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Abstract

In this paper, the superconvergence of a class of Wilson-like elements is consid-
ered. A superconvergent estimate on the centers of elements and some supercon-
vergence recoveries on the four vertices and the four midpoints of edges of elements
are also obtained for piecewise strongly regular quadrilateral subdivisions.
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1. Introduction

The superconvergence of finite element methods is an important property both in
theory and in practice. Many superconvergence results about conforming finite element
methods have been obtained (see [4] [17]). But there are also many nonconforming fi-
nite element methods in computational practice, in addition to conforming ones. Do
the superconvergence results still hold for those nonconforming finite element methods
? The Wilson element is one of the most important nonconforming finite element. [14]
first studied the superconvergence property of Wilson element, and obtained the su-
perconvergent estimate of the gradient error on the centers of elements, on an average
sense. [1] and [12] sharpened this result, and obtained the pointwise superconvergent
estimate. But, as we know, Wilson element may cause divergence for the arbitrary
quadrilateral meshes (see [5] [10]), and the results obtained in [14], [1] and [12] only
hold for rectangular meshes, and only for the partial differential equations which do
not involve mixed derivative terms. [3] and [11] presented a class of so-called Wilson-
like nonconforming elements, which converge for arbitrary quadrilateral meshes. [15]
studied the superconvergence property of those Wilson-like elements, and obtained a
superconvergent estimate of gradient error on the centers of elements, on the aver-
age sense. In this paper, we study the pointwise superconvergence property of those
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Wilson-like elements, and prove that Wilson-like elements, if the nonconforming basis
functions are even polynomials, i.e., b; = 0 (1 < i < n) (see Theorem 4.1), have the
superconvergence at the centers of elements, at the four vertices and the midpoints of
four edges of elements, provided that the quadrilateral subdivision is piecewise strongly
regular. In the last section, some numerical examples are presented to illustrate the
theoretical results and the necessity of the condition b; =0 (1 <i <n).

2. Basic Notions

Consider the following Dirichlet problem of a second order elliptic equation,

2
— Z Dj(OéijDiU) + Bu = f, in Q,
i,j=1
u =0, on Of),

(2.1)

where 0 C R? is a convex polygonal domain, d9 is the boundary of 2, f € L?(Q),
functions «;;, 8 are sufficiently smooth, «;; satisfy the ellipticity condition and 3 > 0.

The partial differential operators D;(j = 1,2) mean D; = e Dy = 8_y respectively.
The variational problem of the equation (2.1) is: Find u € HE(Q) so that
a(u,v) = (f,v), Yo € HY (), (2.2)

where
a(u,v) = /Q ( Z a;; DiuDjv +ﬁuv)dmdy, (f,v) / fudzdy.
i,j=1

Applying the definition of strongly regular subdivision (see Lesaint and Zlamal
[6], Zhu and Lin [17], and Zlamal [18]), similar to the definition of piecewise strongly
regular triangulation (see Lin and Li [7], Lin and Xu [8]), we define the piecewise
strongly regular quadrilateral subdivision by (also see Zhang and Li [16])

Definition. A quadrilateral subdivision Ty, on 2 is called piecewise strongly regular
subdivision, if  is divided into finite quadrilateral subdomains Q; (1 <i < N) without
inner vertices, and the subdivision restricted on each €; is strongly reqular.

VK € Ty, let Aj(x;,y;)(1 < i < 4) denote the four vertices of the element K,
A(xo,yo) be the center. hyx means the diameter of K, i.e., hgx = diam(K), h =

max hi . In this paper, C means a generic constant 1ndependent of K and h, and may
€lp

have different values at different places. The notations of Sobolev spaces and their
norms used in this paper are as the same as those in Ciarlet [2].

Let K = [—1,1] x [~1,1] be the reference square having the vertices ﬁ(l <i<4).
For every element K, there ex1sts a unique one-to-one mapping F : K — K, given
by z = sz &mn)y= Zyz , where N;(&,m) = (1£&)(14n)/4 (1 <i<4)

are the blhnear shape functlons on K.
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Every function v defined on K , through mapping Fx, corresponds a unique function
v defined on K: v = 0o Fi', or written as & = v o Fr. Besides, let |J| denote the
Jacobian determinant of the mapping Fl.

Let us introduce some notations and results from [11]. Define

= {p € C4([-1,1)) N C*([~1,1])]¢"(0) = 1, / 11 p(t)dt = 0}.

Functions in the space ® satisfy (see Lemma 2.1 in [11])

1 1
/ ¢’ (t)dt = 0, / te'(t)dt =0, YV ped, (2.4)
-1 -1

and let P be the set of all polynomials, then Vo € ® N P, v has the following form (see
Theorem 4.1 in [11])

m n
o(t) =Y ai(t* = 1)+t bi(t* — 1),

i=1 i=1

where, b;(1 < i < n) are arbitrary real numbers, m > 2 and n are arbitrary positive
whole numbers, a;(1 < i < m) satisfy
1 & da; 1

== ——. 2.5
=5 D51 = 6 (2:5)

1=2

On reference element K. , the finite element (f(\ , i, ]3) is defined as: Vv € ]3, v
is uniquely determined by the set of 6 degrees of freedom, = {@(ﬁ,), 1 <i <4,

%v %0

o (0,0), an 2(0 0)}, that is,

4 R aQA 925

= S AAINE ) + 55 (0.0001(6) + 550, 002(Em), (26)

i=1

in which QZI (6777) = 72)\(5)7 &2(6777) = 72(77)7 Tz/b\ € .

Define the finite element space as:
P(K) = {’Uh|Uh oFk € ﬁ,\V/K € Th}7
Vi, = {vn|vn|x € P(K),VK € T}, vy, vanishes at boundary nodes }.

The Wilson-like approximation uy € V}, of the variational problem (2.2) is defined by
the following variational equation

ah(uh,vh) = (f, vh), V’Uh c Vh, (27)

where

apn(up,vp) Z / Z ai; Dyup Djvp, + ﬂuhvh)da:dy

KeT, 1,7=1
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In view of (2.6), up has the following decomposition
up = Wh + 2p, (2.8)

where wy, is the conforming part, and zj is the nonconforming part.
Let W), be the isoparametric bilinear finite element space, then the isoparametric
bilinear approximation u; € W}, is defined by the following variational equation

CL(’LLZ,”U}L) = (f7 Uh)v \V/Uh € Wh- (29)

3. Superconvergence on Centers of Elements
Lemma 3.1. It holds that

lan(znon)] < C Y (hlznlurlonli g + |2nloxlvnlox), Yo, € Wi (3.1)
KeTy,

Proof. See the formula (3.51) in [15].
Lemma 3.2. The following estimate holds

1
[wp, — w100 < Ch?In Elluhlb,oo,h-

Proof. Let p € Q be arbitrary. Define the derivative Green’s function OGY € W), by
(see [17])
a(vn, 0GY}) = dup(p),  Yup € Wh, (3.2)

.. o . 0 0
where 0 means the directional derivative operation 9 = — or 9 = —.

ox dy
Since W}, C V4, and by (2.7), (2.9) and the decomposition (2.8), it follows that

ah(u}kl — wh,vh) = ah(zh,vh), V?Jh S Wh. (33)
By (3.2), (3.3) and Lemma 3.1, we have that
A(uy, — wn)(p) = aluj, — wy, 0G)) = ap(z1,, OGY,)

<C Z (h]zh\vi]Z?G‘Z\LK + ]zhlo,K\(‘)Gﬁlo,K). (3.4)
KeTy,

Since z, = up, — wy, and wy, is the piecewise isoparametric bilinear interpolation of
up, we have that, by standard interpolation estimates and the inverse estimate,

lznl1x = |un — wpli e < Chluplax < Ch?|unl2.00 1 (3.5)
\znlo.xc = |un — wplox < CR?|uplax < Ch3|upl2.00 1, (3.6)

]Z?GQ\LK < Ch‘l\aGﬁh,LK, ‘8GZ‘O,K < Ch_l‘aGZ’o,LK. (3.7)



Some Superconvergence Results of Wilson-like Elements 85
By (3.5)—(3.7), we obtain that, from (3.4),

O(up, — wn)(p) < Ch*|unl2,00n|0GH I11- (3.8)

1
Thus, by noting that (see [17]) [0G} |11 < Cln 7 we obtain

1
[uf — whl1,000 < ch?In Ethlz,oo,h-

The L* estimate can be similarly obtained. O
Lemma 3.3. VK € T}, we have

0?
e ©.0)] < Rl + |floco) (39)
8 Up 2

Sz 0.0 < CH(unllsce.rc + | flo.c)- (3.10)

Proof. In (2.7), setting
¢{{ZQZIOF[E17 in K7
vp =
0, in Q- K,

we get

/K( Z aijDiup, - Dﬂ/ﬁ + Bup, - )da:dy_/ f- wfda:dy

3,j=1

By Taylor’s expansion formula, we get
aij = aij(Ao) + O(h)|ij 1,00,k 5

thus

2
Z i(Ao) / Diuy, - Dy dady = — Z / O(R)|aij|1.00,1c Diup Dbl dady

: 7] 1
- / BupK dudy + / FoK dedy. (3.11)
K K
Obviously we know that
Z / O(h)|evijly, oo i Ditin Dj1* dxdy| < Ch®|up|1 00,k (3.12)
,7=1
[ Bunff dady| < Ch2unlo.o i (3.13)
K
[ reftdady] < CR|flocer (3.14)
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Hence, we focus our attention on the left hand side of (3.11).

2
> aij(Ao) /K Diup, D dady

ij=1
oy, Oy, 9y 9€ 0
—an1(4o) [ agh (;/;1( ) | T|d€dn + aa(Ao) 3—;%8_§£’J’ dedn
Oy, 9y 9€ 0 Oy, 8 (0
(g [ 0080 iy ) [ 20O (%62 acay
5%5_%51@% 5@%%@%
Ditn 01 O O Dty 1 O O
+an(do) [ 550 5 el ldgdn + an(Ao) [ G Tk g Bal | dedn,

(3.15)

and by the decomposition (2.8) and properties (2.4) of the nonconforming basis func-
tions, we have

dup, 0¢1 8uh 81/11
a11(Ao) | ag 86 ( ) |J|d€dn =a11(Ao) / O(h a—fa—fdgd
dy L 0%y, Ay
+0411(A0) |J|Ao (0,0) dﬁdn
(50).0 1713 e 00 [ (¢ )(3.16)
and we also have
Dy, Oy O O¢ B 8uh 09

a11(Ap) - 8—178—5%%'J|d5dn = a1 (Ao) /IA( O(h 8—8—§d£d (3.17)

Similarly deal with the other six terms on the right hand side of (3.15), and by (3.12)-
(3.17), we obtain that, from (3.11)

) 0 ox 9 Ox
}(all(AO)(az)Ao a12(A0)(87Z;)A0(6_77)A0 azl(AO)(az)Ao(an)Ao

+a22(Ao)(gi) )U,A;%gzh(o O)/ (85;/2) d&dn ‘

< CR*(Jup1,00,5 + |unlo,00,i + [ o005 )- (3.18)

Because of the ellipticity condition, there exists a constant v > 0 such that

(all(Ao)(az)AO - alZ(AO)(a_Z;)AO (8_77),40 a21(A0)(8z)Ao (877)A0

costan () () () e
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Combining (3.18) and (3.19), we complete the proof of (3.9). By substituting ¢, with
2 in above proof, (3.10) can be similarly proved. O
Theorem 3.1. Suppose u € W2®(Q) N HY(Q). Then, the following stability
estimate holds
oo < Cllulloce (3.20)

Proof. By the reference element and Lemma 3.3, we know
lenllzoc i < Ch 224l o 5

< Oh—2(]8;§2h (0,0)] + ]%2—?(0,0)})

< Clllunllv,oo r + 10,00, )- (3.21)
By (3.21) and the standard interpolation estimates, we have
lun = wall2,00,0 = 12nll2,00,0 < Cllunllt,con + Clflo,c0
< Cllun = wpll1,00n + Cllwnll1.00.n + C[flo,00
< Chllupl|2,00,h + Cllwnll1,00,n + C1.fl0,00- (3.22)

By Lemma 3.2, the inverse estimate, and the W?2>-stability of conforming finite ele-
ment (see [9] [1]), we find that

w200, < Cllwn = upl2,00,n + Cllugl2,00,n
< Chin g [unllz o + Cllulaoe. (3:23)
By (3.22) and (3.23), we obtain
[un 2,000 < llun = whll2,00,n + [[Wh[2,00,n
< Chn plunllz o + Cllullz o

which, for sufficiently small h, yields (3.20). O
Theorem 3.2. Suppose u € W3 (Q) N HE(Q). If the basis functions 151(5,77) =
BE), Dal&,m) = D(n), satisfy D € AP, and the cooefficients of &, bi(1 < i < n),

n
satisfy Z b; = 0, then the following superconvergent estimate holds

i=1

1
_ < 21n =
max [V (u — up)(p)] < Ch”In 7 ||ulls00

where Cp, denotes the set of the centers of all elements.
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Proof. Let p € Cy. It’s easy to check that Vz,(p) = 0. By applying the supercon-
vergence estimate for the conforming finite element method (see [17])

[V~ 43) ()] < OB s
and noting that
V(= ) (p) = V(w— ) (p) + V(w, — un) ()
= V(u—up)(p) + V(uj — wn)(p),

the proof is completed by applying Lemma 3.2 and Theorem 3.1. O
4. Superconvergence Recoveries

For the sake of explicitness, let’s suppose that € is an arbitrary quadrilateral, being
subdivided into small quadrilateral elements by bi-section scheme (see [13] [10]). Let
K and K' are two neighbouring elements, A;(x;,y;) and A}(x},y}) (1 <i < 4) are their
vertices respectively, Ag(zo,yo) and Af(xp,y)) are their centers.

We need some Lemmas. First, from (2.6), Lemma 3.3, Theorem 3.1 and the error
estimates for the isoparametric bilinear solution, we have

Lemma 4.1.

2hl1,000 < Chllullzo, 280,00 < CH?|Jt]|2,00,
1
[u = up|1,00n < Chllull2,00, lu = uplope < Ch*In EHUHz,w

Lemma 4.2. Suppose u € W3*(Q)NH(Q) and the nonconforming basis functions
U1 = (&) and by = (n) satisfy b; =0 (1 <i < n), i.e., 1 is an even function, then

’ % T

ezl = )00 < Chflullaoc. (4.1)
62 v o7 3

o = i )0,0)] < Ch¥lull e (4.2)

Proof. In (2.7), setting
o =0 Fgl, (n,y) €K,
op =3 v == o Ficl, (x,y) € K, (4.3)
0, (r,y) e Q— K — K',
and by the decomposition uy, = wp, + zp, we obtain

2 2
/ Z a;jDizp Djvpdady = / Z a;jDi(u — wp)Djvpdzdy
KUK' 5= KUK' 5=
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2
+ B(u — up)vpdrdy — / Z a;;DiuDjupdady
KUK’ KUK’ ;52

— / Buvpdady + / fopdxdy = Ry + Ro + R3 + Ry + Ry.
KUK’ KUK’ (4.4)

Let’s first analyse the left hand side of (4.4). By Taylor’s expansion, we know

2 2
/ Z a;jDizp Djvpdrdy = Z a,-j(Ao)/ Dz Djvpdady
KUK' K

i,j=1 tj=1
+ Z ai; (A / D,z Djvpdady + Z / h)|cij|1,00Dizn Djvpdady
i,j=1 4,j=1
= L1 + L2 + R5. (45)

Obviously, by Lemma 4.1, we have
|Rs| < CB*|2n]1,00,1|0n 1,000 < OB [Jul|2,00- (4.6)

Similar to the proof of Lemma 3.3, we have

B ) O 0 Ox
L1 (Oén(A(])(az)Ao —0412(14 )(aTy])Ao(an) - OZ2I(A )(8z)A0(877)

+a22(A0)(gi)Ao)| KU?@? (0,0)/ (381/;1) dédn + Re,
oy oy 0 oy ox’
L2 =- (a“(AIO)(a_%)iIO a alz(Ag)(a_%)Ag(a_f])Ag) - azl(A,O)(a_?j])Ag)(a_Z)Ag

e (G0 ¥ 3 o 0.0) [ (52 st +

on 0&? 0¢
where
|Re| < Ch®|2h|1,00,6 < Ch|lull200,  |R7l < CB?|2n]1,00,57 < OB tl|200.  (4.7)
Hence
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H{(an(40) (32)°, 17138 - an(ap) (B ), 113
(52) 0 (5 b1t = cnalti) (5, (5, 17 132)
(o) (52, (500 75t = () (5 (F) 1)
(50" b1t = ) (50 )", 1710)

. L (0,0) / ( aﬁl) dédn + Rg + Ry

=L3 + Rs + Rg + Rz, (4.8)

and

a2 2 ((22)7 4 ()03 [ (2 ] 2 0.0) - 2 00

82uh 82
e (0,0) - 552

2|

(o 0)] (4.9)
For estimating Rg, let’s consider the term in the first bracket of Rg. Noting that

a11(4p) = a11(4o) + O(h)| a1 1,00 KUK

we know

8y 2 _ ay’ 2 r—
all(Ao)(a—n)A0|JK|A; — all(Aé)(a_U)A()L]K |Aé

:O‘“(AO){(g_z)iouKﬁé _ (aa_%)ig|JK/|3§} + O(h)|a11|1,oo,KUK’(aa_zj7,)i, R

’ (4.10)

Since K and K’ are two h?-approximate parallelograms, we obtain
YN | k-1 YN | k1
() a7 120 = (5 )y 17" T2 = O (4.11)
Applying (4.11) in (4.10) yields that

) IR~ an () (), I

‘0411 Ao)( an)

< Ch.

Applying similar procedure to other three brackets of Rg, and by Lemma 3.3, we obtain

K/

2
IRs| < Ch’ 5 (0 0)] < Ch3|Ju)2.00. (4.12)

2
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Now let’s estimate the right hand side of (4.4). Let u! denote the isoparametric
bilinear interpolation of the function u, then we have

2
/ Z ;D u") Djvpdady + > ;i Di(u" — wp) Djopdady
KUK’ KUK' )

= Ru1 + R (4.13)

Applying Taylor’s expansion, we know

2
Ru= ) aij(AO)/ D;(u — u)Djvpdwdy
K

ij=1
a” (Af / D;( D jvpdrdy
+ / (u—u Djvpdxd
”ZI KUK’ ) haxay
= Ri11 + Ri12 + Riis. (4.14)

Application of interpolation theory simply yields
|R113| < CR3|u — u'|1 oo, kUr VR 100, kUK < Ch3|u)2,00- (4.15)
For estimating Rq11 and Rq12, we observe that

/ Dy(u— uI)Dlvhdxdy
K

_/" (u—a’ a%(&ﬁ!ﬂlﬁd-:@a@_ﬂ)a%(&ﬁ( NJ\WM

on 0§ \O¢
=Ri14 + Ru1s, (4.16)
and
_ (9y o(a — at) 9 al) oy
Rig = (817) |J |A0/ 78& d&dn +/ O(h 785 o€ d&dn.
By (2.4), we find that
8(@ —u ) 8¢1 5 e

hence, by virtue of Bramble-Hilbert lemma, we obtain

|R114] < C‘a‘& =+ Chlu — uI‘l



92 L. ZHANG AND LK. LI
< Oh3ulz 0,1 + Ch?u — ! |1 00 i
< Oh?||ul|3,00- (4.17)

Similarly, we have |Ry15] < Ch3||ul|3,00, then, we obtain that, from (4.16),
‘/KDl(u - uI)leuhda:dy‘ < Ch3|Jul|3,00- (4.18)
Similar to (4.18), we have
’/KD,(U — uI)Djvhdxdy’ < OR*||ull300, 4,5 =1,2.

Hence
|Ri11| < Ch?||ulls 00, |Ri1z| < CB?|ul|3,00- (4.19)

Application of (4.15) and (4.19) in (4.14) yields
|R11| < CR?||ul|3,00- (4.20)

Also applying Taylor’s expansion in Rjs, we know

2
Rz = Z aij(AO)/KDi(uI — wy)Djvpdady
2,7=1

2
T Z O‘ij(AIO)/ D;(u" — wy,)Djvpdady
ij=1 K’

+ Z/ O(h)D;(u! — wy,) Djvpdrdy

ij=1 KUK’

= Ri91 + Ri22 + Ri23. (4.21)
The estimation of Ri93 is as follows

|Ri23| < Ch3|u! — wp |1 00, x0K VA1 00 KUK
< Ch*(Ju — uplt oo xur + |(w —up) — (u — up)' |1 0o xUK?)
< Ch*(Julg,o0 + |1 — upl2,00) < Ch?||ull2,00- (4.22)

Because u!

— wyp, € Wy, applying the same technique as in (3.15)—(3.18), we obtain
|R191| < CR2u! — whl1 ok
< OP*(|u = un|1,00,x + [(u = un) = (u = up)|1,00,1

< Ol oo, (4.23)
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|Riz| < CR?[u! — wy 100,57 < Ch®||ul|2,00- (4.24)
Application of (4.22)-(4.24) in (4.21) yields

|R12| < Ch*||ul|2,00- (4.25)

Therefore, by (4.20) and (4.25), we obtain that, from (4.13),
|R1| < Ch?||ul|2,00- (4.26)

The estimation of Ry is easy. In fact

|Ra| < Ch? [ — unlo,co,kurs < Ch?|Jtt]l2,00- (4.27)

For estimating R3, we still need Taylor’s expansion. Let 0;; = o;;D;u, then

60—2-]-

Do
o B2 (A0)(y — ) + Oh?) sl e i

Jy

oij = 045(Ao) + (Ao)(z — z0) +

Noting that t; is an even function and (2.4), it’s easy to find that
/ Dyvpdxdy = 0, / xDjvpdzdy = 0, / yDyvpdxdy = 0,
K K K

/ Dovpdxdy = 0, / xDsvpdrdy = 0, / yDovpdxdy = 0,
K K K

therefore
[Rs < ‘ Z / 1)\ 0j12,00, KUK D; Uhdxdy‘
i,7=1
< Ch*uls 0o lvn|1,00,x0r7 < ChPJuls 0. (4.28)

The estimation of R4 and Ry is also easy. In fact, by using the reference element
and the properties of function 1, we have

Rl < CRP|lull1o0,  [Ro| < CR?|fll1,00 < ChP|lull3 o (4.29)

Combination of (4.4)-(4.9), (4.12) and (4.26)-(4.29) completes the proof of (4.1).

The substitution of ¥, for ¢; in above proof can prove (4.2). O

Theorem 4.1. Suppose u € W°(Q) N H(Q), and the basis functions Uy = ¥(9),
Py = U(n) satisfy b; =0 (1 <i<n). Then

Vzn(p)| < Ch?|Jull3,c0, (4.30)

where p is an inner vertex or a midpoint of an inner edge, and ¥V means taking average
gradient over all the neighbouring elements of the point p.
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Proof. Noting that b; =0 (1 <1i < n), we know

O O 2 s
L,y =-E(-1 “2(E1) = =222, -1
then, from Lemma 4.2, we obtain,
1,0zf¢ 9 )
5 (G + 55) )] < On?lJullac, (4.31)
1,02i o2 5
‘5(8—34 a—y)(p)‘ < Ch7|ul[3,00-

Combination of (4.31) and (4.32) completes the proof of (4.30). O
Lemma 4.3. (see [16]) Suppose u € W3(Q)NHL (), then we have the following
superconvergent estimate

= 1
IV (u—uj)(p)| < Ch*In 7 l[ulls.co,
where p is any inner vertex or the midpoint of any inner edge.

Theorem 4.2. Suppose the conditions in Theorem 4.1 are satisfied, then the fol-
lowing superconvergent estimate holds.

1
V(u—un)(p)] < Ch*In 7 lll3,00, (4.33)

where p is any inner verter or the midpoint of any inner edge.

Proof. Since

u—up = (u—up) + (up, —wh) — zp,

applying Lemma 4.3, Lemma 3.2, Theorem 3.1 and Theorem 4.1, we complete the proof
of (4.33). O

Remark If Q is a polygonal domain, it can be divided into finite quadrilaterals. On
each quadrilateral, we use the bi-section scheme to subdivide it (i.e., piecewise strongly
reqular subdivision). Then, on every inner vertex and midpoint of inner edge of each
quadrilateral , the superconvergence results in this section are still valid.

5. Numerical Examples

Now let’s give some numerical examples. Consider the following Dirichlet boundary
problem,
—Au = f, in Q,
u =0, on 012,
where Q C R? is a quadrilateral with the four vertices (0, 0), (0.25, 0), (0.375, 0.25),
(0, 0.25).
128
(2y +1)?

1024x

A=)+ 1y

f=128(1—¢*) + &n
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128 51222

b )+ — 1),
(2y+1)3£( n) (2y+1)4( n°)

in which & = 2;_7_ s 1, n = 8y — 1. The exact solution is u = (1 — £2)(1 — n?). We
choose the nonconforming basis functions 1;1 (&,m) and 122(5 ,M) as

Puem) = 5@ 1) = (€ = 1), falm) = 57~ 1) — 5~ 1)

We use the bi-section scheme to subdivide the domain. The numerical results are listed

below.
h eg ep eq
0.2519456 | 15.61572 | 70.83024 | 52.09018
0.1328125 | 15.14269 | 70.32478 | 56.42291
0.0681358 | 15.36230 | 70.18006 | 52.83535
Here,
eg = X [V (u —un)(g)] ep = DX IV (u — up)(p)] eq = MOX [V (u —up)(q)]
h2|Inh| ’ h2|Inh| ’ h2|In h| ’

and g means the centers of the elements, p means the inner vertices and ¢ means the

midpoints of inner edges.
The following numerical examples can illustrate the necessity of the conditions b; =

0(1<i<mn)oryi,b =0. Choose the nonconforming basis function m (&,m) and
¢2 (57 77) as

~ 1 5

v1(€,n) = 5(52 —1) - 5(54 — 1)+ b - 1),

ha(€,m) = %(?72 —1)— %(n“ — 1)+ bn(n* - 1).

The numerical results are listed below.

eg

h b=01 | b=02 | b=05 | b=07 | b=1.0
0.2519456 | 17.05209 | 19.62461 | 60.33922 | 142.6141 | 373.9902
0.1328125 | 17.40823 | 22.13526 | 85.88200 | 197.2402 | 498.3740
0.0681358 | 18.75752 | 27.95114 | 112.6709 | 246.8026 | 590.4153
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