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Abstract

The finite element solutions of elliptic eigenvalue equations are shown to have
a multi-parameter asymptotic error expansion. Based on this expansion and a
splitting extrapolation technique, a parallel algorithm for solving multi-dimensional
equations with high order accuracy is developed.
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1. Introduction

The extrapolation method has become an important technique to obtain more ac-
curate numerical solutions since it was first established by Richardson in 1926. The
applications of extrapolation method in the finit difference can be found in [14]. In 1983,
Q.Lin, T.Lü and S.Shen[8] introduced this technique into the finite element method, the
development in this direction can be found in [5, 11, 12, 16]. However, this technique
has a limitation when dealing with high dimentional problems, since the increasing
of the dimension will cause an enormous amount of grid points which requires great
computer power in case of the successive refinement. Recently, Zhou et al.[19,20] intro-
duce a so called multi-parameter splitting extrapolation method. In this new method,
the domain is divided into several subdomains based on the geometry of the domain,
each of which is covered by different meshes so that the number of independent mesh
parameters, say p, is as large as possible, and a higher order accuracy approximation
is produced by (p + 1)-processors in parallel. In general, p can be greater than the
dimension of the problem. As a result, if the size of the original discrete problem is
large, then the size of problems to be dealt with in each processor can be reduced
significantly. In this paper, we adopt this method to the elliptic eigenvalue problem, a
parallel algorithm for higher order approximations is also proposed.

2. Multi-Parameter Asymptotic Expansion for Eigenvalue

In this section, we only investigate simple eigenvalue problems for elliptic equations,
so that we can concentrate on the main idea behind the construction without involving
much effort in less important things, let us consider the Dirichlet problem
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{ −4u = λu, in Ω,

u = 0, on ∂Ω,
(2.1)

where Ω = (0, 1)n ⊂ Rn(n ≥ 2).
Its weak form reads as follow: find (λ, u) ∈ R× (H1

0 (Ω)\{0}) such that

a(u, v) = λ(u, v), ∀v ∈ H1
0 (Ω), (2.2)

where a(u, v) =
∫

Ω
∇u∇v, and (f, v) =

∫

Ω
fv,

∫

Ω
· =

∫

Ω
·dx1 · · · dxn.

Let Ω be divided into m rectangular subdomains T = {Ωj : j = 1, 2, · · · ,m} so
that the edges of each subdomain are parallel to the coordinate axe respectively and
T is quasi-uniform. On the subdomain Ωj , a rectangular mesh refinement with mesh
parameters {hj,1, · · · , hj,n} is imposed, where 2hj,i is the mesh size in the ith coordinate
direction. Assume that the union of all meshes form a quasi-uniform n−rectangular
partition T h of Ω with size h, then T h is determined by some mesh parameters, say
h1, · · · , hp, with h = max{hi : i = 1, · · · , p} and n ≤ p ≤ n + m − 1. To minimize the
sizes of the discrete subproblems, p may be chosen such that p > n.

Let Sh(Ω) = {v ∈ C(Ω): v|e is n-linear, ∀e ∈ T h}, Sh
0 (Ω) = Sh(Ω) ∩ H1

0 (Ω), and
ih : C(Ω) −→ Sh(Ω) be the usual n−linear interpolation operator.

The finite element approximation of eigenvalue problem is determined by finding
(λh, uh) ∈ R× (Sh

0 (Ω)\{0}) satisfying

a(uh, ϕ) = λh(uh, ϕ), ∀ϕ ∈ Sh
0 (Ω). (2.3)

For continuous eigenvalue λ, there holds an orthonormal eigenfunction u and dis-
crete solutions (λh, uh) ∈ R× Sh

0 (Ω) such that

|λ− λh|+ ‖u− uh‖0,2 ≤ ch2‖u‖2,2, (2.4)

where ‖ · ‖0,2 denotes the usual Soblev space, we also denote it by ‖ · ‖ in the following.
For simplicity, assume that T h|Ωi is uniform and u is smooth enough. We denote Rhu

to be the Ritz projection of u which is determined by the equation
∫

Ω
5(u−Rhu)5 v = 0, ∀v ∈ Sh

0 (Ω).

For e ∈ T h, denote the center of e by xe = (xe,1, · · · , xe,n) and e =
n∏

j=1
[xe,j − he,j ,

xe,j + he,j ]. For 1 ≤ j ≤ n, define

Fe,j(xj) =
1
2
((xj − xe,j)2 − h2

e,j).

From the definition of Fe,j(xj), we easily get the following useful identity

Fe,j =
1
6
(F 2

e,j)
′′ − 1

3
h2

e,j . (2.5)

We recall that there holds the following multi-parameter expantion (cf.[19,20]).
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Lemma 2.1. If u is smooth enough, then for any e ∈ T h,
∫

e
∂j(u− ihu) =

∑

i6=j

∫

e
Fe,i∂

2
i ∂ju−

∑
{n1,···,nl}⊂{1,···,n}\{j}

l≥2

∫

e

( l∏

s=1

F ′
e,ns

)
∂n1 · · · ∂nl

∂ju (2.6)

and ∫

e
∂j(u− ihu)

s∏

i=1

(xli − xe,li) = O(h3+n+s), (2.7)

where s = 1, · · · , n− 1, ∂j = ∂xj , li 6= j. The last term in (2.6) disappears if n = 2.
Lemma 2.2. If u ∈ H1

0 (Ω)∩H4(Ω), then, there exists {w1, · · · , wp} ⊂ H1
0 (Ω) such

that

Rhu(x) = ihu(x) +
p∑

i=1

wih
2
i + O(h4) (2.8)

holds in L2(Ω).
The following identity for the interpolation operator will play an important role in

deriving multi-parameter asymptotic error expansion.
Proposition 2.3. For any e ∈ T h, there holds

∫

e
(u− ihu) =

n∑

i=1

∫

e
Fe,i∂

2
i u−

∑
{n1,···,nl}⊂{1,···,n}

l≥2

∫

e

( l∏

s=1

F ′
e,ns

)
∂n1 · · · ∂nl

u (2.9)

and ∫

e
(u− ihu)

s∏

i=1

(xli − xe,li) = O(h3+n+s), (2.10)

where s = 1, · · · , n− 1.

Proof. We give the proof for n = 2.
When n = 2,

∫

e
(u− ihu) =

∫

e
F ′′

1 (u− ihu) =
( ∫

l1
−

∫

l3

)
F ′

1(u− ihu)F ′′
2 +

∫

e
F1∂

2
1u

=
∫

e
F1∂

2
1u +

∫

e
F2∂

2
2u−

∫

e
F ′

1F
′
2∂1∂2u, (2.11)

where l1 and l3 are edges parallel to x-axis.
For the general case, we can use induction method. We now turn to the proof for

the second relation. Notice that xl − xe,l =
1
6
(F 2

e,l)
(3).

Thus

I ≡
∫

e
(u− ihu)(xl − xe,l) =

1
6

∫

e
(u− ihu)(F 2

e,l)
(3)

=
1
6

( ∫

xl=xe,l+he,l

−
∫

xl=xe,l−he,l

)
(F 2

e,l)
(2)(u− ihu) +

1
6

∫

e
(F 2

e,l)
′∂2

l u

=
h2

e,l

3

∫

e
∂l(u− ihu)− 1

6

∫

e
F 2

e,l∂
3
l u, (2.12)

which proves the result for s = 1 combining with Lemma 2.1. We finally get the result
by induction.
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We are now able to derive multi-parameter error expansion for the eigenvalues. For
simplicity, we only consider the case of a simple eigenvalue λ. From (2.3) and the
normalization condition for the eigenfunctions, we get

‖∇(u− uh)‖2 = λ + λh − 2λ(u, uh).

The insertion of the identity ‖u− uh‖2 = 2− 2(u, uh) leads to the following equation:

‖∇(u− uh)‖2 = λh − λ + λ‖u− uh‖2.

Further, since the Ritz projection is the projection under the energy norm, we
obtain

‖∇(u− uh)‖2 =‖∇(u−Rhu)‖2 + ‖∇(Rhu− uh)‖2

=‖∇(u−Rhu)‖2 + λ(u− uh, Rhu− uh) + (λ− λh)(uh, Rhu− uh).
(2.13)

Thus, from the above two identities together with the error estimates (2.4) we get

λh − λ = ‖∇(u−Rhu)‖2 + O(h4)‖u‖2
2,2. (2.14)

Therefore, We only needs to expand the first term on the right hand side of (2.14),
in order to get the multi-parameter expansions for the eigenvalue. Again, from the
eigenequations (2.2) and (2.3), we have

‖∇(u−Rhu)‖2 = λ(u, u−Rhu)

= λ(u, u− ihu) + λ(u, ihu−Rhu). (2.15)

For the first term on the right of (2.15), we apply proposition 2.1 and the identity (2.5)
to see that

(u, u− ihu) =
∑

e∈T h

∫

e

n∑

i=1

Fe,i∂
2
i (u(u− ihu)) + O(h4)

= −1
3

∑

e∈T h

∫

e

n∑

i=1

h2
e,i∂

2
i ((u− ihu)u) + O(h4)

= −1
3

∑

e∈T h

∫

e

n∑

i=1

h2
e,iu∂2

i u + O(h4) = −1
3

p∑

i=1

h2
i

∫

Ω
Niu · u + O(h4),

(2.16)

where Ni is some (piecewise) differential operator of 3rd order. As for the second term
on the right hand side of (2.15), we have, by applying lemma 2.2,

(u, ihu−Rhu) = −
p∑

i=1

h2
i (u,wi) + O(h4). (2.17)

Combing (2.16) and (2.17), we finally obtain
Theorem 2.4. Let λ be a simple eigenvalue, then, λh, its finite element approxia-

tion admits the following muiti-parameter expansion

λh − λ =
p∑

i=1

ξih
2
i + O(h4) (2.18)

for ξi independent of mesh parameter hi, i = 1, · · · , p.
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3. Multiparameter Expansions for Eigenfunction

In this section, we shall follow the line of Lin & Xie[9] and Blum[1], our aim is to get
the multi-parameter expansion of the error uh − ihu in the case of a simple eigenvalue
λ. As in Blum[1], we denote

∏
and

∏⊥ to be the orthogonal projections onto the
eigenspace E(λ) and its complement E(λ)⊥ respectively, then

uh − ihu =
∏

(uh − ihu) +
∏⊥

(uh − ihu)

= (uh − u, u)u + (u− ihu, u)u +
∏⊥

(uh − ihu). (3.1)

We shall now estimate the terms on the right hand side of (3.1) for n = 2. For the

first term, we have (uh−u, u) = −1
2
‖u−uh‖2 = O(h4). For the second term, we apply

(2.16) to get

(u− ihu, u) = −1
3

p∑

i=1

h2
i u

∫

Ω
Niu · u + O(h4).

We now come to the estimation of the last term. Following Lin and Xie[9], we introduce
the operators K ≡ (−∆)−1 and Kh = RhK, and obtain

u− uh =λKu− λhKhuh = λK(u− uh) +
1
λ

(λ− λh)u + (u−Rhu)

+ (λ− λh)(Kh −K)u + (λ− λh)K(uh − u) + λh(K −Kh)(uh − u).(3.2)

Note that ‖K −Kh‖∞ = O(h2| lnh|2), we finally see that

u− uh = λK(u− uh) +
1
λ

(λ− λh)u + (u−Rhu) + O(h4| lnh|2), (3.3)

from which we obtain

ihu− uh = λK(u− uh) +
1
λ

(λ− λh)u + (ihu−Rhu) + O(h4| lnh|2), (3.4)

or equivalently

(I − λK)(ihu− uh) = λK(u− ihu) +
1
λ

(λ− λh)u + (ihu−Rhu) + O(h4| lnh|2), (3.5)

since v ≡ K(u− ihu) satisfies the equation

(∇v,∇ϕ) = (u− ihu, ϕ), ∀ϕ ∈ H1
0 (Ω). (3.6)

For the right term of the equation (3.6), by using proposition (2.3), we can define the
coefficients e1

Ω, · · · , ep
Ω such that

h2
1(∇e1

Ω,∇ϕ) + · · ·+ h2
p(∇ep

Ω,∇ϕ) = −λ

3

p∑

i=1

h2
i

∫

Ω
Niu · ϕ, ∀ϕ ∈ H1

0 (Ω). (3.7)
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Substituting (3.7), (2.8) into (3.5), we get

(I − λK)(ihu− uh) =
p∑

i=1

h2
i (e

i
Ω − wi)− λ−1(λ− λh)u + O(h4| lnh|2). (3.8)

Since (I − λK) is an ismorphism on the space E(λ)⊥ and
∏⊥ u = 0, thus

⊥∏
(ihu− uh) =

p∑

i=1

h2
i (I − λK)−1

∏⊥
(−ei

Ω + wi) + O(h4| lnh|2). (3.9)

In view of the above discussion, we finally arrive at the following result
Theorem 3.1. Let the assumption of Theorem 2.4 be satisfied. Then, the eigen-

function corresponding to a simple eigenvalue λ, admits the expansion

uh − ihu =
p∑

i

h2
i ζi + O(h4| lnh|2), (3.10)

where ζi, i = 1, · · · , p are functions indenpent of mesh parameters h1, · · · , hp.

4. Partition for General Domain

In this section, we shall discuss the case when Ω is an polygonal convex domain in
R2 for sake of simplicity. We find that similar result is obtained.

First decompose Ω into several fixed convex quadrilaterals T = {Ω1, · · · ,Ωm} such
that T is quasi-uniform. Denote (ai,j , bi,j) (j = 1, 2, 3, 4) to be the 4 vertices of the Ωi.

Let Φi:

x1(ξ, η) = ai,1(1− ξ)(1− η) + ai,2ξ(1− η) + ai,3ξη + ai,4(1− ξ)η,

x2(ξ, η) = bi,1(1− ξ)(1− η) + bi,2ξ(1− η) + bi,3ξη + bi,4(1− ξ)η

be the bilinear coordinate transformations from the unit square [0, 1]2 to Ωi(i = 1, · · · ,m).
Under such mapping, a line parallel to ξ− or η− axis in [0, 1]2 is transformed to the

line linking the two equipartition points of a two opposite edges in Ωi. For a function
v defined on Ωi, we define the function v̂ on [0, 1] by

v̂ = v ◦ Φi. (4.1)

Conversely, a function v̂ defined on [0, 1]2 determines a function v on Ωi satisfying (4.1).
Define

Sh
0 (Ω) = {v ∈ H1

0 (Ω) : v ◦ Φiis piecewise bilinear on [0, 1]2, i = 1, 2, · · ·}, (4.2)

u = û ◦ Φ−1
i , on Ωi,

ihu = îhû ◦ Φ−1
i , on Ωi,

where îhû is the piecewise bilinear interpolant of û on [0, 1]2. ihu(x) = u(x) holds
for x being the nodal points in Ω and Sh

0 (Ω) is determined by some parameters, say
h1, · · · , hp. By induction, it can be proved that for any polygonal domain with a proper
choice of {Ω1, · · · ,Ωm}, p satisfies p ≥ 2.
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Then there exist an interpolation operator Ih (cf. Lin (1990) and Lin Yan and Zhou
(1991)) constants ξi and functions wi such that

λh − λ =
p∑

i=1

ξih
2
i + O(h4) (4.3)

Ihuh = u +
p∑

i=1

wih
2
i + O(h4| lnh|2) (4.4)

hold for any x ∈ Ω having positive distance from the vertices of T .
Remark 4.1. It should point out that other kinds of partitions can also be em-

ployed and the corresponding multi-parameter asymptotic error expansions are also
exist (cf. Zhou, Liem and Shih (1994)).

5. A Parallel Algorithm

Consider an 2−dimensional problem. Suppose that the domain Ω is divided into
m nonoverlapping subdomains {Ωj : j = 1, 2, · · · ,m}, on which meshes are imposed
and h1, h2 · · · are the mesh parameters. Among them, p parameters are independent,
we denoted it by h1, · · · , hp without loss of generality. Let h = max{hi : i = 1, · · · , p}
and denote the numerical solution by u(h1, · · · , hp). In many cases, there exists a
multi-parameter expansion

λ(h1, · · · , hp) = λ +
p∑

i=1

ξih
2
i + O(h4), (5.1)

u(h1, · · · , hp) = u +
p∑

i=1

ηih
2
i + O(h4| lnh|2), (5.2)

where u is the exact solution and ξ, ηi (i = 1, · · · , p) are independent of (h1, · · · , hp).
It is obvious that a careful choice of mesh parameters will save the computational

work and computer storage and yields a higher accuracy approximation, i.e., there
holds

λc ≡
(
4

p∑

i=1

λi − (4p− 3)λ0

)
/3 = λ + O(h4), (5.3)

uc ≡
(
4

p∑

i=1

ui − (4p− 3)u0

)
/3 = u + O(h4| lnh|2), (5.4)

where λi = λ(h1, · · · , hi−1, hi/2, hi+1, · · · , hp) and ui = u(h1, · · · , hi−1, hi/2, hi+1, · · · , hp).
Thus, a parallel algorithm for higher accuracy approximations follows:

Algorithm.
Step 1. Compute λi, ui(0 ≤ i ≤ p) in parallel.

Step 2. Set λc =
(
4

p∑

i=1

λi − (4p− 3)λ0

)
/3, and uc =

(
4

p∑

i=1

ui − (4p− 3)u0

)
/3.
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[7] Q. Lin, T. Lü, The splitting extrapolation method for multidimensional problems, J. Comp.
Math., 1 (1983), 45-51.
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