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Abstract

A splitting iteration method is proposed to compute double X0-breaking bi-
furcation points. The method will reduce the computational work and storage,
it converges linearly with an adjustable speed. Numerical computation shows the
effectiveness of splitting iteration method.

Key words: Double X0-breaking bifurcation point, splitting iteration method, ex-
tended system

1. Introduction

Consider the following two-parameter dependent nonlinear problem

f(x, λ, µ) = 0, f : X ×R2 → X, (1.1)

where X = Rn, λ, µ are real parameters, f ∈ Cr(r ≥ 3), Dxf0(≡ Dxf(x0, λ0, µ0)) is
a Fredholm map with index zero. One of our main assumptions, which arise in many
applications[1,2,5−7], is that f satisfies Z2−symmetry: there exists a linear operator
S : X → X such that

S 6= I, S2 = I, Sf(x, λ, µ) = f(Sx, λ, µ), ∀(x, λ, µ) ∈ X ×R2 (1.2)

It is well-known that X has the following natural decomposition:

X = Xs ⊕Xa,

where
Xs = {x ∈ X : Sx = x}, Xa = {x ∈ X : Sx = −x}

are the set of symmetric elements and the set of anti-symmetric elements respectively[7].
We also assume that there is an invariant subspace X0 ⊂ Xs such that

f(x, λ, µ) ∈ X0, ∀(x, λ, µ) ∈ X0 ×R2. (1.3)
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The usual and best case is X0 = {0}. We call (x0, λ0, µ0) a singular point of (1.1) if
f(x0, λ0, µ0) = 0 and dim(Null(fx(x0, λ0, µ0)) ≥ 1. In this paper, we are concerned
with double X0-breaking bifurcation points (x0, λ0, µ0) in the sense that[6]

f(x0, λ0, µ0) = 0, x0 ∈ X0, (1.4a)

Null (Dxf0) = span {φs, φa}, φs ∈ Xs, φs /∈ X0, φa ∈ Xa, (1.4b)

Range (Dxf0) = {y ∈ X : 〈ψs, y〉 = 〈ψa, y〉 = 0}, ψs ∈ Xs, ψa ∈ Xa, (1.4c)

〈ψs, Dλf0〉 = 〈ψs, Dµf0〉 = 0. (1.4d)

In addition, as is common, we assume that 〈ψr, φr〉 = 〈ψr, ψr〉 = 〈φr, φr〉 = 1, r = s, a,
〈ψr, φδ〉 = 0, (r, δ) = (s, a) or (a, s). X0-breaking bifurcation point is one of the
three most important kinds of bifurcation points (the others are turning points and
pitchfork points[2]). For the computation of double X0-breaking bifurcation points of
(1.1), Werner[6] proposed a regular extended system which is a direct method and is at
least three times larger than the original equation (1.1). Here we will propose a splitting
iteration method. The method produces smaller systems and it could simultaneously
compute the point (x0, λ0, µ0), the null vectors of Dxf0, Dxf0

∗ in a coupled way. This
method converges linearly with an adjustable speed and its computational cost at each
iteration step remains the same level as that for the regular solution of (1.1)[3,4].

We will construct small extended systems in section 2, then propose the splitting
iteration method in section 3. Numerical examples are given in section 4 to show the
effectiveness of the method.

2. Extended Systems

First, we introduce the following lemma, which could be proved directly by differ-
entiating (1.2).

Lemma 1. ∀x ∈ X0, λ ∈ R, µ ∈ R,
(i) f(x, λ, µ), Dλf(x, λ, µ), Dµf(x, λ, µ) ∈ X0;
(ii) X0, Xs and Xa are invariant subspaces of Dxf(x, λ, µ), Dxλf(x, λ, µ), Dxµf(x,

λ, µ);
(iii) ∀v, w ∈ X0 Dxxf(x, λ, µ)vw ∈ X0;
(iv) ∀v ∈ Xs, w ∈ Xs, or ∀v ∈ Xa, w ∈ Xa, Dxxf(x, λ, µ)vw ∈ Xs;
(v) ∀v ∈ Xs, w ∈ Xa, Dxxf(x, λ, µ)vw ∈ Xa.
It follows from Lemma 1 and (1.4d) that there exist v0, u0 ∈ X0 such that

Dxf0v0 + Dλf0 = 0, (2.1a)

Dxf0u0 + Dµf0 = 0, (2.1b)

and hence we could introduce the following notations

Ar := 〈ψr, (Dxxf0v0 + Dxλf0)φr〉, (2.2a)

Br := 〈ψr, (Dxxf0u0 + Dxµf0)φr〉, r = s, a. (2.2b)
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Werner[6] first introduced the following extended systems to determine double X0-
breaking bifurcation points.

F (y) =




f(x, λ, µ)
Dxfφ1

Dxfφ2

l1φ1 − 1
l2φ2 − 1




= 0 (2.3)

y = (x, φ1, φ2, λ, µ), y0 = (x0, φs, φa, λ0, µ0),

F : Y → Y := X0 ×Xs ×Xa ×R2

where l1 ∈ X ′, l2 ∈ X ′ such that l1φs = 1, l2φa = 1. It is obvious that extended system
(2.3) is at least three times larger than (1.1). In the sequel we will propose some small
extended systems instead of (2.3).

We shall assume the following nondegeneracy condition

det K 6= 0 (2.4)
where

K =
[

As Bs

Aa Ba

]
.

Set

u1 = (x, λ, µ) ∈ X0 ×R2, u2 = (x1, c1) ∈ Xs ×R,

u3 = (x2, c2) ∈ Xa ×R, u4 = (x3, c3) ∈ Xs ×R, u5 = (x4, c4) ∈ Xa ×R,

u = (u1, u2, u3, u3, u4, u5) ∈ V := (X0 ×R2)× (Xs ×R×Xa ×R)2,

‖u‖V := ‖x‖+ |λ|+ |µ|+
4∑

j=1

(‖xj‖+ |cj |).

We define the following extended systems:

F1(u) =




f(x, λ, µ)
〈x3, Dxf(x, λ, µ)x1〉/m5

〈x4, Dxf(x, λ, µ)x2〉/m5


 , F1 : V → X0 ×R2, (2.5a)

F2(u) =
[
Dxf(x, λ, µ)x1 + c1x3/m2

(〈x3, x1〉 −m5)/m2

]
, F2 : V → Xs ×R, (2.5b)

F3(u) =
[
Dxf(x, λ, µ)x2 + c2x4/m2

(〈x4, x2〉 −m5)/m2

]
, F3 : V → Xa ×R, (2.5c)

F4(u) =
[
Dxf(x, λ, µ)∗x3 + c3x3/m2

(〈x3, x3〉 −m4)/2m2

]
, F4 : V → Xs ×R, (2.5d)

F5(u) =
[
Dxf(x, λ, µ)∗x4 + c4x4/m2

(〈x4, x4〉 −m4)/2m2

]
, F5 : V → Xa ×R. (2.5e)

Here m > 0 is a normalization parameter, and A∗ denotes the conjugate operator
of a linear operator A.
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Let

u∗1 = (x0, λ0, µ0), u∗2 = (m3φs, 0), u∗3 = (m3ψa, 0),

u∗4 = (m2ψs, 0), u∗5 = (m2ψa, 0), u∗ = (u∗1, u
∗
2, · · · , u∗5),

F (u) = (F1(u), F2(u), · · · , F5(u)).

It is easy to check that
F (u∗) = 0.

By a direct calculation, we obtain

Du1F1(u∗) =




Dxf0 Dλf0 Dµf0

〈ψs, Dxxf0φs·〉 〈ψs, Dxλf0φs〉 〈ψs, Dxµf0φs〉
〈ψa, Dxxf0φa·〉 〈ψa, Dxλf0φa〉 〈ψa, Dxµf0φa〉


 ,

Du2F2(u∗) =
(

Dxf0 ψs

〈ψs, ·〉 0

)
, Du3F3(u∗) =

(
Dxf0 ψa

〈ψa, ·〉 0

)
,

Du4F4(u∗) = (Du2F2(u∗))∗, Du5F5(u∗) = (Du3F3(u∗))∗.

We could obtain the following theorem.
Theorem 1. Let (x0, λ0, µ0) be a double X0-breaking bifurcation point of f(x, λ, µ) =

0. We assume that (2.4) holds. Then DuiFi(u∗) (i = 1, 2, · · · , 5) is regular.
Proof. It is sufficient to show that there exists only the trivial solution θ = 0 for

the following linear system

Du1F1(u∗)θ = 0, θ = (x, λ, µ) ∈ X0 ×R2. (2.6)

Expanding (2.6), we obtain

Dxf0x + λDλf0 + µDµf0 = 0, (2.7a)

〈ψs, Dxxf0φsx〉+ λ〈ψs, Dxλf0φs〉+ µ〈ψs, Dxµf0φs〉 = 0, (2.7b)

〈ψa, Dxxf0φax〉+ λ〈ψa, Dxλf0φa〉+ µ〈ψa, Dxµf0φa〉 = 0. (2.7c)

It follows from (2.7a) that
x = λv0 + µu0. (2.8)

Substituting (2.8) into (2.7b) and (2.7c), we

〈ψs, Dxxf0(λv0 + µu0)φs〉+ λ〈ψs, Dxλf0φs〉+ µ〈ψs, Dxµf0φs〉 = 0, (2.9a)

〈ψa, Dxxf0(λv0 + µu0)φa〉+ λ〈ψa, Dxλf0φa〉+ µ〈ψa, Dxµf0φa〉 = 0, (2.9b)

or equivalently,
[

As Bs

Aa Ba

] [
λ

µ

]
=

[
0
0

]
(2.10)

According to the condition (2.4), it follows from (2.10) and (2.8) that

x = 0, λ = 0, µ = 0,
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so θ = 0 and we have proved that Du1F1(u∗) is regular.
Next we show that Du2F2(u∗) is regular. It is sufficient to show that there exists

only the trivial solution for the linear system

Du2F2(u∗)θ1 = 0, θ1 = (x1, c1) ∈ Xs ×R. (2.11)

Expanding (2.11), we obtain

Dxfx1 + c1ψs = 0, (2.12a)

〈ψs, x1〉 = 0. (2.12b)

Multiplying (2.12a) by ψs, we could get c1 = 0, and hence x1 = αφs for some constant
α. Substituting x1 into (2.12b) we could get α = 0, therefore x1 = 0, c1 = 0.

Similarly, we could prove the regularities of DuiFi(u∗), i = 3, 4, 5.

3. Splitting Iteration Method

To compute double X0-breaking bifurcation point, we introduce the following iter-
ation process:

uk+1 = H(uk), k = 0, 1, 2, · · · , (3.1)
where

H(u) = (H1(u),H2(u), · · · ,H5(u)). (3.2)

Hi(u) = ui − [DuiFi(u)]−1Fi(u), i = 1, 2, · · · , 5. (3.3)
Therefore

DuiHi(u∗) = I − [DuiFi(u∗)]−1DuiFi(u∗) = 0, (3.4a)

DujHi(u∗) = −[DuiFi(u∗)]−1DujFi(u∗), i, j = 1, 2, · · · , 5, i 6= j. (3.4b)

It follows from (3.4) that

‖DH1(u∗)‖ = 0,

‖DH2(u∗)‖ ≤ m‖A−1
1 ‖(m2(‖Dxxf0φs‖+ ‖Dxλf0φs‖+ ‖Dxµf0φs‖) + 1),

‖DH3(u∗)‖ ≤ m‖A−1
2 ‖(m2(‖Dxxf0φa‖+ ‖Dxλf0φa‖+ ‖Dxµf0φa‖) + 1),

‖DH4(u∗)‖ ≤ m2‖A−1
1 ‖(‖Dxxf∗0 ψs‖+ ‖Dxλf∗0 ψs‖+ ‖Dxµf∗0 ψs‖),

‖DH5(u∗)‖ ≤ m2‖A−1
2 ‖(‖Dxxf∗0 ψa‖+ ‖Dxλf∗0 ψa‖+ ‖Dxµf∗0 ψa‖),

where
A1 =

(
Dxf0, ψs

〈ψs, ·〉 0

)
, A2 =

(
Dxf0, ψa

〈ψa, ·〉 0

)
.

We note that in the above equalities we have used ‖A∗i−1‖ = ‖A−1
i ‖, i = 1, 2.

It follows from Theorem 1 that A1 and A2 have bounded inverse. Since A1, A2 are
independent of m, we could chose m > 0 small enough such that

‖DHi(u∗)‖ ≤ 1/20, i = 1, 2, · · · , 5. (3.5)
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Theorem 2. Let (x0, λ0, µ0) be a double X0-breaking bifurcation point of f(x, λ, µ) =
0, Chose m > 0 small enough so that (3.5) holds. Then there exists a δ0 > 0 so that
for all u ∈ B(u∗, δ0) = {u ∈ V : ‖ui − u∗i ‖ ≤ δ0, i = 1, 2, · · · , 5}, we have:

‖DHi(u)‖ ≤ 1/10. (3.6)

Furthermore, for all u0 ∈ B(u∗, δ0), the iteration (3.1) is defined and

‖uk
i − u∗i ‖ ≤ (1/2)kδ0, i = 1, 2, · · · , 5. (3.7)

Proof. According to the definition of Fi and f ∈ C3, we know that DuiFi(u) is
C1 continuous map. Since DuiFi(u∗) has bounded inverse, we could find δ1 > 0 so
that ∀u ∈ B(u∗, δ1), DuiFi(u) is also bounded invertible and C1 continuous. Therefore
DuiHi(u) is also continuous. (3.5) implies there exists δ2 > 0 such that

‖DHi(u)‖ ≤ 1/10, ∀u ∈ B(u∗, δ2), i = 1, 2, · · · , 5.

Let δ0 = min(δ1, δ2), then (3.6) holds. Next, we want to prove (3.7) by induction. First,
(3.7) is obviously holds for k = 0. Next we assume that (3.7) holds for all k ≤ n, then

‖un+1
i − u∗i ‖ = ‖Hi(un)−Hi(u∗)‖ ≤

∫ 1

0
‖DHi(u∗ + t(un − u∗))‖ · ‖un − u∗‖dt

≤ 1/10‖un − u∗‖ ≤ (1/2)n+1δ0

Hence, (3.7) holds for all natural number k and we complete the proof.

4. Numerical Examples

Example 4.1. Consider the following nonlinear problem in R4

f(x, λ, µ) =




2x1 − λex1 + εx2 − µx3
2 + x4

2x2 − λex2 + εx1 − µx4
2 + x3

2x3 − λex3 + εx4 − µx1
2 + x2

2x4 − λex4 + εx3 − µx2
2 + x1


 = 0 (4.1)

where x = (x1, x2, x3, x4). It is easy to check that f(x, λ, µ) = 0 satisfies Z2-symmetry
with

S =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,

and we could find that

X0 = {(v, v, v, v) : v ∈ R}, Xs = {(v1, v1, v2, v2) : vi ∈ R, i = 1, 2},
Xa = {(v3,−v3, v4,−v4) : vi ∈ R, i = 3, 4}.



A Splitting Iteration Method for Double X0-Breaking Bifurcation Points 273

Chose ε = 2.0,m = 1.0, using the splitting iteration method, we could find one double
X0-breaking bifurcation point (x0, λ0, µ0) = (x1, x1, x1, x1, λ0, µ0) = (0.166667, 0.166667,
0.166667, 0.166667, 0.846482,−6.0). The numerical results are show in Table 1.

Table 1

iteration x1 λ µ

0 0.5 0.5 -4.0

1 0.214286 0.749388 -4.285714

2 0.166010 0.843295 -5.632184

3 0.166674 0.846478 -6.001211

4 0.166667 0.846482 -6.000000

5 0.166667 0.846482 -6.000000

Example 4.2. Consider the following Brusselator model[5]:

λD1
d2u

dξ2
+ (µ− 1)u + A2v + N(u, v) = 0, (4.2a)

λD2
d2v

dξ2
− µu−A2v −N(u, v) = 0, (4.2b)

u(0) = u(3) = 0, v(0) = v(3) = 0, (4.2c)

where
N(u, v) =

µ

A
u2 + 2Auv + u2v.

We could observe that (4.2) satisfies Z2-symmetry with

S(u(ξ), v(ξ)) = (u(3− ξ), v(3− ξ)).

Discretize (4.2) by the central difference with step h = 1.0, we could obtain

f(x, λ, µ) =




λD1(−2x1 + x2) + (µ− 1)x1 + A2x3 + N(x1, x3)

λD1(x1 − 2x2) + (µ− 1)x2 + A2x4 + N(x2, x4)

λD2(−2x3 + x4)− µx1 −A2x3 −N(x1, x3)

λD2(x3 − 2x4)− µx2 −A2x4 −N(x2, x4)




= 0, (4.3)

where x = (x1, x2, x3, x4) := (u1, u2, v1, v2). It is easy to check that f(x, λ, µ) = 0 also
satisfies Z2-symmetry with

S =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,

and

X0 = {(0, 0, 0, 0)}, Xs = {(v1, v1, v2, v2) : vi ∈ R, i = 1, 2},
Xa = {(v3,−v3, v4,−v4) : vi ∈ R, i = 3, 4}.
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Set m = 1.0, chose D1 = 0.0016, D2 = 0.008, A = 2.0, we could get a double
X0-breaking bifurcation point (x0, λ0, µ0) = (0, 322.748626, 3.865591). The numerical
results are in Table 2.

Table 2

iteration λ µ iteration λ µ

0 310.712324 3.775435

1 323.802114 3.881061 5 322.750715 3.865619

2 322.996705 3.869072 6 322.749006 3.865596

3 322.804518 3.866339 7 322.748685 3.865592

4 322.759678 3.865737 8 322.748626 3.865591
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