
Journal of Computational Mathematics, Vol.16, No.3, 1998, 239–256.
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Abstract

We consider the linearized incompressible Navier-Stokes (Oseen) equations in
a flat channel. A sequence of approximations to the exact boundary condition
at an artificial boundary is derived. Then the original problem is reduced to a
boundary value problem in a bounded domain, which is well-posed. A finite element
approximation on the bounded domain is given, furthermore the error estimate of
the finite element approximation is obtained. Numerical example shows that our
artificial boundary conditions are very effective.
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1. Introduction

Many problems arising in fluid mechanics are given in an unbounded domain, such as
fluid flow around obstacles. When computing the numerical solutions of these problems,
one often introduces artificial boundaries and sets up artificial boundary conditions on
them. Then the original problem is reduced to a problem in a bounded computational
domain. In order to limit the computational cost these boundaries must be not too
far from the domain of interest. Therefore, the artificial boundary conditions must be
good approximate to the “exact” boundary conditions (i.e. such that the solution of
the problem in the bounded domain is equal to the solution of the original problem).
Thus the accuracy of the artificial boundary conditions and the computational cost are
closely related. It has often been studied during the last ten years to design artificial
boundary conditions with high accuracy on a given artificial boundary for solving partial
differential equations on an unbounded domain. For example, Goldstein[5], Feng[4],
Han and Wu[14,15], Hagstrom and Keller[6,7], Halpern[8], Halpern and Schatzman[9],
Nataf[17], Han, Lu and Bao[13], Han and Bao[11,12], Bao[1] and others have studied how
to design the artificial boundary conditions for solving partial differential equations in
an unbounded domain.
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In this paper we consider the linearized incompressible Navier-Stokes equations in a
slip flat channel. It is an approximate problem of two-dimensional steady incompressible
viscous folw around obstacles. We derived a solution which can be written in the form
of Fourier series in the unbounded domain by the method of separation of variables.
Then the exact and a series of approximate artificial boundary conditions are derived by
the continuity of velocity and the normal stress at the artificial boundary. Therefore
the original problem is reduced to a series of problems in a bounded computational
domain. Particularly, a finite element approximation on the bounded domain is given,
and the error estimate of the finite element approximation is obtained. Numerical
example shows the effectiveness of the artificial boundary condition.

2. Oseen Equations and their Solution

Let Ωi be an obstruction in a channel defined by R× (0, L) and Ω = R× (0, L) \ Ω̄i.
Consider the following Oseen equations:

a
∂u

∂x1
+∇p = ν4u, in Ω, (2.1)

∇ · u = 0, in Ω, (2.2)

with boundary conditions

u2|x2=0,L = 0, σ12|x2=0,L = ν
(∂u1

∂x2
+

∂u2

∂x1

)∣∣∣
x2=0,L

= 0, −∞ < x1 < +∞, (2.3)

u|∂Ωi
= 0, (2.4)

u(x) → u∞ = (a, 0)T , when x1 → ±∞; (2.5)

where u = (u1, u2)T is the velocity, p is the pressure, ν > 0 is the kinematic viscosity,
x = (x1, x2)T is coordinate, a > 0 is a constant and σ12 is the tangential stress on the
wall. Obviously condition (2.3) is equivalent to the following condition:

∂u1

∂x2

∣∣∣
x2=0,L

= u2|x2=0,L = 0. (2.6)

Taking two constants b < d, such that Ωi ⊂ (b, d) × (0, L), then Ω is divided into
three parts Ωb, ΩT and Ωd by the artificial boundaries Γb and Γd with

Γb = {x ∈ R2| x1 = b, 0 ≤ x2 ≤ L},
Γd = {x ∈ R2| x1 = d, 0 ≤ x2 ≤ L},
Ωb = {x ∈ R2| −∞ < x1 < b, 0 < x2 < L},
ΩT = {x ∈ R2| b < x1 < d, 0 < x2 < L} \ Ω̄i,

Ωd = {x ∈ R2| d < x1 < +∞, 0 < x2 < L}.
We now consider the Oseen equations on the unbounded domain Ωd:

a
∂u

∂x1
+∇p = ν4u, in Ωd, (2.7)
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∇ · u = 0, in Ωd, (2.8)
∂u1

∂x2
|x2=0,L = u2|x2=0,L = 0, d ≤ x1 < +∞, (2.9)

u(x) → u∞, when x1 → +∞, (2.10)

u|Γd
= u(d, x2), 0 ≤ x2 ≤ L. (2.11)

From (2.7)–(2.8), we have

4
(
ν4− a

∂

∂x1

)
u2 = 0. (2.12)

Equation (2.12) with boundary condition (2.9) can be solved by the method of separa-
tion of variables. We obtain

u2(x) =
∞∑

m=1

[
ame−

mπ
L

(x1−d) + bmeλ−(m)(x1−d)
]
sin

mπx2

L
, (2.13)

where

λ−(m) =
a−√

a2 + 4ν2m2π2/L2

2ν
, m = 1, 2, 3, · · ·

Substituting (2.13) into (2.8) and (2.7) respectively, we obtain

u1(x) = a +
∞∑

m=1

[
ame−

mπ
L

(x1−d) − mπ

Lλ−(m)
bmeλ−(m)(x1−d)

]
cos

mπx2

L
,

(2.14)

p(x) = −a
∞∑

m=1

ame−
mπ
L

(x1−d) cos
mπx2

L
, (2.15)

where we assume
lim

x1→+∞ p(x) = p∞ = 0.

Then (2.13)–(2.15) satisfy (2.7)–(2.10) for any constants a1, b1, a2, b2, · · · Therefore
we derived a general solution of Oseen equations in the unbounded domain Ωd.

3. The Exact Boundary Condition and its Approximations at the
Artificial Boundary Γd

We now consider the following problem:

a
∂u

∂x1
+∇p = ν4u, in Ω \ Ω̄b, (3.1)

∇ · u = 0, in Ω \ Ω̄b, (3.2)
∂u1

∂x2

∣∣∣
x2=0,L

= u2|x2=0,L = 0, b ≤ x1 < +∞, (3.3)

u|∂Ωi
= 0, (3.4)

u|Γb
= u∞, (3.5)

u(x) → u∞, when x1 → +∞. (3.6)
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Let ε(u) = (εij(u))2×2 and σ(u, p) = (σij(u, p))2×2 denote the rate of strain and stress
tensors respectively. We have that

εij(u) =
1
2

(∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2 (3.7)

and
σij(u, p) = −pδij + 2νεij(u), i, j = 1, 2, (3.8)

where δij is the Kronecker Delta whose properties are

δij =

{
1, i = j,

0, i 6= j.

Furthermore let σn = (σn1 , σn2)
T denote the normal stress on the artificial boundary

Γd, then

σn1 = σ11n1 + σ12n2 = σ11 = −p + 2ν
∂u1

∂x1

∣∣∣Γd, (3.9)

σn2 = σ21n1 + σ22n2 = σ21 = ν
(∂u1

∂x2
+

∂u2

∂x1

)∣∣∣Γd, (3.10)

where n = (n1, n2)T = (1, 0)T is the outward normal vector on Γd.
we now use the transmission conditions

u(d−, x2) = u(d+, x2), (3.11)

σn(d−, x2) = σn(d+, x2) (3.12)

to obtain the exact boundary condition and its approximations at the artificial bound-
ary Γd. Substituting (2.13)–(2.15) into (3.9)–(3.10), we get

σn1 =
∞∑

m=1

[(
a− 2νmπ

L

)
am − 2νmπ

L
bm

]
cos

mπx2

L
, (3.13)

σn2 = ν
∞∑

m=1

[
− 2mπ

L
am +

(
λ−(m) +

m2π2

L2λ−(m)

)
bm

]
sin

mπx2

L
. (3.14)

From (2.13)–(2.14) and (3.13)–(3.14), a computation shows:

σn1 =
∞∑

m=1

[
2ν(−mπ + Lλ−(m))

L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2

− 2νmπ(mπ + Lλ−(m))
L3λ−(m)

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

]
cos

mπx2

L
≡ T1(u),

(3.15)

σn2 =
∞∑

m=1

[−2ν(mπ + Lλ−(m))
L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2
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+
2ν(−mπ + Lλ−(m))

L2

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

]
sin

mπx2

L
≡ T2(u)

(3.16)

and

u1|Γd
=a +

∞∑

m=1

Cm

[
a

ν

∫ L

0
σn1(d, x2) cos

mπx2

L
dx2 +

mπ

L

(
2 +

2mπ

Lλ−(m)

− a

νλ−(m)

) ∫ L

0
σn2(d, x2) sin

mπx2

L
dx2

]
cos

mπx2

L
≡ S1(σn),

(3.17)

u2|Γd
=

∞∑

m=1

Cm

[(2mπ

L
+ λ−(m) +

m2π2

L2λ−(m)

) ∫ L

0
σn1(d, x2) cos

mπx2

L
dx2

+
a

ν

∫ L

0
σn2(d, x2) sin

mπx2

L
dx2

]
sin

mπx2

L
≡ S2(σn), (3.18)

where
Cm =

2ν

(aL− 2νmπ)
(
a + 2ν2m2π2

L2λ−(m)

)
− 4ν2m2π2

L

, m = 1, 2, · · · .

Let
T (u) =

(
T1(u)
T2(u)

)
, S(σn) =

(
S1(σn)
S2(σn)

)
.

Therefore we obtain the exact boundary condition (3.15)–(3.16) or (3.17)–(3.18) at the
artificial boundary Γd. Then the problem (3.1)–(3.6) can be reduced to the following
two problems in a bounded domain ΩT :

Problem (I)

a
∂u

∂x1
+∇p = ν4u, in ΩT , (3.19)

∇ · u = 0, in ΩT , (3.20)
∂u1

∂x2

∣∣∣
x2=0,L

= u2|x2=0,L = 0, b ≤ x1 ≤ d, (3.21)

u|∂Ωi
= 0, (3.22)

u|Γb
= u∞, (3.23)

σn = T (u). (3.24)

Problem (II)

a
∂u

∂x1
+∇p = ν4u, in ΩT , (3.25)

∇ · u = 0, in ΩT , (3.26)
∂u1

∂x2
|x2=0,L = u2|x2=0,L = 0, b ≤ x1 ≤ d, (3.27)

u|∂Ωi
= 0, (3.28)

u|Γb
= u∞, (3.29)
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u|Γd
= S(σn), (3.30)

∫

Γd

p(d, x2)dx2 = 0. (3.31)

Fortunately we can prove the following theorem.
Theorem 1. Problem (I) is equivalent to Problem (II).
Proof. Let (u, p) be a solution of problem (I), then (u, p) satisfy (3.25)–(3.29).

Multiplying (3.15) and (3.16) by cos mπx2
L , sin mπx2

L (m = 1, 2, · · ·) respectively and
integrating on Γd, we obtain

u1|Γd
= c0 + S1(σn), u2|Γd

= S2(σn),

where c0 is a constant.

0 =
∫

ΩT

∇ · udx =
∫

∂ΩT

u · nds = −
∫

Γb

adx2 +
∫

Γd

u1(d, x2)dx2

= −a|Γb|+
∫

Γd

[c0 + S1(σn)]dx2 = |Γb|(c0 − a),

where |Γb| is the length of the segment Γb. Then c0 = a and
∫

Γd

p(d, x2)dx2 =−
∫

Γd

[
− p(d, x2)− 2ν

∂u2

∂x2
(d, x2)

]
dx2

=−
∫

Γd

[
− p(d, x2) + 2ν

∂u1

∂x1
(d, x2)

]
dx2 = −

∫

Γd

σn1dx2

=−
∫

Γd

T1(u)dx2 = 0

Thus (u, p) is a solution of problem (II).
On the other hand, let (u, p) be a solution of problem (II). Then (u, p) satisfy

(3.19)–(3.23). Multiplying (3.17) and (3.18) by cos mπx2
L and sin mπx2

L (m = 1, 2, · · ·)
respectively and integrating on Γd, we obtain

σn1 = c0 + T1(u), σn2 = T2(u),

where c0 is a constant.

0 =
∫

Γd

[
− p(d, x2)− 2ν

∂u2

∂x2
(d, x2)

]
dx2 =

∫

Γd

[−p(d, x2) + 2ν
∂u1

∂x1
(d, x2)dx2

=
∫

Γd

σn1dx2 =
∫

Γd

[c0 + T1(u)]dx2 =
∫

Γd

c0dx2 = c0|Γd|.

Thus c0 = 0. Hence (u, p) is a solution of problem (I). The proof is completed.
Let

TN
1 (u) =

N∑

m=1

[
2ν(−mπ + Lλ−(m))

L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2
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− 2νmπ(mπ + Lλ−(m))
L3λ−(m)

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

]
cos

mπx2

L
, (3.32)

TN
2 (u) =

N∑

m=1

[−2ν(mπ + Lλ−(m))
L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2

+
2ν(−mπ + Lλ−(m))

L2

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

]
sin

mπx2

L
, (3.33)

TN (u) =
(

TN
1 (u)

TN
2 (u)

)
.

Then we get a sequence of approximate boundary conditions at the artificial boundary
Γd.

σn = TN (u), N = 0, 1, 2, · · · (3.34)

Hence the original problem (3.1)–(3.6) is reduced to the following problem on the
bounded domain ΩT approximately for N = 0, 1, 2, · · ·

a
∂u

∂x1
+∇p = ν4u, in ΩT , (3.35)

∇ · u = 0, in ΩT , (3.36)
∂u1

∂x2

∣∣∣
x2=0,L

= u2|x2=0,L = 0, b ≤ x1 ≤ d, (3.37)

u|∂Ωi
= 0, (3.38)

u|Γb
= u∞, (3.39)

σn = TN (u). (3.40)

In the following section we shall show that the boundary value problems (3.19)–(3.24)
and (3.35)–(3.40) are well-posed.

4. The solutions of the problems (3.19)–(3.24) and (3.35)–(3.40)

Let Hm(ΩT ) and Hs(Γd) denote the usual Sobolev spaces on the domain ΩT and
the boundary Γd, with integer m and real number s. Furthermore let

Γ1 ={x ∈ R2| x2 = 0, b ≤ x1 ≤ d} ∪ {x ∈ R2| x2 = L, b ≤ x1 ≤ d},
Γi =∂Ωi,

V ={u ∈ H1(ΩT )×H1(ΩT )| u|Γb∪Γi = 0, u2|Γ1 = 0}
with norm ‖u‖2

V = ‖u1‖2
1,2,ΩT

+ ‖u2‖2
1,2,ΩT

,

W =L2(ΩT ) with norm ‖q‖W = ‖q‖L2(ΩT ),

M ={u ∈ H1(ΩT )×H1(ΩT )| u|Γi = 0, u|Γb
= u∞, u2|Γ1 = 0}.

Then the boundary value problem (3.19)–(3.24) is equivalent to the following variational
problem:

Find (u, p) ∈ M ×W, such that
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A(u, v) + A0(u, v) + A1(u, v) + B(v, p) = 0, ∀v ∈ V, (4.1)

B(u, q) = 0, ∀q ∈ W ; (4.2)

where

A(u, v) =2ν

∫

ΩT

2∑

i,j=1

εij(u) · εij(v)dx ≡ 2ν

∫

ΩT

ε(u) : ε(v)dx,

A0(u, v) =a

∫

ΩT

v
∂u

∂x1
dx,

A1(u, v) =−
∫

Γd

σn · vdx2 = −
∫

Γd

T (u) · vdx2

=
∞∑

m=1

[
2ν(mπ − Lλ−(m))

L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2

∫ L

0
v1(d, x2) cos

mπx2

L
dx2

+
2νmπ(mπ + Lλ−(m))

L3λ−(m)

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

∫ L

0
v1(d, x2) cos

mπx2

L
dx2

+
2ν(mπ + Lλ−(m))

L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2

∫ L

0
v2(d, x2) sin

mπx2

L
dx2

+
2ν(mπ − Lλ−(m))

L2

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

∫ L

0
v2(d, x2) sin

mπx2

L
dx2

]
,

B(u, q) =−
∫

ΩT

q∇ · udx.

Furthermore let

AN
1 (u, v) =−

∫

Γd

TN (u) · vdx2

=
N∑

m=1

[
2ν(mπ − Lλ−(m))

L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2

∫ L

0
v1(d, x2) cos

mπx2

L
dx2

+
2νmπ(mπ + Lλ−(m))

L3λ−(m)

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

∫ L

0
v1(d, x2) cos

mπx2

L
dx2

+
2ν(mπ + Lλ−(m))

L2

∫ L

0
u1(d, x2) cos

mπx2

L
dx2

∫ L

0
v2(d, x2) sin

mπx2

L
dx2

+
2ν(mπ − Lλ−(m))

L2

∫ L

0
u2(d, x2) sin

mπx2

L
dx2

∫ L

0
v2(d, x2) sin

mπx2

L
dx2

]
.

Then the problem (3.35)–(3.40) is equivalent to the following variational problem:

Find (uN , pN ) ∈ M ×W, such that

A(uN , v) + A0(uN , v) + AN
1 (uN , v) + B(v, pN ) = 0, ∀v ∈ V, (4.3)

B(uN , q) = 0, ∀q ∈ W. (4.4)

From Körn’s inequality[16], we know
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Lemma 1. The bilinear form A(u, v) is symmetric, bounded and coercive on V ×V ,
namely there are two positive constants α0 and β0 such that

|A(u, v)| ≤ α0‖u‖V · ‖v‖V , ∀u, v ∈ V,

A(u, u) ≥ β0‖u‖2
V , ∀u ∈ V.

Lemma 2. The bilinear form B(u, q) is bounded on V × W and satisfies the
Babuška-Brezzi (B − B) condition[3], namely there are positive constants α1 and β1,
such that

|B(u, q)| ≤ α1‖u‖V · ‖q‖W , ∀u ∈ V, q ∈ W,

sup
u∈V \{0}

B(u, q)
‖u‖V

≥ β1‖q‖W , ∀q ∈ W.

Lemma 3. The bilinear forms A0(u, v) + A1(u, v) and A0(u, v) + AN
1 (u, v) are

bounded on V × V , i. e. there is a constant α2 > 0, such that

|A0(u, v) + A1(u, v)| ≤ α2‖u‖V · ‖v‖V , ∀u, v ∈ V, (4.5)

|A0(u, v) + AN
1 (u, v)| ≤ α2‖u‖V · ‖v‖V , ∀u, v ∈ V, (4.6)

Furthermore

A0(u, u) + A1(u, u) ≥ 0, ∀u ∈ V,

A0(u, u) + AN
1 (u, u) ≥ 0, ∀u ∈ V, N = 0, 1, 2, · · · .

Proof. For any u, v ∈ V , we know that u1|Γd
and v1|Γd

belong to H
1
2 (Γd), u2|Γd

and

v2|Γd
belong to H

1
2
0 (Γd), Suppose

u1(d, x2) =
a0

2
+

∞∑

m=1

am cos
mπx2

L
, am =

2
L

∫ L

0
u1(d, x2) cos

mπx2

L
dx2,

u2(d, x2) =
∞∑

m=1

bm sin
mπx2

L
, bm =

2
L

∫ L

0
u2(d, x2) sin

mπx2

L
dx2,

v1(d, x2) =
ã0

2
+

∞∑

m=1

ãm cos
mπx2

L
, ãm =

2
L

∫ L

0
v1(d, x2) cos

mπx2

L
dx2,

v2(d, x2) =
∞∑

m=1

b̃m sin
mπx2

L
, b̃m =

2
L

∫ L

0
v2(d, x2) sin

mπx2

L
dx2.

Then by the trace theorem, there is a constant α3 > 0, such that
√√√√

∞∑

m=1

m(a2
m + b2

m) ≤ α3‖u‖V ,

√√√√
∞∑

m=1

m(ã2
m + b̃2

m) ≤ α3‖v‖V .

A computation shows that

A1(u, v) =
∞∑

m=1

[
ν(mπ − Lλ−(m))amãm

2
+

νmπ(mπ + Lλ−(m))bmãm

2Lλ−(m)
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+
ν(mπ + Lλ−(m))amb̃m

2
+

ν(mπ − Lλ−(m))bmb̃m

2

]
.

Since 0 < −Lλ−(m) ≤ mπ, ∀m ∈ N, and lim
m→+∞

mπ

−Lλ−(m)
= 1, we know that there is

a constant c1 > 0, such that

|A1(u, v)| ≤c1

∞∑

m=1

m(|amãm|+ |bmãm|+ |amb̃m|+ |bmb̃m|)

≤c1

√√√√
∞∑

m=1

m(a2
m + b2

m) ·
√√√√

∞∑

m=1

m(ã2
m + b̃2

m) ≤ c2‖u‖V · ‖v‖V ,

where c2 = c1 · α2
3. Thus the inequality (4.5) holds. Furthermore

A1(u, u) =
ν

2

∞∑

m=1

[
(mπ − Lλ−(m))(a2

m + b2
m) +

(mπ + Lλ−(m))2

Lλ−(m)
ambm

]

≥ν

4

∞∑

m=1

[
2mπ − 2Lλ−(m) +

(mπ + Lλ−(m))2

Lλ−(m)

]
(a2

m + b2
m)

=
∞∑

m=1

(
mπν − aL

4

)
(a2

m + b2
m)

≥− a

2

∞∑

m=1

L

2
(a2

m + b2
m) ≥ −a

2

∫

Γd

u(d, x2) · u(d, x2)dx2.

Therefore

A0(u, u) + A1(u, u) ≥ a

∫

ΩT

u · ∂u

∂x1
dx− a

2

∫

Γd

u · udx2 = 0, ∀u ∈ V.

Similarly for A0(u, v) + AN
1 (u, v), we obtain

|A0(u, v) + AN
1 (u, v)| ≤ α2‖u‖V · ‖v‖V , ∀u, v ∈ V,

A0(u, u) + AN
1 (u, u) ≥ 0, ∀u ∈ V.

Furthermore if u is a solution of the problem (4.1)–(4.2) and u|Γd
∈ H2(Γd)×H2(Γd).

Then u1|Γd
∈ {w ∈ H2(0, L), ∂w

∂z |z=0,L = 0} and u2|Γd
∈ {w ∈ H2(0, L), w|z=0,L = 0}.

Thus we have that √√√√
∞∑

m=1

m4(a2
m + b2

m) ≤ α4‖u‖2,Γd
,

where α4 is a constant. Hence

|A1(u, v)−AN
1 (u, v)| =

∣∣∣∣∣
∞∑

m=N+1

[
ν(mπ − Lλ−(m))amãm

2
+

νmπ(mπ + Lλ−(m))bmãm

2Lλ−(m)

+
ν(mπ + Lλ−(m))amb̃m

2
+

ν(mπ − Lλ−(m))bmb̃m

2

]∣∣∣∣∣
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≤c1

√√√√
∞∑

m=N+1

m(a2
m + b2

m) ·
√√√√

∞∑

m=N+1

m(ã2
m + b̃2

m)

≤ c2

(N + 1)3/2

√√√√
∞∑

m=N+1

m4(a2
m + b2

m) ·
√√√√

∞∑

m=N+1

m(ã2
m + b̃2

m)

≤ c2

(N + 1)3/2

√√√√
∞∑

m=N+1

m4(a2
m + b2

m) · ‖v‖ 1
2
,Γd

,

where c2 is a constant. Let

d0 = max
x∈Ω̄i

{x1},

Γd0 = {x ∈ R2| x1 = d0, 0 ≤ x2 ≤ L}.

Assume that

u1(d0, x2) =
ā0

2
+

∞∑

m=1

ām cos
mπx2

L
, ām =

2
L

∫ L

0
u1(d0, x2) cos

mπx2

L
dx2,

u2(d0, x2) =
∞∑

m=1

b̄m sin
mπx2

L
, b̄m =

2
L

∫ L

0
u2(d0, x2) sin

mπx2

L
dx2.

By the equalities (2.13)–(2.14), we obtain

am =
1

Lλ−(m) + mπ

{
[mπeλ−(m)(d−d0) + Lλ−(m)e−

mπ
L

(d−d0)]ām

+ mπ[e−
mπ
L

(d−d0) − eλ−(m)(d−d0)]b̄m

}
,

bm =
1

Lλ−(m) + mπ

{
Lλ−(m)[e−

mπ
L

(d−d0) − eλ−(m)(d−d0)]ām

+ [mπe−
mπ
L

(d−d0) + Lλ−(m)eλ−(m)(d−d0)]b̄m

}
,

Thus there exist constants c3 > 0 and λN = O(N) as N → +∞, such that

a2
m + b2

m ≤ c3e
−λ2

N (d−d0)2(ā2
m + b̄2

m), ∀m ≥ N + 1.

Therefore

|A1(u, v)−AN
1 (u, v)| ≤ c

(N + 1)3/2eλN (d−d0)

√√√√
∞∑

m=N+1

m4(ā2
m + b̄2

m) · ‖v‖ 1
2
,Γd

≤ c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

· ‖v‖ 1
2
,Γd

∀d ≥ d0,

where c is a constant. Hence we obtain the following estimate:
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Lemma 4. If u is a solution of the problem (4.1)-(4.2) and u|Γd0
∈ H2(Γd0) ×

H2(Γd0), then the following estimate holds:

|A1(u, v)−AN
1 (u, v)| ≤ c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

· ‖v‖ 1
2
,Γd

, ∀d ≥ d0, ∀v ∈ V, (4.7)

where c is a constant independent of N , u, v, p.
Theorem 2. The variational problem (4.1)–(4.2) has a unique solution (u, p) ∈

M × W and the problem (4.3)–(4.4) has a unique solution (uN , pN ) ∈ M × W for
N = 0, 1, 2, · · · Furthermore we have the following error estimate if u|Γd0

∈ H2(Γd0)×
H2(Γd0):

‖u− uN‖V + ‖p− pN‖W ≤ c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

. (4.8)

Proof. By Lemma 1 and 4, we know that A(u, v)+A0(u, v)+A1(u, v) and A(u, v)+
A0(u, v)+AN

1 (u, v) are two bounded and coercive bilinear forms on V ×V . By Lemma
2, we know that B(u, q) is a bounded bilinear form on V ×W , and satisfies the B-B
condition. From the Brezzi Theorem [2], we obtain that the problem (4.1)–(4.2) has
a unique solution (u, p) ∈ M ×W and the problem (4.3)–(4.4) has a unique solution
(uN , pN ) ∈ M ×W .

Let eu = u− uN , ep = p− pN , then (eu, ep) satisfy

A(eu, v) + A0(eu, v) + AN
1 (eu, v) + B(v, ep) = AN

1 (u, v)−A1(u, v), ∀v ∈ V, (4.9)

B(eu, q) = 0, ∀q ∈ W. (4.10)

Taking v = eu in (4.9) and q = ep in (4.10), we obtain

β0‖eu‖2
V ≤A(eu, eu) ≤ A(eu, eu) + A0(eu, eu) + AN

1 (eu, eu)

=AN
1 (u, eu)−A1(u, eu) ≤ c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

· ‖eu‖ 1
2
,Γd

≤ c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

· ‖eu‖V ,

where c is a constant, which has different meaning in different place. Thus

‖eu‖ ≤ c

β0(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

.

B(v, ep) =AN
1 (u, v)−A1(u, v)−A(eu, v)−A0(eu, v)−AN

1 (eu, v)

≤
[

c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

+ (α0 + α2)‖eu‖V

]
· ‖v‖V .

Then

‖ep‖W =‖p− pN‖W ≤ 1
β1

sup
v∈V \{0}

B(v, ep)
‖v‖V

≤ 1
β1

[
c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

+ (α0 + α2)‖eu‖V

]

≤ c̄

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

,

where c̄ = c
β1

[1 + α0+α2
β0

]. Then the inequality (4.8) follows immediately.
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5. The Finite Element Approximation of the Problem (4.3)-(4.4)

Let Th be a regular partition of the domain ΩT and suppose Vh and Wh are finite
element subspaces of V and W . Particularly, we also assume they are the optimal
choice. Then Vh and Wh should satisfy the following conditions[10]

a). The errors inf
v∈Vh

‖u − v‖V and inf
q∈Wh

‖p − q‖W have the same order in h, i. e.

there is a constant α, such that

inf
v∈Vh

‖u− v‖V ≤ αhm|u|m+1,2,ΩT
, inf

q∈Wh

‖p− q‖W ≤ αhm|p|m,2,ΩT
. (5.1)

b). There exists a constant β independent of h, such that

sup
v∈Vh\{0}

B(v, q)
‖v‖V

≥ β‖q‖W , ∀q ∈ Wh. (5.2)

Let Mh be a subset of M , which satisfies Vh = {uh − vh| ∀uh, vh ∈ Mh}. Consider the
finite element approximation of the problem (4.3)–(4.4):

Find (uh
N , ph

N ) ∈ Mh ×Wh, such that

A(uh
N , v) + A0(uh

N , v) + AN
1 (uh

N , v) + B(v, ph
N ) = 0, ∀v ∈ Vh, (5.3)

B(uh
N , q) = 0, ∀q ∈ Wh. (5.4)

Theorem 3. The problem (5.3)–(5.4) has a unique solution (uh
N , ph

N ) ∈ Mh ×Wh.
The proof of this theorem is similiar to the proof of theorem 2. It is omitted here.
Theorem 4. Let (u, p) be the solution of the problem (4.1)–(4.2) and (uh

N , ph
N ) be

the solution of the problem (5.3)–(5.4). Suppose u ∈ Hm+1(ΩT )×Hm+1(ΩT ), u|Γd0
∈

H2(Γd0)×H2(Γd0), p ∈ Hm(ΩT ). Then we have the following error estimate:

‖u− uh
N‖V + ‖p− ph

N‖W ≤chm[|u|m+1,2,ΩT
+ |p|m,2,ΩT

]

+
c̄

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

, (5.5)

where c, c̄ independent of h, u, p, N .
Proof. Let eh

u = u − uh
N , eh

p = p − ph
N . Then from the equalities (4.1)–(4.2) and

(5.3)–(5.4), (eh
u, ph

u) satisf is

A(eh
u, v) + A0(eh

u, v) + AN
1 (eh

u, v) + B(v, eh
p)

=AN
1 (u, v)−A1(u, v), ∀v ∈ Vh, (5.6)

B(eh
u, q) = 0, ∀q ∈ Wh. (5.7)

Then we have that

β0‖uh
N − u0 − v‖2

V ≤A(uh
N − u0 − v, uh

N − u0 − v) ≤ A(uh
N − u0 − v, uh

N − u0 − v)

+ A0(uh
N − u0 − v, uh

N − u0 − v) + AN
1 (uh

N − u0 − v, uh
N − u0 − v)

=A(u− u0 − v, uh
N − u0 − v) + A0(u− u0 − v, uh

N − u0 − v)
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+ AN
1 (u− u0 − v, uh

N − u0 − v)−A(eh
u, uh

N − u0 − v)

−A0(eh
u, uh

N − u0 − v)−AN
1 (eh

u, uh
N − u0 − v)

=A(u− u0 − v, uh
N − u0 − v) + A0(u− u0 − v, uh

N − u0 − v)

+ AN
1 (u− u0 − v, uh

N − u0 − v) + A1(u, uh
N − u0 − v)

−AN
1 (u, uh

N − u0 − v) + B(uh
N − u0 − v, p− q)

≤(α0 + α2)‖u− u0 − v‖V · ‖uh
N − u0 − v‖V

+
c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

· ‖uh
N − u0 − v‖V

+ α1‖p− q‖W · ‖uh
N − u0 − v‖, ∀v ∈ Ṽh, ∀q ∈ Wh,

where u0 ∈ Mh, Ṽh = {vh ∈ Vh| B(vh, q) = B(−u0, q), ∀q ∈ Wh}. Thus

‖uh
N − u0 − v‖V ≤ 1

β0
[(α0 + α2)‖u− u0 − v‖V

+
c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

+ α1‖p− q‖W ].

‖eh
u‖V ≤‖u− u0 − v‖V + ‖v + u0 − uh

N‖V

≤ 1
β0

[
(β0 + α0 + α2)‖u− u0 − v‖V +

c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

+ α1‖p− q‖W

]
∀v ∈ Ṽh, q ∈ Wh.

Hence

‖eh
u‖V ≤

(α0 + α2

β0
+ 1

)
inf

v∈Ṽh

‖u− u0 − v‖V +
α1

β0
inf

q∈Wh

‖p− q‖W

+
c

β0(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

≤chm[|u|m+1,2,ΩT
+ |p|m,2,ΩT

] +
c

β0(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

In order to estimate the error ‖p− ph
N‖W , we consider

B(v, ph
N − q) =B(v, p− q)−B(v, eh

p)

=B(v, p− q) + A(eh
u, v) + A0(eh

u, v) + AN
1 (eh

u, v) + A1(u, v)−AN
1 (u, v)

≤α1‖v‖V · ‖p− q‖W + (α0 + α2)‖eh
u‖V · ‖v‖V

+
c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

· ‖v‖V .

Then

‖eh
p‖W ≤‖p− q‖W + ‖q − ph

N‖W ≤ ‖p− q‖W +
1
β1

sup
v∈Vh\{0}

B(v, ph
N − q)

‖v‖V

≤‖p− q‖W +
1
β1

[
α1‖p− q‖W + (α0 + α2)‖eh

u‖V +
c

(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

]
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≤
(
1 +

α1

β1

)
‖p− q‖W +

α0 + α2

β1
‖eh

u‖V +
c

β1(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

, ∀q ∈ Wh.

Thus

‖eh
p‖W ≤

(
1 +

α1

β1

)
inf

q∈Wh

‖p− q‖W +
α0 + α2

β1
‖eh

u‖V +
c

β1(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

≤chm[|u|m+1,2,ΩT
+ |p|m,2,ΩT

] +
c

β1(N + 1)3/2eλN (d−d0)
‖u‖2,Γd0

.

Then the inequality (5.5) is proved.

6. Numerical Implementation and Example

For the sake of simplicity, let Th be a rectangle partition of ΩT , with ΩT = ∪K∈Th
K,

where K is a rectangle.
For each rectangle K ∈ Th, connected the mid-points of the opposite sides of K,

then each rectangle K is divided into four smaller rectangles. Let Tĥ denote this
new partition. Therefore let Vh = {v ∈ V | v|K is a bilinear polynomial, ∀K ∈ Tĥ},
Wh = {p ∈ W | p|K is constant, ∀K ∈ Th}, Mh = {v ∈ M | v|K is a bilinear polynomial,
∀K ∈ Tĥ}. Then Vh and Wh satisfy the B-B condition and the following approximate
property[18]: infv∈Vh

‖u−v‖V ≤ ch|u|2,2,ΩT
and infq∈Wh

‖p−q‖W ≤ ch|p|1,2,ΩT
. We use

this finite element approximation to solve the following example.
Example The effect of the artificial boundary conditions for Oseen equations.
Suppose that the unbounded domain Ω = {x ∈ R2| b < x1 < +∞, 0 < x2 < L}.

Let

u1(x) = a +
∞∑

m=1

[
ame−

mπ
L

(x1−b) − mπ

Lλ−(m)
bmeλ−(m)(x1−b)

]
cos

mπx2

L
,

u2(x) =
∞∑

m=1

[
ame−

mπ
L

(x1−b) + bmeλ−(m)(x1−b)
]
sin

mπx2

L
,

p(x) = −a
∞∑

m=1

ame−
mπ
L

(x1−b) cos
mπx2

L
;

where

am =
4L2[1− (−1)m]

[mπ + Lλ−(m)]m2π2
, bm =

4L3λ−(m)[1− (−1)m]
[mπ + Lλ−(m)]m3π3

, m = 1, 2 · · ·

Then (u, p) is the unique solution of the following boundary value problem:

a
∂u

∂x1
+∇p = ν4u, in Ω, ∇ · u = 0, in Ω,

∂u1

∂x2
|x2=0,L = u2|x2=0,L = 0, b ≤ x1 < +∞,

u1|Γb
= a, u2|Γb

= x2(L− x2), u → u∞, when x1 → +∞.
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We take Γd = {x ∈ R2| x1 = d, 0 ≤ x2 ≤ L} and then consider the finite element
approximation of the above problem in the bounded domain ΩT = {x| b < x1 < d,
0 < x2 < L}. We also take b = 0, d = 1, L = 1, ν = 1 and a = 1.0.

Three meshes were used in computation. Figure 1 shows the partition Th for mesh
A. Mesh B was generated by divided each rectangle in mesh A into four small rectangles.
And mesh C was similarly generated from mesh B. Bilinear finite element approximation
to u and constant finite element approximation to p were used in computation. Table
1 shows the maximum errors u−uh

N and p−ph
N over the mesh points when N = 5. We

can see from the table that the convergence is fast and the rate is higher than linear.
Tables 2-4 show the maximum errors of u−uh

N and p− ph
N for mesh A, B and C when

N = 0, 1, 3, 5. As we can see from the tables, the artificial boundary conditions are
very effective and N = 1 is good enough for mesh A, B and C, this because the meshes
are too coarse and the error we used is maximum error in the domain.

Table 1. Maximum error when N = 5

mesh A B C

max |u1 − u1
h
N | 3.849E−2 1.645E−2 5.855E−3

max |u2 − u2
h
N | 2.600E−2 8.446E−3 2.323E−3

max |p− ph
N | 3.074E-2 1.419E−2 5.847E−3

Table 2. Maximum error for mesh A

N 0 1 3 5

max |u1 − u1
h
N | 3.273E−2 3.847E−2 3.847E−2 3.849E−2

max |u2 − u2
h
N | 2.242E−2 2.594E−2 2.594E−2 2.600E−2

max |p− ph
N | 1.459E−1 3.235E−2 3.235E−2 3.074E−2

Fig. 1 Mesh A

Fig. 2 Fig. 3

Table 3 Maximum error for mesh B

N 0 1 3 5

max |u1 − u1
h
N | 3.140E−2 1.645E−2 1.645E−2 1.645E−2

max |u2 − u2
h
N | 1.905E−2 8.446E−3 8.446E−3 8.446E−3

max |p− ph
N | 2.384E−1 1.419E−2 1.419E−2 1.419E−2
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Table 4. Maximum error for mesh C

N 0 1 3 5

max |u1 − u1
h
N | 3.450E−2 5.855E−3 5.855E−3 5.855E−3

max |u2 − u2
h
N | 1.965E−2 2.323E−3 2.323E−3 2.323E−3

max |p− ph
N | 3.000E−1 5.848E−3 5.848E−3 5.847E−3

Fig. 4 Fig. 5

Figures 2-5 show the relative error of u at outflow boundary Γd for meshes B and
C. Then the effect of N is shown for meshes B and C. As shown in the Figures, N = 3
gives good approximation and therefore in computations very few terms in the bilinear
form AN

1 (u, v) are needed in order to get good accuracy.
The example shows that the artificial boundary condition presented in this paper is

very effective. Furthermore this approach can be applied to problems of two dimensional
incompressible viscous flow around obstacles.

Acknowledgement I wish to thank my faculty adviser, Prof. H. Han, for many
helpful discussions on this subject.
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