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THE ELLIPTIC TYPE NODE CONFIGURATION AND
INTERPOLATION IN R*Y
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Abstract

In this paper, we have obtained an expression of the bivariate Vandermonde
determinant for the Elliptic Type Node Configuration in R?, and discussed the
possibility of the corresponding multivariate Lagrange, Hermite and Birkhoff in-
terpolation.
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1. Introduction

In this paper, we use the usual multivariate notation w’/ = w{l coewls g = g1+

o445 (1, js € Z4) M2 and let P, be the (bivariate) polynomial space of all real
(bivariate) polynomials of degree at most n.
Now we introduce the concept of the Curve Type Node Configuration (CTNC):
Definition 1. Curve Type Node Configuration A (CTNCA)BL. Let L, = (n +
1)(2n +1). Then carry out the following steps:

0. Arbitrarily select a point as node x1 in R?;

1. Draw a quadratic irreducible curve X1 such that it does not go through the node
x1 on R? (X1 can be an ellipse, a hyperbola or a parabola), arbitrarily select five distinct
points from X1 as nodes xa,- -, x¢;

n. Draw a quadratic irreducible curve X, such that it does not go through the
nodes that have been selected on R? (X,, can be an ellipse, a hyperbola or a parabola),
arbitrarily select 4n + 1 distinct points from X, as nodes xr, 41, "*,ZL,-

The obtained node group X, = {z;j:i=1,---,L,} is called the Curve Type Node
Configuration A (CTNCA). If every quadratic irreducible curve is an ellipse, then X,
can be called an Elliptic Type Node Configuration A (ETNCA).

Let w = (u,v) be the variables in R? and arrange the bivariate monomial sequence

V1,9, s, - - - as the following order:

1 w,v,u?,uw, v?; ud, v, wo?, v, ut, udv, wPo? wed, vt
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The multivariate Vandermonde determinant that we will study can be formulated
as follows:

VDn(Qola ) SOL'”) :det[¢1,"'a¢Ln]

T, -, T,
where the column vector
¢i = [1(2), -, pr, ()]
If a node distribution guarantees the existence and uniqueness of a Lagrange in-
terpolant to any given data, we say that the set of nodes admits unique Lagrange

~

interpolation. Hence, X,, admits unique Lagrange interpolation if and only if

VDTL<()017 Tty SOL”)%O
Ty, - TL,
To allow coalescence of nodes along the curves X7y, - - -, X,,, we consider the following

definition.
Definition 2. Curve Type Node Configuration B (CTNCB). There exist quadratic
wrreductble curves Xq,---, Xy, such that

TL; 141, TL; € Xj\(Xj-f-l U---UXp)
forj=1,---,n as in CTNCA, where

TL; 1415 TL; :yjlv"'ayjlv"'vyjkjv'"7yjkj

451 Uik,

withgﬂ—l-"'—i-fjkj =Lj—Lj4,j=1,---,n.

Node coalescence along X; corresponds to Hermite interpolation with derivatives
D’)“(j (Dgfj := I, the identity operator). The definition of Dx; will be different according
to whether X; is an ellipse, a hyperbola or a parabola. In this paper, we will give the
definition of Dx; when Xj is an ellipse. We denote the column vectors by

Hence, the generalized Vandermonde determinant corresponding to the Hermite inter-
polation problem on the nodes X, satisfying CTNCB becomes:

HDn(Sola T ¢Ln)

i, -, L,

. . . . o li—1 . . . . ol —1 .
:det{qﬁl:---:qﬁjl:Dngzbjl:---:D)g; gbjl:---:<Z>jk,j:DX].gbjkj:---:D)éjJ Pjk; 1 |-

(for points on Xj)

To allow coalescence of the quadratic irreducible curves X1, - - -, X,,, we consider the
following definition.

Definition 3. Curve Type Node Configuration C (CTNCC). The set X,, consists
of distinct nodes x1,---,xr,, and there exist curves Xy, ---,X,, where

Xla”'vXn:Ylv'”ayla'”dea'”7Yd7

mi mq
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mi+---+mg=n andYy,---,Yy distinct, such that

:EL]'_1+17 tee 7':UL]‘

lie on X; but not on those Xjiq,---, X, different from X;.

The corresponding interpolation problem involves interpolating values of “normal”
derivatives N é;(j (N%j := I, the identity operator). In this paper, we will give the
definition of Nx; when Xj is an ellipse. Consider the column vectors

The interpolation problem is:
(p— f)(z1) =0,
NYTE = (i) =0, 0 <k <my—1,

where p € P, is the interpolation polynomial and

L= Lm1+~~~+mj71+k’ + 17 e aLm1+-~'+mj,1+k+1§ ] = 1, Tty d,

with the usual notation mq +---+mj_q := 0 for j = 1. Since this is a Birkhoff interpo-
lation problem (where “normal” derivatives instead of function values are interpolated
at the nodes on the curve which contains less nodes and is brought to coincide with
a curve with more nodes), we use the notation BD,, to denote the determinant of the
coefficient matrix. Then we have

P, s PLn ) N N N A :
BD,, (961, o = det ...,Nyj ¢Lm1+~»+mj,1+1' .. ,Nyj ¢Lm1+~»+mj,1+1 co.
n
for k=0
: ¢Lm1+"'+mj—l+mj_l+1: e :¢Lm1+m+mj_1+mj B
for k=m;—1

where we have listed the columns for the points on Y.

2. A Group of Lemmas

Lemmal. Let X, = {xi:i=1,---,L,} be a set of distinct nodes in R? satisfying
CTNCA. Let the n-th quadratic irreducible curve X, be an ellipse:

(u — )‘n)Q (v— ,Un>2

7o
and set x; = (u;,v;). Then
VD (sol, mn) _Ca%Q”)Qbf”’Q[Lﬁl d(s, z0s)[d(@s, On) + d(zns, On)] |
"\wy, -, oz, 2(2n)* ] [d(zns, On)]?
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11 e—iQnO,-)[ 11 (0 — ¢t )} VD, . <<p1, e @Lnl),

Ly_1<r<Ly, Ly_1<p<q<Ln X1, -y TLp_1
where ¢ = 1 or = —1, O, is the center point of the ellipse X,, zns is the intersection
point of X, with the ray that starts from O, and passes through xs. The FEuclidean
distance between points * and y* is denoted by d(x*,y*), and 6; is determined by the
following expressions:

Ut = Ap + Ap €OS O, Vg = phyy + by sinby, L1 <t < L.

Proof. Instead of giving a formal proof, we indicate the method of proof by consid-
ering the special case n = 2. We denote z} = (u},v)) = x; — (A2, u2) and indicate that
the equation of the ellipse X5 can be written as

u— Ay =agcosl, v—py =bysinf, (0 <60 <2m).

Let P[m,n(k)] be the elementary matrix that is obtained by adding & times the elements
in the n-th row of the identity matrix to the m-th row of the identity matrix, and

VD, [4!31, S @15]
xlj ..-’ l‘{lg)
be the corresponding matrix of the determinant
V Dy <<P/1, e @15)
xlj ..-7 x15
Then we have
V Dy (@17 Sy @15) — VD, (80/17 ey <P/15)
T1, v, T15 L1, s T15
= det P[6,1(—b§)]P[6,4(b%)}P[9,2(—b2)] P9, 7(@)}
2 b2
[10,3(~83)1P[10,8( %)]P[w 4(-03)]P |13, 11(%)}
> b ) b
P[14,5(~83)]P[14, 12(—%)}P[15,6(—b2)] 15, 13(2)]
V.D2 |:SO/1) ) Q0,15:| )
1‘17 .. s x15
Take notice of )
U?zb%—b—%u?, 1=17,---,1b.
Q.
2

Interchanging the rows appropriately, we can change the above determinant to a par-

titioned determinant a ‘, where O is the 6 X 9 zero matrix. Since ]}; G‘ =
det F' - det G, we have
6
P,y P15 2 u? — b?
D _ —
v 2(.1’1, B 1'15) |:H< b):|

=1
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Denote the last determinant of the above expression by D,

Then

1

cos 07

sin 6

cos? 6

D = a3} - | cos B sin 07

cos® 07

cos? 67 sin 67

cos? 6~

cos® 0 sin 07
1

= (#)Qaéﬁb‘% - | sin 2607

= (gimm) ()" (55) b

u) = ag cos by,

cos 07
sin 97
cos 207

cos 3607
sin 3497
cos 467
sin 46~

(&
(&
e
e
e
e

207 4 e—’i297
207 6—i297
307 4 e—’i397
307 6—2397
467 4 677,'497
407 677,'497

1
Uy
Vis
. ut
-V Dy [SO/D . 7 56 urvy U515
12,/ 12,/
uzvg v UisUs
ufy
uPy uibuls
and set
Uf =bysin€;, 7<1<15.
1
cos 15
sin 915
cos? 615
cos 015 sin 015
cos® 015
COS2 915 sin 915
cos* 015
cos® 015 sin 015
1
cos 015
sin 915
cos 2015
sin 2915
COS 3915
sin 3915
cos 4615
sin 4915
1 1
ei97 + efi97 €i915 + 671015
ei97 o e—i97 ei615 _ e—i915

€i2915 + e—i2915
2015 6—i2915
13015 4 6—i3915
3015 e—i36'15
14015 +efi4915
14015 67i4915

QO A O d
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1 1
€i97 .. €i915
€—i97 . €—i915
1207 12015
1 \2,1\4 e e
— + - (116b4 . 6—1207 6—12915
21+2+3 /) \9;/) "2 72 |~ ,
62307 623015
o—1307 o—13015
€i497 €i4915
672’497 672’4915
1 1
ei97 ei015
ei297 . e’i2915
1307 13015
-+ 1 N2/1 4a1664 . 11—5[ o—i46; Zi407 Zi4915
- 914+2+3 2% 272 ) )
=7 61597 625915
1607 16015
ei797 62'7915
1807 ei8015
15
1 2,1\4 ) ) .
_ - 1674 —i40; | g _ i0p
_i(21+2+3) (22) ag b2 He ! H (e € )
J=T7 6<p<q<15
Substituting this result in (1), we have
(2:2)%; (2-2)? 6 /2 2 15
. a b Vg n.
VD2<S017 ] @15) - + 2 (2.232 |:H( 7_1):| 'He Z49J
T1 215 2 s=1 =T
(eieq_eiep).VD1<‘£,lv o S;/G)
6<p<q<15 b ’ 6
There is one and only one ellipse yos:
(=X (=)
2 2
T2a3 7203
passing through the point x5 = (us, vs), hence
(2-2)2 b(2 2)2 6 15
VDo 1, "y P15 :1%7 H } He—mej
Ty, -y T15 2(2 2)? .
s=1 J=7
(ewq_eiep).VDlCPl, ; 906>‘
6<p<q<15 eI B

Starting from the center point Os of the ellipse X9, we draw a ray passing through
T, intersecting the ellipse X9 at z95,. We have

(2-2)2,(22)2 6 2 2
R a b, (72 — 1) (a3 cos® 05 + b3 sin? 0,
VD2<901 9015>: G %2 [H 5 )}

T, -, Tip 2(2-2)? e a3 cos? O + b3 sin? O
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15
Jj=7 6<p<q<15 15 s 6
92 (9.9)2
— w ) [ﬁ d(xs, z25)[d(2s, O2) + d(225,02)}
227 L [d(z26, 02)]?
15
. H efi2'29j . H (ewq _ eiep) -V D, (901? T @6) .
J=7 6<p<q<15 T, -, e

Supposing that «, 3,7, n are real numbers and an — v3 = 1, we now consider the
(n+1) x (n+ 1) matrix £, = [a}}], where [a]}] are the coefficients in the expansion

n+1
(qu + Bv)" T (yu 4+ o)t = Z a%u”“fjvj*l.
j=1

We have the following lemma.

Lemma 2. det £, =1 foralln=0,1,2,---.

It is obvious that det £y = 1 because Lo = [ 1]. For the proof for n = 1,2, - see
[1].

Take notice of £1 = [3 g} Let 7 = Liy!, i = 1,---,L,. Then set Ny =
k+2 . o
5 ) (k=0,1,---), and N_; = 0. From the definition of L, it is easy to show
ONe+1(@1) o en(TL,) ene+1(y1) e +1(YL,)
eng (1) o e (L) en() o en(yL,)
for k=1,2,---. Thus we obtain the following lemma.
Lemma3.
Lo
L .
VDn<901’ ! “’L">:det b -VDn(SOI’ ’ ‘an).
1, -y TL, . Y, 5 YL,
['271
3. Results

Theorem 1. Let X, = {x; :i = 1,---,L,} be a set of distinct nodes in R?
satisfying ETNCA. Let O; be the center point of the ellipse X;, and a;, b; be the two
aj B
YoM
axes of Ej_llXj are parallel to the u-axis and the v-axis respectively. Set Ej_llx% = yg =

semi-azes of the ellipse. Let the rotation Lj1 = { } be chosen such that the two

(uk, vg)" and

uk:)\]+a]0080k7 Uk:ﬂj+b]81n9k, LJ—1<kSL‘]7 j:1’7n
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Draw a ray starting from O; and passing through zs (1 < s < L;j_1), and suppose it
intersectes X; at zjs, and denote the FEuclidean distance between points x* and y* by

d(z*,y*). Then

vou (5 )=o)

1 R
"leda:z [d(zs,05) + d(z; = 24
S5 ]S D) 387 —1256
[Hlj [d(zjs, O;)P? A ‘

J= J=1L; 1<t<
n

H H (equ _ eiep)7

J=1L;_1<p<g<Lj

where c =1 or —1.
Proof. Because «, 3;, v;, n; are chosen such that the two axes of [, X are parallel
to the u-axis and v-axis respectively, we can write En X, as

(u — )‘n)2 (v— NH)Q

1.
2 T
Applying lemma 1, 2, 3, we have
L
VD <§015 oy PLn, ) _ C(@nbn>(2n)2 ‘ [ H1 d(l’s, Zns)[d(fl:s, On) + d(Znsa On)]]
" X1, Ty an 2 s=1 [d(2n57 On)]2
H 67i2n9t . H (eieq _ eiep) . V-Dn—l (@17 T SOLn_l ) '
Lo 1<t<Ly, Ln-1<p<q<Ln o e

Hence, the proof of Theorem 1 is completed by using mathematical induction and the

fact that
VD (“01) —1.
x1

By the way, because V' D,, # 0, we verified the known fact that ETNCA admits
unique Lagrange interpolation by a new metheod.
For the point x* lying on the ellipse X, set

Yy = ,Cj_llx* = (\j+ajcos8, p;+b;sind*),
and let x be a neighbouring point of z* and z lie on X, then set
y—ﬁ_ = (\j+ajcosb, puj+bjsind).
We define
Dx, f(z*) = lim M

0—0* 0 —6*
By using Theorem 1 and taking the above derivative (as a kind of limit) along the
ellipses that have coincident nodes, we have
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Theorem 2. Let X, = {zj:i=1,---, Ly} satisfy ETNCB and
yzvzﬁgllym): (Au"i_aucoseum Nu""buSineuv), U:L”'vku; u:l,---,n.

Starting from Oj, draw a ray passing through yu, (1 < wu < j), intersecting X; at Zjyy.
Then

k;

01, QL - () T T —i2i0;,6;
HDn ( "> H . H e JECjrVjr
X1, N XL, = ( ) i i
' ﬁ {d(:cl,zjl)[d(xl,Oj) +d(zj1,0;)]
j=1 [d(zjlv OJ)]
-1 k,
» [d(yr‘v’ zjro) [d(Yrv, O5) + d(2jr, Oj)]]em}
r=1v=1 [d(zjrv’ OJ)P
n kj Lj,—1
. [H (ewjt 0js stejt H H P ze Ju ]
J=11<s<t<k; u=1 p=1

where ¢ = 1 or —1. Therefore HD,, # 0 and X, admits unique Hermite interpolation
from polynomials of total degree 2n.

Next we consider the ETNCC. For the point z* that on the ellipse X;, we define
Nx; f(z*) as the directional derivative of function f at the point z* along the line O;z*.
By using Theorem 1 and taking the limit, we have

Theorem 3. Let X, = {x1,---,z1,} be a set of distinct nodes satisfying ETNCC.
Let O, be the center point of the ellipse Y, and a,., b, be the lengths of the two semi-azes
respectively (r =1,---,d). Then

d
Y1, -, YL, aby\ (2p)?
BDn( xL) 11 I1 (%57

L1, 1my+-Fme_1<p<mi4--+m;
d my—1
. [H I d(zs.2s) ] (t!)4(m1+"'+mr—f)+1}
r=1zs€B, t=1
{ ﬁ ﬁ m1+m-ﬁlil+u_l d(l'sa Or) + d(2r57 Or)}
e Bt a1 [d(zr&Or)P
n n
) H H o= 1210u | H H (% — ¢ifn),
7=1 Lj71<w§Lj j=1 Lj71<p<quj

wherec =1 or —1 and B, = {x1}UY1U---UYs—1. Therefore BD,, # 0 and X,, admits
unique Birkhoff interpolation from polynomials of total degree 2n.

Remark 1. If every ellipse is a circle in an ETNC, we obtain the Circle Type Node
Configuration (CITNC).

Remark 2. We have discussed the interpolation problems about other Curve
Type Node Configurations, the Cross Type Node Configuration and the Vertical Line
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Type Node Configuration in other papers. Some of these results have been extened
to R*(s > 2). We have also discussed the error estimate of the interpolation and
obtained an algorithm for the interpolation polynomial. We call this algorithm the
cubic iteration method, which is an extension of the Aitken method in RS.
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