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THE STEP-TRANSITION OPERATORS FOR MULTI-STEP
METHODS OF ODE’S*Y

(ICMSEC, Chinese Academy of Sciences)

Abstract

In this paper, we propose a new definition of symplectic multistep methods.
This definition differs from the old ones in that it is given via the one step method
defined directly on M which is corresponding to the m step scheme defined on M
while the old definitions are given out by defining a corresponding one step method
on M xMx---xM = M" with a set of new variables. The new definition gives out
a steptransition operator g : M — M. Under our new definition, the Leap-frog
method is symplectic only for linear Hamiltonian systems. The transition operator
g will be constructed via continued fractions and rational approximations.

Key words: Multi-step methods, Explike and loglike function, Fractional and ra-
tional approximation, Simplecticity of LMM, Nonexistence of SLMM.

1. Introduction

The disadvantage of symplectic methods in using the information from past time
steps leads to their needing more function evaluation than nonsymplectic methods. This
disadvantage can be overcome if one could construct symplectic multi-step methods.
But the first problem should be solved is to give out the definition of symplectic multi-
step method. Until now, a popular idea is that an m-step method on M may be
written as a one-step method on M™. In paper [2, 7], the authors have investigated
the circumstance under which a difference scheme can preserve the product symplectic
structure on M™. In this paper, a completely different criterion is given because the
induced one-step method corresponding to the original multi-step method is defined, it
gives out a transition operator g : M — M.

Consider the autonomous ODE’s on R"

d
= =a(2), (1.1)
where z = (21, -+, 2,) and a(z) = (a1(z),--,an(z)) is a smooth vector field on R"

defining the system. For equation (1.1), we define a linear m step method (LMM) in
standard form by

m m
>z =1 Biaj, (12)
§=0 j=0
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where a;; and 3; are constants subject to the conditions

am =1, |ag| +[Bo] # 0.

If m =1, we call (1.2) a one step method. In other cases, we call it a multi-step method.
Here linearity means the right hand of (1.2) linearly dependent on the value of a(z) on
integral points. For the compatibility of (1.2) with equation (1.1), it must at least of
order one and thus satisfies

1° a1 +as+---+ay, =0.

m
2. fo+ Pt ot B =) joa; #0.
j=0
LMM method (1.2) has two characteristic polynomials

C(\) = iaw‘, o(\) = i@)\i. (1.3)
=0 1=0

Equation (1.2) can be written as

C(E)yn = Ta(o(E)yn). (1.4)

In section 2, we will study symplectic multi-step methods for linear Hamiltonian
systems. We will give a new definition via transition operators which are corresponding
to the multi-step methods. We will point out that if these operators are of exponential
forms and their reverse maps are of Log forms then the original multi-step method are
symplectic. In section 3, we will use continued fractions and rational approximations
to approximate the transition operators. In section 4, we show that for non-linear
Hamiltonian systems, there exists no symplectic multi-step methods in the sense of our
new definition. Numerical examples are also presented.

2. Symplectic LMM for Linear Hamiltonian Systems

First we consider a linear Hamiltonian system

d
d—; = az, (2.1)

where a is an infinitesimal n x n symplectic matrix. Its phase flow is z(t) = exp(ta)zo.
The LMM for (2.1) is

OmZm + -+ @121 + apzo = 7a(Bmzm + -+ + f121 + Bozo)- (2.2)

Our goal is to find a matrix g, i.e., a linear transformation g : R?® — R?" which
can satisfy (2.2)

amg™(z0) + -+ a19(20) + agzo = Ta(Bmg™ (20) + - - + B19(20) + Bozo)- (2.3)

Such a map g exists for sufficiently small 7 and can be represented by continued fractions
and rational approximations. We call this transformation is step transition operator.
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Definition 2.1. If g is a symplectic transformation, then we call its corresponding
LMM (2.2) is symplectic.(We simply call it the method a SLMM.)
From (2.3), we have

aol +ong' + - + amg™
Ta = . (2.4)
Bol + figt+ -+ + Bmg™

The characteristic equation for LMM is

C(A) =Tpo(N), (2.5)
where p is the eigenvalue of the infinitesimal symplectic matrix a and A is the eigenvalue
of g.

Let (o)
A) =+ 2.
then (2.5) can be written as
=\, (2.7)
It’s reverse function is
X = (). (2.8)

To study the symplecticity of the LMM, one only needs to study the properties of
functions ¢ and v. We will see if ¢ is of the exponential form or v is of logarithmic form,
the corresponding LMM is symplectic. We first study the properties of the exponential
functions and logarithmic functions.

Ezxplike and Loglike functions:

First we give out the properties of exponential functions

1°. exp(z)|g=0 = 1.

d
2°. o exp(z)|z=0 = 1.
3°. exp(z +y) = exp(x) - exp(y).
If we substitute y by —z, we have

exp(z) exp(—zx) = 1. (2.9)

Definition 2.2. If function ¢(x) satisfies ¢(0) = 1,¢/(0) = 1 and ¢(x)d(—x) = 1,
we call this function is an ezplike function.

It’s well known, the inverse function of an exponential function is a logarithmic
function z — log(x). It has the following properties

1°. log(z)|z=1 = 0.

d
2°. %log(:v)h:l =1.

3°. log(zy) = log(z) + log(y).
If we take y = 1/x, we get

log(z) + log (1) = 0. (2.10)

X
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Definition 2.3. If a function 1 satisfies ¢(1) = 0,%/(1) = 1 and

1
@) +o(-) =0, (2.11)
we call it a loglike function.
Obviously, polynomials can not be explike functions or loglike functions, so we try
to find explike and loglike functions in the form of rational functions.
Theorem 2.1Bl. LMM is symplectic for linear Hamiltonian systems iff its step
transition operator g = ¢(1a) is explike, i.e., p(u) - p(—p) =1, ¢(0) =1,¢/(0) = 1.
Theorem 2.2[4. LMM is symplectic for linear Hamiltonian systems iff Y(\) =
A 1
fr(()\i is a loglike function, i.e., P(\) + ¢<X> =0, ¢(1) =0,¢'(1) = 1.

Proof. From Theorem 1, we have ¢(u)o(—p) = 1, so A = ¢(u), % = ¢(—p).

1 1
The inverse function of ¢ satisfies () = p, w(x> = —pu, e, Y\ + ¢(X) =0,
¥(0) = 1,4'(1) = 1 follows from consistency condition 1°, 2°.

1
On the other side, if ¥(\) = —w(x), let (\) = p, then its inverse function is

1
¢(p) = A and ¢(—p) = 5% we then have ¢(u)p(—u) = 1.
Theorem 2.3. If {(\) antisymmetric polynomial, o(X\) is a symmetric one, then

= ¢ satisfies
v = ) satisfi 1
$(1) =0, o) +vA) =0
Proof.
£ = A’%(%) = iam_i)\i = — N\ = —£(\)
=0
5(\) = )\mo(i) = iﬁm_w’ = LB\ = a())
=0
_ W) 1y _EG3) AR )
vO=56) Y(3) = o) = e = o
we obtain ¥()\) + @z)(%) = 0. Now £(1) = iak =0, o(1) = iﬂu £ 0, then
5(1) k=0 k=0
() = gy =0

Corollary 2.1. If above generating polynomials is consistency with ODE (1.1),
1
then ¥ () is loglike function. i.e. ¢<X> +¢Y(N\)=0,9(1)=0,¢'(1) =1.
!/ / !
— 1
P’)"OOf. ¢/(1):§U O-é._é()

o2 ol
condition.

= 1. This condition is not others just consistence
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§A)

a(A)

autisymmetric polynomial while o(\) is a symmetric one.
Proof. We write formally

Theorem 2.4. Let ¥(\) =

irreducible loglike function, then &(\) is an

EQN) = 4 A™ + @ AT A+ g

T(A) = B A™ 4 B A"+ Bid + B
(if deg&(N) = p < m, set a; = 0 for i > p, if deg@Q(\) = ¢ < m, set 3; =0 for i > q).
P(1) = 0 = £(1) = 0, since otherwise, if £(1) # 0, then ¥(1) = g((?) # 0. Now
£(1) = 0 < o(1) # 0, since otherwise £(1) = o(1) = 0 = £(A), o(A) would have
common factor. So we have

m p m q
E)=> =) ar=0, o(1)=) Be=> B #0

k=0 k=0 k=0 k=0
If m = deg& = p, then oy, = ), #0. If m = dego = ¢, then 3,, = 3, #0

e amed)  En
Y(3) = 2@ = eh = 500

Sl >l
S| >

Since ¥(\) + LZJ(%) = 0, we have

Q) _ S ea(0) = —EN)o(h) = €0 [ENO(N). () | FEWN).

o) ()

Since £()\), o(\) have no common factor, then &(\) | £(N), o(A) | 6(\). If m =
deg£(\) = deg€ < degé = e

EN) = (V) = a(N) = —c5(N)

Since vy # 0 = A A™ + g A ANV 4 - 4 ag = clam + - ™) =y, = cay,

ag = CQy = Q;, = lau,, therefore ¢ = 1, ¢ = +1. Suppose ¢ = +1, then
o(A) = —6(N\), 7ok = o(1) = —a(1) = o(l) < o(1) = 0, this leads to a
contradiction with the assumption (1) # 0. Therefore ¢ = —1, i.e.

E()\) = _é(/\)7 a] - _a’m—j7 .7 - 07 17 s,
J(/\) = &()\)7 IBJ = ﬁm—j7 .] = 0717"'7m

The proof for the case m = deg o () proceeds in exactly the same manner as above.

3. Rational Approximations to Exponential and Logarithmic
Functions

1. We first study a simple example, the Leap-frog scheme

29 = 20 + 27az;. (3.1)
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Let 21 = c2g, then zg = ¢ !21, insert this equation into (3.1), we get

1 1 1
22:27'@2’14—72’1:(27—a—|-7>21:d121, 21:7122:9’
¢ c 21a + dy
1 1
23 =21+ 2Ta29 = (2Ta + 71)22 =dozy, 2o = — 23,
2Tra + — 27a + 27a+%
c
1
Z4 - 27-a + —_— = d42’37 ~~~~~~
( 2ra + 27'(11—|—l )
where dj can be written in the form of continued fractions
1 1 1
di, =2 o . | o~ o 3.2
¥ Ta+27'a—0—27a+"'+27'a+'”7 (3:2)
and
lim dy =g =7a+ /14 (ra)?. (3.3)
k—o00

We assume the transition operator of Leap-frog to be g, from (3.1) we have g% —
1 = 27ag, now we have g = 7a + /1 + (7a)?. Here only sign + is meaningful, thus
g = Ta+ /1 + (7a)? which is just the limit of continued fraction (3.2). It is easy to
verify that g is explike, i.e., g(u)g(—p) = 1. So the Leap-frog scheme is symplectic for
linear Hamiltonian systems in the sense our new definition.

2. For the exponential function

0o _k
z
exp(z) =1+ g o (3.4)
k=1 """

we have Lagrange’s continued function

(2) 1+z —z z —z
exp(z) = - — —
P 1+ 2+ 42n—1+ 2 +---
ar  a G2n—1  Q2p
=by+— —= — , 3.5
0 bl+b2+"‘+b2n—1+b2n+“' ( )
where
ay = z, az = —=z, ) a2pn—1 = %, a2p = —%, n Z ]-7
b0:1, blzl, b2:2, e, an_1:2n—1, anZQ, nZl,
and Euler’s contract expansion
(5) =14 2z 22 22
exp(z) = —
P 2— 246+ +22n—1)+
A A A
_ 0_,_71 2 n (3.6)

where

A1 —22’, AQ :2‘2,
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Bo=1, Bi=2—2 DBy=6, ---, Bp=22n-1), n>2
We have

&_@_1 pr_l+z pp P 24z p3 644z+2°

Qo qo T 17 ¢ Q1 2-z g3 6 — 22

P4 P2 12 + 6z + 22

Qs 126+ T

199

(3.7)

In general po,_1(2) is a polynomial of degree n, g2,,—1 is a polynomial of degree n — 1,
SO Pan—1/Gan—1 is not explike. While po, = P, (), q2n = @Qn(2) are both polynomials

of degree n and from the recursions
Py=1, P=2+z P,=2P, 2+202n—1)P,_y,
QO =1, Q =2-z, Qn = Z2Qn—2 + 2(27’L - I)Qn—l-

It’s easy to see that forn =10,1,---

So the rational function
P (z) o P.(2)

o2 = 5.0 ()

is explike and
n(2) —exp(z) = O([2|*" 1),

where

Py=1, Pi=2+42z Pu(2)=22P, o(2) +2(2n — 1)P,_1(2), n > 2.

This is just the diagonal Padé approximation.
3. For the logarithmic function

(w—1)*

log(w):kZ::lW,
we have the Lagrange’s continued fraction
w—1 w—-1 w-1 2w-1) (n—1)(w—-1) n(w-1)
1 =
B =TT T T 4 2 44 -1 4+ 2
_a e Gon-1 G2n
bi +by+bg+bs+ - +bap1 + o+
where
ag=w-—1,aa=w-1,a3=w—-1, ag =2(w—1), -,
b0:O7b1:15b2:25b3:37b4:27"'a
and

agn—1 = (n—1)(w—1), azgp =n(w—-1), n>2,

(3.8)

(3.9)

(3.10)

(3.11)



200 K. FENG
b2n—l :2n_17 b2n:27 n227

and the Euler’s contracted expansion

log (1) 20w—1) 2w—1) (2.2(w—1))? (2(n — 1)(w — 1))?
w) =
& wtl —6w+1) — 25w+1) —-— 22n—Dw+1) — -
A A A A
_1 a2 48 on , (3.12)
Bi+By+B3+ -+ B+ -
where
Ay =2w—1), Ay = -2(w—1), -, Ay =—2(n —1)(w —1))%, n >3,
By=0, Bi=w+1, Bb=6(w+1), ---, B,=22n—-1)(w+1), n>2.
The followings can be get by recursion
P _
Bo_p_ogp_ g 2_B_2w-1)
Qo a @ @ w+1
@_w2+4w—5 pr P 3(w? — 1) (3.13)
s Aw+2 T g Qr wl+dw+1 )

In general
p2n—1(w) 9 p2n(w) 2n+1
————= —log(w) = O(Jlw — 1|°"), ——= —log(w) = O(Jw — 1]*"").
Pt —log(u) = 0w =1P), - 2208 —tog(w) = O(fuw —11*)

The rational function % approximates log(w) only by odd order 2n — 1, it does

not reach the even order 2n, and is not loglike. However

_ poa(w) _ Pu(w)
q2n(w) Qn(w)
is a loglike function. In fact, by recursion, it’s easy to see that

1

w

Rn = % (w)

Po(w) = —w"Po(—),  Qu(w) = w"Qu(—), (3.14)

1
w
and Vn, @, (1) # 0. We also have

Py =0, Pi(w) =2(w—1), Py(w) =3(w? - 1),
Qo=1, Qi(w) =w+1, Qa(w) =w’” + 4w + 1,
and for n > 3,
Po(w) = —(2(n — 1)(w — 1))2P,_o(w) +2(2n — 1)(w — 1) P,_a(w),
Qu(w) = —((2n — 1)(w — 1))*Qu_(w) + 2(2n — 1) (w — 1) Qs (w).
(3.15)

So we see R1(\) is just the Euler midpoint rule and Ra(\) S g just the Simpson

= N2FArt1
scheme.
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Conclusion: The odd truncation of the continued fraction of the Lagrange’s ap-
proximation to exp(z) and log(z) is not explike nor loglike, while the even truncation
is explike and loglike. The truncation of the continued fraction got from Euler’s con-
tracted expansion is explike and loglike.

4. Another famous rational approximation to a given function is the Obreschkoff
formulal®l

n

. CZ Nk p(k) B O Cfn o k ¢(k)
Rm,n($) Z o (zo — )" 17 (z) Z o (z —x0)" 1 (20)
k=

=k k] « ek K
1 x
— (m+n)'/ (2 — t)™(xo — t)"f (1) dt. (3.16)
U Jao

1°. Take f(z) = e*,z9 = 0, we obtain Padé approximation exp(z) = Ry, ,(x). If
m = n, we obtain Padé diagonal approximation Ry, ().

2°. Take f(x) = log(z),zo = 1, we obtain log(z) = Ry, n(z). If m = n, we obtain
loglike function R,,(x),

1 - C]:n m— —1ym
Rp(N) = = > (A= D F 4 (=D)FIam),
A 1 csk
i.e.,
1
Rin(N) + R () = 0
We have

R (A) = log(X) = O(IA*"*1),

A2 -1
Fi=—3
_ 1 4 3
Ro(\) = 12/\2(—>\ +8X% —8A+ 1),
1
A= —— (A — 09N 450 — 4502 + 9N — 1
R3(\) 60A3( 9IN> + 45 5A% +9 ),

where Rj()) is just the leap-frog scheme.

4. Nonexistence of SLMM for Nonlinear Hamiltonian Systems

For nonlinear Hamiltonian systems, there exists no symplectic LMM. When equa-
tion (1.1) is nonlinear, how to define a symplectic LMM? The answer is to find the
step-transition operator g : R — R", let
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zn=9g(g9(-+-(9(2))--) =gogo---ogoz)=g"(z),
we get from (1.2)

k n
=0 1=0

It’s easy to prove that if LMM (4.2) is consistent with equation (1.1), then for smooth
f and sufficiently small step-size 7, the operator g defined by (4.1) exists and it can be
represented as a power series in Tand is near identity. Consider the case that equation
(1.1) is an Hamiltonian system, i.e., a(z) = JVH(z), we have the following definition.

Definition 4.4. LMM is symplectic if the trsnsition operator g defined by (4.1) is
symplectic for all H(z) and all step-size T, i.e.,

9x(2) Jgs(2) = J. (4.3)

This definition is a completely different criterion that can include the symplectic
condition for one-step methods in the usual sense. But Tang in [5] has proven that non
linear multistep method can satisfy such a strict criterion. Numerical experiments due
to Li in [6] shows the explicit 3-level centered method(Leap-frog method) is symplectic
for linear Hamiltonian systems H = £ (p? + 4¢*)(See Fig 1 of [6]) but is non-symplectic
for nonlinear Hamiltonian system H = % (p* + ¢*) + 2¢*(See Fig 2(a,b) of [6]).
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