation and
defect correction for the semidiscrete Galerkin approximations to the solutions
of Sobolev and viscoelasticity type equations. The global extrapolation and the
correction approximations of third order, rather than the pointwise extrapolation
results are presented.
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1. Introduction

Let 2 be a rectangular domain. We are concerned with the Richardson extrapola-
tion and defect correction of the finite element approximations to the solutions of the
following simple Sobolev type equation

—Aup—LAu=f in Qx(0,T],
u=20 on 0 x (0,7, (1.1)
w(z,y,0) =v(z,y) in Q.

and viscoelasticity type equation

utt—Aut—Au:f in QX(O,T],
u=0 on 00 x (0,7T], (1.2)
u(ac,y,()) = U(.Z',y), ut(x7y70) = U)(I',y) in .

The extrapolation technique used for the finite element approximations to the solu-
tions of the elliptic differential equations has well been investigated in [1-6, 13-17, 21,
23]. And this method has also been considered for boundary element approximations
to boundary integral equations (e.g. see [25-26]). Some further investigations of the
extrapolation for Galerkin method for parabolic equations have been carried out in
[7-9]. Not long ago, multi-parameter parallel algorithms have been introduced into the
extrapolation in order to accelerate the computational speeds [27].
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Defect correction schemes of the finite element approximations for the elliptic prob-
lems have been investigated by some authors, too. For example, see [2,19,20,24].

The problems (1.1) and (1.2) can arise from many physical processes. Many au-
thors have studied both the finite difference and the finite element methods for these
problems. Especially, the error estimates of FEM for the problems (1.1) and (1.2) have
been deliberated in [11] via the Ritz-Volterra projection. Here, we will use a new anal-
ysis in [12], i.e. an analysis for the “short side” in the FE-right triangle together with
the sharp integral estimates of the “hypotenuse” to present an immediate analysis for
extrapolation and correction for (1.1) and (1.2). Moreover, we obtain global extrapo-
lation results by means of an interpolation postprocessing technique proposed in [18]
(or [22]), instead of the pointwise extrapolation results.

2. Sobolev Type Equations

Above all, we discuss the problem (1.1). Throughout the paper, we assume that Th
is a rectangular partition over 2 with mesh size h. The weak form of (1.1) consists in
finding u € H(Q) (the Sobolev space) such that

{ (Vug, Vo) + (Vu, Vo) = (f,¢) Ve € H,

u(0) = v. @1

Let S% C H{} consist of piecewise bilinear functions. Thus, a continuous Galerkin
approximation u” : [0, 7] — S§ is defined such that

{ (Vul, ve) + (v, ve) = (f,¢) Ve € S, 22)

ul(0) = ipv,

where i,v € S} is the bilinear interpolation function of v. And thus, from (2.1) and
(2.2) we get the error equation

(V(ul — ), Vo) + (V(uh —u), Vo) =0 Ve e Sh. (2.3)
1

1
Set E(x) = 5[(m — ;)2 = h2, Fy) = 5 [(y — y-)? — k2], associated with any element

7= [2; — hry 2y + hy] X [yr — k7, yr + k;] of T". Then, there holds by [22] for ¢ € S&,
. B | Lo
/Q Y (u — iyu) Vo = /Q {[Foe = 3(F)puwam + [Boy = 5(B)opuy | tyas ). (24)
What is more, for ¢ € Sk

[ Vi)V = [ [Po— 3(F)0, + B - 5B prfutar  (25)

Lemma 2.1. For ¢ € S{},

, h? <~ h2 + k2
(Vi — i), Vi) = 1= 3 [ #ttzzm + Ol el

3 h?
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1 1
Proof. From (2.5) we have, according to F' = E(F Dy — §k7 and integration by
parts, that

1 k7 1 1
_/ [F(p — g(F%y@y} Uzzyy = g‘l_wuxxyy — 6 /T(Fz)yy‘Pumyy — g/TFz(‘Dyumyyy
kﬁ 1 2 1 9
= ?‘/r(puxxyy + 6~/;-(F )y((pyuxxyy +<,0umyyy) — g/TF OylUzayyy
= 1 1 1
~ 3 /T Plgzyy — 6 /T F290yusc:cyyy + 6 /T(Fz)ysﬁumyyy —3 /T F2cpyumyyy,

and hence, for o € S}
1 1
_/Q [F‘P - g(Fz)yﬁpy}umyy ~3 Zkz/‘:@uxxyy + O(hg)HU”ExHSDHO'

Similarly, for ¢ € S}

1 1
~ | [Be = 5B e trny = 5 12 [ Gttemy + OGOl el QE.D.

Remark. From (2.4) we derive by the same argument as that of Lemma 2.1

2

, h? k2 hz 3
(V(u—ipu), Vi) = Y Z (ﬁ / PrUgyy + 2 / ‘Pyuymc) + O(h?)|lull4]elr- (2.6)

T

Theorem 2.1. There holds the asymptotic error expansion, in the sense of H' —
norm, u = ipu + h2w" + O(h3), where w € SE.
Proof. Let 6 = u" —ipu. Then, we have by (2.3) and (2.6), for ¢ € S}

(veta V(,O) + (V@, V(,D) :(V(ut - Z‘hut)v V(,D) + (V(u - Z‘hu)a V(,O)

h? k2 h2
=— ? Z [h_g /T(Utxyy + U:cyy)‘:p:c + h_; /T(utyxx + Uy:c:c)ﬁpy}
+ O(R®)([[uella + [ulla) |1 (2.7)

Let w € H(Q)NH%(Q) and w" € S} be the exact solution and the finite element
solution of the auxiliary problem, respectively

{ (Vw, Vo) + (Vw, Vo) = Li(p) Vo € Hy(Q), (2.8)

w(0) =0,

where
2

1 k2 h2
Lh((p) = _g Z [ﬁ ‘/T(utxyy + U:cyy)ﬁpx + ﬁ /T(Utyxx + Uy:c:c)ﬁpy} .

Therefore, for ¢ € Sh

(V(6: — h*w}'), Vo) + (V(0 — h*"), Vip) = O(B%) (luela + [lulla)ll:- (2.9)
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Taking © = 6 — h%w" and ¢ = Oy, we get

1d
(Ot + 52101 < eh®(funlla + [lulla)* + 4[]

or
d
2101 < eh®(luela + flulla)®.

t
By integration with respect to ¢ and ©(0) = 0, we finally obtain ||0]|; < ch? {/0 (Juee]]a+

1/2
lulla)?ds| . QED.
Lemma 2.2. If w and " are the ezact solution and the finite element solution of
(2.8), respectively, there holds

) t 1/2
o = il < eh] [ (lwrlla + wlle)?ds]

Proof. Let = w" —ipw. Then
(V0:, Vo) + (VO, V) = (V(w — ipwt), Vo) + (V(w — ipw), Vi),
and hence, with ¢ = 6; and (2.6)

1d

07 + 5 21017 < eh*(lwrlla + [wll2)* + |67

t
Then, we have, by integration about ¢ and 6(0) = 0, that ||0]; < ch[/o (lwell2 +

lwl)?ds]”*.  QED.

Now we use an interpolation postprocessing technique to get the global extrapola-
tion approximations of high accuracy. For this end, we assume that 7" has been gained
from T2 (or T%") with mesh size 2h (or 3h) by subdividing each element of T?" (or T3")
into four (or nine) congruent elements. Thus, we can define a Lagrange biquadratic
interpolation operator I%h associated with 72" and a Lagrange bicubic interpolation
operator Ig’h associated with 73", Tt is easy to check that Ighz’h = I%h, Ig’hz’h = Ig’h,
||122h90‘|r,p < cflellrp, ||I§h90||r,p < cllelrp Vo € Sg, ||122h90 = @llrp < Chg_TH‘PH&pa
113, — @llrp < ch¥"[|pllap, where 7 = 0 or 1 and p = 2 or co. And thus, we
have

1
Theorem 2.2. There holds H§(4I§’h/2uh/2 — I3ul) — qu < c(u)h®, where u/?

is the FE solution of (1.1) corresponding to the partition T2 which is derived by
subdividing each element of T" into four congruent elements and Ig’h /2 1s a Lagrange

bicubic interpolation operator whose definition is similar to that of Ig’h.
Proof. Denote that " = u" — iu — h%isw, where w is the variational solution of
(2.8). Then, it follows from Theorem 2.1 and Lemma 2.2 that ||"||; < c¢(u)h3. And

Ig’huh —u= Ig’h(uh —dpu) + (Ig’hu —u) = Ig’h(hzz'hw + rh) + (Ig’hu —u)
= h2I§’hw + Ig’hrh + (Ig’hu —u) = h2w + hZ(Ig’hw —w)+ Ig’hrh + (Ig’hu —u)
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= h%w + ", (2.10)

where

¢" = hQ(Ighw —w) + L' + (Iu — u)
with [|¢"[l1 < c(u)h®. Therefore, I3, u” = u + h?w + O(h?®), which yields, in the sense
ALY, pu? — 13
of H' — norm that =u+O0(h3). Q.E.D.

Next we turn to the extrapolation in version of maximum norm . For this purpose
we introduce the discrete Green function G? € Sg at any point z = (x,y) € Q such
that, for ¢ € SE, (VG V) = ¢(z) and (VD.G", V) = D,p. We have the following
([28])

1/2

Lemma 2.3. ||G"|lo < ¢, ||D.G"||o < c(log h) .

Theorem 2.3. The followmg asymptotzc error expansions hold for all points in €2,
ul = ipu + hPwh + O(hg) ult = ipug + 2wl + O(h3), where W € S}

Proof. Setting 6 = u" — iyu, we get according to Lemma 2.1, for ¢ € S

(Vb:, V) + (VO, V) = (V(ut — intr), Vo) + (V(u —inu), Vo)

h? + k2
= Z / P(Utzzyy + Uzayy)
T

+ O(h?’)(llutlls + llulls)llello- (2.11)

Let w € H{(Q) N H?(Q) and w" € S¥ be the variational solution and the finite element
solution of the auxiliary problem, respectively

{ (Vw, Vo) + (Vw, V) = Mu(p) Ve € Hi(Q),

o(0) =0, (2.12)

1« h2+k2 N
where My () = 3 Z 2 /(utmyy + Ugayy ). And thus, for ¢ € Sj

(V(0: = h*w}), Vo) + (V(0 — h*w"), Vo) = O(h*)([luells + [lulls) lello-  (2.13)
Denoting § — h%w" by © and taking ¢ = G" in (2.13), we obtain by Lemma 2.3
Oy(2,1) + O(2,1) < ch*(|luglls + [|ulls). (2.14)

And hence, with integration about ¢, there holds due to ©(z,0) =0

t t
Ol=t)+ [ Oz s)ds < ch® [ (s + [luls)ds
0 0

or

t t
O8] < [ 10 )lds + ch? [ (Julls + [ulls)ds

Then, it follows from Gronwall’s Lemma that

t
0:(z,1)] < 6h3/0 (lutlls + [luls)ds. (2.15)
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From (2.14) and (2.15) we derive
10:¢(2, )] < 1©(2, )] + ch®([luells + lulls)

t
< o [Julls + lulls + [ (s + uls)ds]. - QE.D.

1\1/2
Theorem 2.4. There hold, in W5 —norm, u = ipu+ h2wh + O(h3(log E) / )

1\1/2
and ult = ipuy + 2wk + O(h3(log E) / ), where W is the FE solution of (2.12).
Proof. Taking ¢ = D,G" and © = § — h2w" in (2.13), we have by means of Lemma
2.3
3 1\1/2
D:0;+D:0 < ch’(log 7 ) " (llurlls + lluls) (2.16)
or

t 5 1\1/2
D,O; +/0 D.Oy(z,s)ds < ch (log E) ([Jue)ls + |lu|l5)-

Hence, it follows from Gronwall’s Lemma that
1\1/2
D204 < ch®(log ) " (lluls + llulls). (2.17)
and thus, by (2.16) and (2.17)

1\1/2
D:6] < e (log3) " (lurlls + lulls).  Q.E.D.

1 1
Let Efu = - (4I7ul? — 130", Ebu = §(4I§’h/2uh/2 — I3,u™). Then, in terms of
Theorem 2.3 and 2.4, we get the following by the same argument as that in Theorem

2.2
Theorem 2.5. There hold ||Efu —ullo 0o < c(u)h® and ||(Efu); — uillo.co < c(u)hd.

h 3 1\1/2 o
Theorem 2.6. There hold [|[E5u — ull1,00 < c(u)h (log E) and ||(E3u); —
141/2
Ut||1,00 < c(u)h3(log E) .

Now we discuss a defect correction scheme proposed in [20] (or [22]) for the problem
(1.1). Let Py, be a projection operator Pyj, : H}(Q) — SP defined by, for ¢ € S}

{ (V((Prpu)e — ue), Vo) + (V(Prpu — u), V) =0,
Plhu(O) = zhu(O)

Then Pjpu is the solution of (2.2) if w is the solution of (1.1).
Set uf, = Izzhuh +ul — Plhlzzhuh and uf, = Ig’huh +ul — Plhlg’huh. Then, we have
Theorem 2.7. There holds ||ub, — ul|; < c(u)h®.
Proof. Multiplying (2.6) by (I — Pip), which I is the identical operator, we get

(I — P (I3 0" —u) = (I — Pyp)(h?w + ¢") = h?(w — Pipw) + (¢" = Pipugh),
hence

(I = Pip)(Ipu — w)|1 < R2(lw — ipwlly + [linw — Piawll1) + cllg" |1 < e(w)h?.
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Here, the left hand side is nothing but (I — Plh)(Ig’huh —u)=ul, —u. QE.D.
Similarly, we have by means of Theorem 2.3 and 2.4
Theorem 2.8. There hold ||ul, — ul|o 0o < c(u)h? and ||(ull,); — wt]jo.co < c(u)h®.

15\ 1/2
Theorem 2.9. There hold ||[uff, —ul|1.00 < c(u)h3(log —) / and |(ub,)e — w100 <

h
c(u)h? ( log %) 1/2.

3. Viscoelasticity Type Equations

In this section, we study the problem (1.2). The weak form of (1.2) reads as follows:
Find u € HZ(Q) such that

(urt, ) + (Vug, Vo) + (Vu, Vo) = (f,9) Vo € Hg, 3.)
u(0) =v, w(0) =w. '
Thus, a semidiscrete Galerkin approximation " : [0, 7] — S{} is defined such that

(uly, @) + (Vup, Vo) + (Vul, Vo) = (f,¢) Ve € Sf, (3.2)
ul(0) = ipv,  ul(0) = ipw, '

where ipv, ipw € 56‘ stand for the bilinear interpolation functions of v and w, respec-
tively. Then, we obtain the error equation from (3.1) and (3.2)

(w — ufyy ) + (V(w — ), Vi) + (V(u = u"), V) =0 Vo e S (3.3)
Lemma 3.1. For ¢ € Sk,

, h2 b2 2
(g — ipug, @) = 5 (ﬁ / Uttza + 33 / uttyysﬁ) + O(h*) ||uge 3]l llo-

T

Proof. Due to

o(r,y) = p(xr,yr) + (T, y7) (@ — 22) + 0y (20, Y) (Y — Yr) + Pay (T — 20)(y — y7),

therefore

/(Utt — iUt )p :/(utt — ipug) (T, yr) + /(Utt — ihup) Eppe (2, yr)

+ /(Utt — ipuw) Fypy(T7,y) + /(Utt — ipust) Ex Fypay
=A1+ Ay + Az + Ay (3.4)
By [10], there is

/Q(u—z'hu) :/QEum—F/QFuyy—/QExFyuxy,

hence

A = / (ugr — ipun) (s, yr)
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:(P(x'rayr)/Euttxx +§0(xT7yT)/Futtyy _(P(xTayT)/ExFyuttxy
T

h2 k2
= utt:c:ccp(x'rayr 6 / xxuttxxgp(xﬂyr) - ?T / uttyycp(x'rayr)
T

6/ yyuttnyD $77y7— /EF utthy@(xﬂyﬂ-)
=B —|—Bg—|—Bg+B4—|—B5,

where
h?2 h?2
B = _é Uttxxcp(x'ra yr) = _?T Uttrx [‘P(‘Ta y) — By — FySDy + ExFy(ny]
h2 h?2
= 3 Utter P — 3 /utt:c:c:cE(Px - / utt:c:cyFSDy 3T /Tutt:c:c:cEFy(nyy
]{:2 k2
B3 = 3 uttyy(p($7'ay7) = f/uttyy(ﬁ— é/uttyny‘Py - ?T/uftywa%
k2 T T T
+ = 3 Uttyny F(')D:Eyv
/ :c:cuttxx()o Lz, yr) = _% T(E2)xutt:c:c:c[90(x7 y) —Eypor — Fy(Py + ExFySny]a
6 / yyuttyy(p (rr,yr) = _é T(Fz)yuttyyy[@(x’y) — Eypr — Fypy + E:vaQDmy]a

B5 = / EFyuttxxy(P(xTa yr) - /EFyuttxxy[(P(xa y) - Ex‘P:c - Fyﬁpy + ExFy(ny]a
T T

and hence, there is according to the inverse estimates

h2
A==y [ taae = 3/uttyy‘PJFO(h?’)HUttH%HSOHoT (3.5)

By the same way

Ay = /(Utt — ipup) Eppa(2,yr) = — / E(u — ipus) Pz (T, yr)

h2 . 1 .
= ? (Utt - Zhutt)w‘pw($ay7) - 6 (E2)mc(utt - Zhutt):v[‘px($7y) - Fysﬁzy]
h2 1 2 3
= ?/Futtmyy@m(xa%') - E/E Uttzre (Po — Fypay) = O(h”)[Juwells-[lellor-
T v (3.6)
Analogously
Az = /(utt — ipun) Fyoy(xr,y) = O(h?) w37 ¢ lo,r- (3.7)

Notice that / (ut — ipust)zy = 0. Then, we have

T

Ay = /(utt — intst) Bp Fy oy = /(Utt — ipUtt)y B ay
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[ K2 [ 2 h2 [
= 36 (E ) (F )yyuttmmy(pxy + E /F(E )xuttmmywxy + 1_8 /F(F )yuttmyy@my
= O(hg)HUttH&rH(PHO,T- (3.8)

(3.4)—(3.8) complete the argument of Lemma 3.2.  Q.E.D.

Theorem 3.1. There holds the asymptotic error expansion, in H' — norm, u
inu + h2a" + O(h?), where o/ € Sp.

Proof. Let = u” — iyu. Then, for ¢ € S{}, we have according to (3.3), Lemma 2.1
and 3.2

(Oit,0) + (VO, V) + (VO, V) = (ug — inuse, @)
+ (V(ug — ipue), V) + (V(u — ipu), Vo)

h2 h2 k‘2
=5 X (57 Lvmwot 35 [ vene) + 00 ualslel
h? h% + k2

£} 2 /(Utmyy + tgayy) @ + OR) (Juells + [[ulls)llelo-
T T (3.9)

h:

Let o € H}(Q) U H?(Q) and o/ € S} be the variational solution and the finite element
solution of the auxiliary problem, respectively

(s, @) + (Vau, Vo) + (Va, Vo) = Ni(p) Vo € Hy (), (3.10)
OZ(O) = 07 Oét(o) = 07 .
where
h? k? hZ + k2
Nh(@ =3 Z (h2 /uttxx(qp + h2 /uttyygp) + 5 3 Z 72 /(utmmyy + ummyy)@'

And hence, with © = 0 — h2a”, for ¢ € S{}
(4, 0) + (VOr, Vi) + (VO, Vi) = O(R?)([[use | + l[uells + llulls)[lello.  (3.11)
Taking ¢ = ©; in (3.11), we get

1

H@tH0+C||®t||1+ H@t||o+|@t|1+ |@|1

S
2dt| |1—2dt 2dt
< ch®(|ugls + Juells + [|ulls)* + §H@tHo

or
d
S (IOI5 + 1OFF) < ek (fluels + [luells + [llls)*.

By integration with respect to ¢ and noticing that ©(0) = 0, we have |02 + |02 <

6 [ 2 s[ [ 2, 11/2
8 [ all+eals+uls s, or [€4llo-+18]1 < ch [ [ (usllat s +lulls ds]

Q.E.D.
Theorem 3.2. There hold ul! = ipu; + h2al + O(R?) in H' — norm and u}, =
inug + h2al, + O(h3) in L2 — norm, where o is the FE solution of (3.10).
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Proof. Differentiating (3.9) about ¢, we obtain by Lemma 2.1, 3.2 and (3.10)

(Ouee, ) + (VOy, Vo) + (V0:, Vo) = (e — iptpe, )
+ (V(Utt — ihutt), VQO) (V(Ut — ihut), V(,D)

h? h2 k‘
:__Z 2 “tttm90+ p2 ) Uty ® + O(h®) ||t |13l llo
3 h h

h2 + k:2
Z = [ Gtz + e + O lualls + s il
:(h2attt7 @)+ (h2vatt7 Vo) + (h2Vat Vo)
+ O(h*) (e lls + llueells + lluells)llello-
and hence, with © = § — h2a”, for p € SSL
(Out, @) + (VOuU, Vo) + (VO,, Vo) = O(h*) (luee|ls + llueells + [uells) [l llo-

Taking ¢ = Oy, we have

1d
2dt

10wl + cl|©ull} + |@t H@ttHO e 5 dt|@t|1

2dt It < th
<ch®([Jugells + [Juells + lluells)® + §H@tt||(2),

or
d
%(H@ttﬂg +1043) < ch®(Jluglls + luells + lluells)?.

Therefore, there holds according to ©.(0) = 0

t
10ullg + 10¢]F < |04(0)[[5 + Ch6/0 (lueeells + llueells + [luells)ds. (3.12)

Let t = 0 and ¢ = ©4(0) in (3.11). Then, |©4(0)]lo < ch3(|Jug(0)||3 + |lue(0)]|5 +
|lu(0)|l5) which, together with (3.12), leads to Theorem 3.2.  Q.E.D.

Theorem 3.3. There hold, for all points in Q, u" = ipu + h2a™ + O(h3) and
ul = ipuy + h2al + O(h?), where o is the FE solution of (3.10).

Proof. Setting ¢ = G” in (3.11), we get according to Lemma 2.3 that (O, G?) +

t
Ou(2,1) +O(2,1) < ch®([Juaels + uells + llull5), or O(z,1) +/0 O1(z, 8)ds < c|[Oullo +

ch®(||uge||3 + |Juells + ||ulls). And thus, we complete the theorem by Theorem 3.2 and
Gronwall’ Lemma. Q.E.D.

Theorem 3.4. There hold, in W' — norm, u = i,u + h?a + O(h3(log + )1/2)
and ult = ipus + h2alt + O(h3(log +)1/2), where ol is the FE solution of (3.10).

Proof. Taking ¢ = D,G" in (3.11), we obtain by means of Lemma 2.3

h 3 1\1/2
(Ou, D-GY) + D-0y(2,1) + D-0(z,1) < ch (Tog 1) " (el + el + 1uls).

or

t 1\1/2
D:01(:,1)| < [ 1D:01(z,5)ds +<(log 1) [€ull
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1\1/2
+ chg(log E) (Nlwgel[3 + Nuells + [lwlls)-

And hence, Theorem 3.4 follows Theorem 3.2 and Gronwall’ Lemma.  Q.E.D.
Analogous with Section 2, we have the following main according to Theorem 3.1
—34
Theorem 3.5. There hold ||Ebu — ul|; < c(u)h3 and ||(ESu); — ug|l1 < c(u)h?.
Theorem 3.6. There holds ||(Efu)y — ugllo < c(u)h3.
Theorem 3.7. There hold | Efu —ullo oo < c(u)h® and ||(Efu); — uillo.co < c(uw)h3.

15 1/2
Theorem 3.8. There hold |Efu — ull100 < c(u)hg(log E) and ||(Ebu); —

1\1/2
Ut||1,00 < c(u)h3(log E) .
Also we apply the correction techniques in Section 2 to the problem (1.2). For this
purpose we introduce a projection operator

Py, : Hy () — S§
defined by

{ (Ponu)g — uge, ) + (V((Pop)y — ug), Vo) + (V(Popu — u), Vo) =0 Vo € Sh,
P2hu(0) = ihu(O), (Pgh’u,)t(()) = ihut(O).

Denote that uf, = I%huh +ul — Pghlghuh, ub, = Ig’huh +uh — Pghlg’huh. Then, we have
in terms of Theorem 3.1-3.4

Theorem 3.9. There hold ||ul, — |1 < c(u)h® and |(uh,): — well1 < c(u)h3.

Theorem 3.10. There holds ||(u?, )i — uwllo < c(u)h3.

Theorem 3.11. There hold ||ul, — uljo.co < c(u)h3 and ||(u},): — utlo.co < c(uw)h3.

Theorem 3.12. There hold ||u}, —ul|1 00 < c(u)h?(log %)1/2 and || (ub)e — w100 <
c(u)h?(log %)1/2.

Remark. When () is a convex quadrilateral domain, there are the corresponding
global extrapolation and correction results for (1.1) and (1.2) if the quadrilateral meshes
are almost uniform and are constructed by connecting the equi-proportional points of
two opposite boundaries (see [22]).
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