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Abstract

We examine a steady-state heat radiation problem and its finite element ap-
proximation in Rd, d = 2, 3. A nonlinear Stefan-Boltzmann boundary condition is
considered. Another nonlinearity is due to the fact that the temperature is always
greater or equal than 0[K]. We prove two convergence theorems for piecewise linear
finite element solutions.
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1. Introduction

It is known from physics that a body loses heat energy from its surface by elec-
tromagnetic waves. This phenomenon is called radiation[8,20]. The energetical losses
are proportional to the fourth power of the surface temperature (the Kirchhoff law).
Thus the radiation cannot be neglected when the surface temperature is high (e.g., in
computation of temperature distribution in large dry transformers, electrical engines,
· · ·). It is represented by the nonlinear boundary condition α(u − u0) + n>A grad
u + β(u4 − u4

0) = g̃, where α ≥ 0 is the coefficient of convective heat transfer, u is
the temperature of the body, u0 is the surrounding temperature, n is the outward unit
normal to the surface, A is a symmetric uniformly positive definite matrix of heat con-
ductivities, β = σfem, σ = 5.669×10−8[Wm−2K−4] is the Stefan-Boltzmann constant,
0 ≤ fem ≤ 1 is the relative emissivity function and g̃ is the density of surface heat
sources.

Consider the following classical formulation of the radiation problem: Find u ∈
C2(Ω), u ≥ 0, such that

−div (A grad u) = f in Ω,

u = u on Γ1, (1.1)

αu + n>A grad u + βu4 = g on Γ2,

where Ω ⊂ Rd, d = {2, 3}, is a bounded domain with a Lipschitz-continuous boundary
∂Ω, Γ1 and Γ2 are non-empty disjoint sets, which are relatively open in ∂Ω, and satisfy
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∂Ω = Γ1∪Γ2, f is the density of body heat sources, u ≥ 0 is the prescribed temperature
and g = g̃ + αu0 + βu4

0.
Similar heat radiation problems were investigated by many authors (see, e.g., [3,

8, 18, 19, 21, 22]). A proof of the existence and uniqueness of the classical solution is
given in [2] for a regular boundary.

Throughout the paper we use the standard Sobolev space notation [14, 15, 17]. We
will introduce a variational inequality approach to the problem (1.1) and examine its
finite element approximation under the maximum angle condition. We also generalize
some results of [16, 21] for d = 2 to the three-dimensional space.

2. Variational Formulation of a Two-Dimensional Problem

Since the classical solution of the problem (1.1) need not exist, we introduce its
variational formulation. To this end we suppose that the entries of A belong to L∞(Ω),
f ∈ L2(Ω), u ∈ H1(Ω), α, β ∈ L∞(Γ2) and g ∈ L2(Γ2). Introduce a space of test
functions V = {v ∈ H1(Ω)|v = 0 on Γ1} and a set U = {v ∈ H1(Ω)|v ≥ 0 in Ω, v = u

on Γ1}. It is easy to verify that U is convex, closed with respect to the norm ‖.‖1 and
nonempty as u ∈ U . Note that it has no interior points. (To see this for d = 2 and
(0, 0) ∈ Ω, a simple example can be constructed using the function

vε(x1, x2) = −ε(− ln
√

x2
1 + x2

2)
1/4, (x1, x2) ∈ Ω, ε > 0,

which has a negative pole and ‖vε‖1 → 0 for ε → 0, compare [14, p. 10]).
Define a symmetric bilinear continuous form

a(v, w) =
∫

Ω
(grad v)>A grad wdx +

∫

Γ2

αvwds, v, w ∈ H1(Ω),

and a linear continuous form

F (v) =
∫

Ω
fvdx +

∫

Γ2

gvds, v ∈ H1(Ω).

Using positive definiteness of A, the Friedrichs inequality and the fact that Γ1 6= ∅, we
obtain the V -ellipticity of a(., .),

a(v, v) ≥ C‖v‖2
1 ∀v ∈ V. (2.1)

In this chapter, we will examine the case d = 2. Let v ∈ U be arbitrary and suppose
that a solution u ∈ U of (1.1) exists. Multiplying (1.1) by the function v − u ∈ V and
then integrating over Ω, we get by Green’s theorem the following variational equality

a(u, v − u) +
∫

Γ2

βu4(v − u)ds = F (v − u) ∀v ∈ U.

From here we obviously get the variational inequality

a(u, v − u) +
∫

Γ2

βu4(v − u)ds ≥ F (v − u) ∀v ∈ U. (2.2)
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A function u ∈ U satisfying (2.2) is called a weak solution (or variational inequality
solution) of the classical problem (1.1). It is clear that the classical solution is also the
weak solution. Using the well-known results from potential theory, we show later (see
Remark 2.5) that there exists precisely one weak solution u ∈ U of (2.2).

Define a functional of potential energy

J(v) =
1
2
a(v, v) +

1
5

∫

Γ2

βv5ds− F (v), v ∈ H1(Ω). (2.3)

According to the trace theorem [17, p. 84, 86], for d = 2 and q ∈ [1,∞) there exists a
unique linear continuous mapping Z : H1(Ω) → Lq(∂Ω) such that for any v ∈ C∞(Ω)
we have Zv = v on ∂Ω, i.e.,

‖v‖0,q,∂Ω ≤ Cq‖v‖1,2,Ω ∀v ∈ H1(Ω). (2.4)

Therefore, the boundary integral in (2.3) is finite and J is thus correctly defined.
By (2.3) we can easily compute the directional derivative of J at the point v ∈ H1(Ω)

in the direction w ∈ H1(Ω),

J ′(v;w) = lim
t→0

1
t
(J(v + tw)− J(v)) = lim

t→0

1
t

(
ta(v;w) +

1
2
t2a(w;w)

+
∫

Γ2

β
(
tv4w + 2t2v3w2 + 2t3v2w3 + t4vw4 +

1
5
t5w5

)
ds− tF (w)

)

= a(v;w) +
∫

Γ2

βv4wds− F (w). (2.5)

Analogously we find an expression for the second Gâteaux derivative of J ,

J ′′(v;w, w) = a(w, w) + 4
∫

Γ2

βv3w2ds, v, w ∈ H1(Ω). (2.6)

Lemma 2.1. The functional J is continuous on H1(Ω) with respect to the ‖.‖1-
norm and is strictly convex over the set U .

Proof. To check the continuity of J it suffices to prove that the Gâteaux differential
of J is the Fréchet differential, i.e., we show that for any v ∈ H1(Ω)

lim
‖w‖1→0

w∈H1(Ω)

|J(v + w)− J(v)− J ′(v;w)|
‖w‖1

= 0. (2.7)

By (2.3), (2.5), the continuity of a(., .), the Cauchy-Schwarz inequality, the imbedding
L5(∂Ω) ⊂ L2(∂Ω) and (2.4), we obtain

|J(v + w)− J(v)− J ′(v;w)| ≤ 1
2
a(w, w) +

∫

Γ2

β
∣∣∣2v3w2 + 2v2w3 + vw4 +

1
5
w5

∣∣∣ds

≤ C1‖w‖2
1,2,Ω + C2(‖v‖3

0,5,∂Ω‖w‖2
0,5,∂Ω + ‖v‖2

0,5,∂Ω‖w‖3
0,5,∂Ω

+ ‖v‖0,5,∂Ω‖w‖4
0,5,∂Ω + ‖w‖5

0,5,∂Ω) ≤ C(v)‖w‖2
1,2,Ω (2.8)

whenever ‖w‖1,2,Ω ≤ 1. Thus (2.7) is valid and J is continuous.
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From (2.6) and (2.1) we see that there exists a constant C > 0 such that

J ′′(v;w, w) ≥ C‖w‖2
1 ∀v ∈ U ∀w ∈ V. (2.9)

This means that the functional J is strictly convex over the set U which completes the
proof.

Remark 2.2. The functional J is not convex over the whole space H1(Ω) due to

the term
1
5

∫

Γ2

βv5ds. That is why we have restricted ourselves to sets of non-negative

functions. This is in accordance with physics because the temperature cannot decrease
below 0[K]. Therefore, we have to deal with two nonlinearities. The first one is due to
the Stefan-Boltzmann boundary condition and the second one is due to the constrain
v ≥ 0 contained in the definition of the convex set U .

Theorem 2.3. There exists a unique solution of the variational problem: Find
u ∈ U such that

J(u) = inf
v∈U

J(u). (2.10)

Proof. By (2.3), (2.1) and the continuity of F , there exist positive constants C1, C2

such that

J(v) =
1
2
a(v, v) +

1
5

∫

Γ2

βv5ds− F (v) ≥ C1‖v‖2
1 − C2‖v‖1 ∀v ∈ U,

since the integral over Γ2 is non-negative. Hence, the functional J is coercive on U ,
i.e.,

J(v) →∞ as ‖v‖1 →∞, v ∈ U. (2.11)

Let ṽ ∈ U be arbitrary. Then by (2.11) there exists r > 0 such that for any v ∈ U

for which ‖v‖1 > r, we have J(ṽ) < J(v). Thus the minimization problem (2.10) over
the unbounded set U is equivalent to the minimization of J over the bounded closed
set Ũ = {v ∈ U | ‖v‖1 ≤ r}. The rest of the proof follows from Lemma 2.1, the fact
that H1(Ω) is a reflexive Banach space and the next theorem (see [6, p. 199]).

Theorem 2.4. Let Ũ be a non-empty convex closed and bounded subset of a reflexive
Banach space. Let J be a continuous and convex functional defined on Ũ . Then
(a) inf

v∈Ũ
J(v) > −∞;

(b) there exists at least one u ∈ Ũ such that J(u) = inf
v∈Ũ

J(v);

(c) if, moreover, J is strictly convex on Ũ then there exists precisely one u with the
property (b).

Remark 2.5. The unique solution of (2.10) is called a variational solution. It
is known (see [1, p. 118]) that the minimization of a convex Gâteaux-differentiable
functional J over a convex subset U ⊂ H1(Ω) is equivalent to the following variational
inequality problem: Find u ∈ U such that

J ′(u; v − u) ≥ 0 ∀v ∈ U. (2.12)

By (2.5), the inequality (2.12) takes just the form (2.2). Hence, there is also precisely
one solution of the variational inequality problem (2.2).
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3. Convergence of Finite Element Approximations

Finite element solution of a heat radiation problem with the vanishing right-hand
side is investigated in [9, 10] provided all angles of all triangles are less than

π

2
. Here

we will employ the maximum angle condition which is much more weaker.
Throughout this section we suppose that Ω is polygonal. We shall employ standard

linear triangular elements [15]. Triangulations Th are supposed to satisfy standard
consistency condition, i.e., those points, where one type of the boundary condition
changes into another, belong to the set of vertices of all K ∈ Th. Let F be a family
of triangulations of Ω. For a given triangulation Th ∈ F set Wh = {vh ∈ H1(Ω)
| vh|K ∈ P1(K) ∀K ∈ Th}, where P1(K) is the space of linear polynomials over K.
Recall (see [14, p. 27]) that functions from Wh are continuous. Assume, for simplicity
that

∃h0 > 0 ∀h ∈ (0, h0) : u ∈ Wh. (3.1)

Then the following set will be non-empty Uh = U ∩Wh.
Analogously to Theorem 2.3 we can prove that for a sufficiently small h > 0 there

exists a unique solution of the discrete problem: Find uh ∈ Uh such that

J(uh) = inf
vh∈Uh

J(vh), (3.2)

where J is defined by (2.3).
We prove now the convergence uh → u for h → 0 without any smoothness as-

sumptions upon u. Recall that a family T of triangulations of Ω is said to satisfy the
maximum angle condition if there exists a constant γ0 < π such that for any Th ∈ F
and any K ∈ Th we have γK ≤ γ0, where γK is the maximum angle of K.

For such a family we have by [12, p. 225] that ‖w − πhw‖1 ≤ Ch|w|2 ∀w ∈ H2(Ω),
where πh is the standard linear interpolation operator and πhw ∈ Wh.

Theorem 3.1. Let there exist a constant Cu > 0 such that u ≥ Cu and let F be a
family of triangulations of Ω satisfying the maximum angle condition. Then ‖u−uh‖1 →
0 as h → 0, where u and uh are, respectively, the unique solutions of (2.10) and (3.2).

Proof. Let ε > 0 be given. According to [4, p. 618], there exists w ∈ C∞(Ω) ∩ V

such that ‖u0−w‖1 <
ε

2
, where u0 = u− u ∈ V . Moreover, we see that πhw ∈ V ∩Wh

and, by the maximum angle condition ‖w−πhw‖1 <
ε

2
, when h is small enough. Setting

vh = πhw + u, we find that

‖u− vh‖1 = ‖u0 − πhw‖1 ≤ ‖u0 − w‖1 + ‖w − πhw‖1 < ε

for sufficiently small h > 0. Hence,

‖u− vh‖1 → 0 as h → 0. (3.3)

The function w has been obtained by a regularization technique of [17, p. 58].
Therefore, for a sufficiently small ε we get that w + u ≥ 0, since u = u0 + u ≥ Cu > 0.
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As πh is the linear interpolation operator, we get that πh(w + u) ≥ 0. Moreover, by
(3.1), vh = πhw + u ≥ 0 and thus vh ∈ Uh, since πhw = 0 on Γ1.

Obviously,
J(u) ≤ J(uh) ≤ J(vh). (3.4)

By Lemma 2.1 the functional J is continuous and, therefore, the relations (3.3) and
(3.4) yield

lim
h→0

J(uh) = J(u). (3.5)

Introduce the Taylor expansion of J at the point u (see [1, p. 52]),

J(uh) = J(u) + J ′(u;uh − u) +
1
2
J ′′(u + θh(uh − u);uh − u, uh − u),

where θh ∈ (0, 1). This and (2.9) imply that

J(uh)− J(u) ≥ J ′(u;uh − u) + C‖u− uh‖2
1 ≥ C‖u− uh‖2

1, (3.6)

where C > 0 is independent of h. From here, (3.5) and (2.12) we observe that ‖u −
uh‖1 → 0 as h → 0.

If the variational solution u is sufficiently smooth we can derive even a linear rate
of convergence in the ‖.‖1-norm.

Theorem 3.2. Let the assumptions of Theorem 3.1 be fulfilled and let u ∈ H2(Ω).
Then ‖u− uh‖1 ≤ Ch as h → 0.

Proof. Let w ∈ V ∩C∞(Ω) be an arbitrary function such that ‖w‖C(Ω) < Cu. Then
clearly u + w, u − w ∈ U . Setting v = u ± w in (2.12), we find that J ′(u;w) ≥ 0 and
J ′(u;−w) ≥ 0. Now from the linearity of J ′(u; ·) and the density of V ∩ C∞(Ω) in V

(see [4, p. 618]), we obtain the well-known necessary Euler extremum condition:

J ′(u; v) = 0 ∀v ∈ V. (3.7)

Since u ∈ H2(Ω), the function u is continuous by the Sobolev imbedding theorem
and thus πhu ∈ Wh is well-defined. We see that πhu ∈ Uh and clearly,

J(uh) ≤ J(πhu), (3.8)

due to (3.2). Using now (3.7), (3.6), (3.8), again (3.7), (2.8) and the maximum angle
condition in that order, we arrive at

C‖u− uh‖2
1 = C‖u− uh‖2

1 + J ′(u;uh − u) ≤ J(uh)− J(u) ≤ J(πhu)− J(u)

= J(πhu)− J(u)− J ′(u;πhu− u) ≤ C(u)‖u− πhu‖2
1 ≤ Cuh2,

where C,Cu > 0 are independent of h and Cu depends on u.

4. Three-dimensional Radiation Heat Transfer Problem

In [7], the Monte Carlo method is used to solve three-dimensional heat radiation
problem. Finite element approximations of an axially symmetric heat radiation problem
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are studied in [3]. In this chapter, we need not assume that Ω is axially symmetric.
Then, however, we encounter some troubles with the definition domain of the functional
J . Namely, the traces of functions from H1(Ω) need not be in L5(∂Ω), in general (see
the following example).

Example 4.1. Let us use standard spherical coordinates (r, ϕ, θ) to describe the
set Ω = {(x1, x2, x3) ∈ R3|x2

1 + x2
2 + x2

3 < 1, xi > 0, i = 1, 2, 3}. Consider the function

rα, where α is a real parameter. Then for α > −1
2

we have

‖rα‖2
1 =

∫ 1

0

∫ π
2

0

∫ π
2

0
(r2α + α2r2α−2)r2 sin θ dθ dϕ dr =

π

2

( 1
2α + 3

+
α2

2α + 1

)
∈ (0,∞).

The triple integral is not finite whenever α ∈
(
−∞,−1

2

]
. Now we show that the trace

of rα is in L5(∂Ω) only if α > −2
5
.

It suffices to investigate traces on one of the three sectors of a circle which are
contained in ∂Ω. Denote by S that sector for which θ =

π

2
, i.e.,

S = {(x1, x2, 0) ∈ R3|x2
1 + x2

2 < 1, x1 > 0, x2 > 0 }.

Then

‖rα‖5
0,5,S =

∫ 1

0

∫ π
2

0
r5αr dϕdr =

π

2(5α + 2)
∈ (0,∞)

if and only if α > −2
5
. Hence, if α ∈

(
− 1

2
,−2

5

]
then rα ∈ H1(Ω), but its trace is not

in L5(∂Ω).
For d = 3 we can guarantee that the traces of functions from H1(Ω) are only in

L4(∂Ω), i.e., there exists a constant C > 0 such that (see [17, p. 84])

‖v‖0,4,∂Ω ≤ C‖v‖1,2,Ω ∀v ∈ H1(Ω). (4.1)

If we would restrict the definition domain of the functional (2.3) to the space H2(Ω)
(or W 1

3 (Ω)) then J would be not coercive on nonnegative functions from these spaces
with respect to the norm ‖.‖2 (or ‖.‖1,3). Therefore, we shall consider the functional
J over the linear space Z = {v ∈ H1(Ω) | v|Γ2 ∈ L5(Γ2)}, equipped with the norm

‖v‖Z = (‖v‖2
1,2,Ω + ‖v‖2

0,5,Γ2
)

1
2 .

Lemma 4.2. The space Z is a Banach space.
Proof. Let {vk} ⊂ Z be a sequence such that lim

k,m→∞
‖vk − vm‖Z = 0. Since H1(Ω)

and L5(Γ2) are Banach spaces, there exist v ∈ H1(Ω) and w ∈ L5(Γ2) such that vk → v

in H1(Ω) and vk|Γ2 → w in L5(Γ2) for k → ∞. By (4.1) we find that vk|Γ2 → v|Γ2 in
L4(Γ2) and thus v|Γ2 = w. Hence, the Cauchy sequence {vk} converges in Z and the
space Z is therefore complete.

Lemma 4.3. The space Z is reflexive.
Proof. We shall proceed similarly to [3, p. 1079]. By [6, p. 187] the Carte-

sian product of two reflexive spaces is also reflexive. Hence, the space T ≡ H1(Ω) ×
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L5(Γ2) = {(v, w) | v ∈ H1(Ω), w ∈ L5(Γ2)}, equipped with the norm ‖(v, w)‖T =

(‖v‖2
1,2,Ω + ‖w‖2

0,5,Γ2
)

1
2 , is a reflexive normed space. The mapping

v ∈ Z 7→ (v, v|Γ2) ∈ T (4.2)

is obviously an isomorphism between Z and some closed subspace T1 of T . According
to [6, p. 187], T1 is reflexive since T is reflexive. Therefore, due to the isomorphism
(4.2), the space Z is also reflexive.

Lemma 4.4. The functional J given by (2.3) is continuous on Z.
Proof. For v, w ∈ Z we have

|J(v + w)− J(v)| ≤
∣∣∣1
2
a(v + w, v + w)− 1

2
a(v, v)

∣∣∣ +
∣∣∣1
5

∫

Γ2

β((v + w)5 − v5)ds
∣∣∣

+ |F (v + w)− F (v)| ≤ |a(v, w)|+ 1
2
|a(w, w)|+ |F (w)|

+
∫

Γ2

∣∣∣β
(
v4w + 2v3w2 + 2v2w3 + vw4 +

1
5
w5

)∣∣∣ds

≤C1(‖v‖1‖w‖1 + ‖w‖2
1 + ‖w‖1) + C2(‖v‖4

0,5,Γ2
‖w‖0,5,Γ2

+ ‖v‖3
0,5,Γ2

‖w‖2
0,5,Γ2

+ ‖v‖2
0,5,Γ2

‖w‖3
0,5,Γ2

+ ‖v‖0,5,Γ2‖w‖4
0,5,Γ2

+ ‖w‖5
0,5,Γ2

),

where C1, C2 are positive constants, since ‖w‖1 ≤ ‖w‖Z and ‖w‖0,5,Γ2 ≤ ‖w‖Z , we find
that

lim
w∈Z

‖w‖Z→0

|J(v + w)− J(v)| = 0.

Now for u ∈ Z we define

U = {v ∈ Z | v ≥ 0 in Ω, v = u on Γ1}. (4.3)

Lemma 4.5. The functional J is strictly convex over the set U given by (4.3).
Proof. For any v, w, z ∈ U we have by (2.6) and (2.1) that

J ′′(v; z − wz − w) = a(z − w, z − w) + 4
∫

Γ2

βv3(z − w)2ds ≥ C‖z − w‖2
1, (4.4)

where C is a positive constant. Since ‖z −w‖Z = 0 if and only if ‖z −w‖1 = 0, we see
that J is strictly convex on U .

Lemma 4.6. Let there exist a positive constant Cβ such that

β ≥ Cβ on Γ2. (4.5)

Then the functional J is coercive on U .
Proof. For any v ∈ U we find that

J(v) =
1
2
a(v, v) +

1
5

∫

Γ2

βv5ds− F (v) ≥ C1‖v‖2
1 +

1
5
Cβ‖v‖5

0,5,Γ2
− C2‖v‖1.
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Obviously, if ‖v‖Z →∞ then ‖v‖1 →∞ or ‖v‖0,5,Γ2 →∞, and thus lim
v∈Z

‖v‖Z→∞
J(v) = ∞.

Theorem 4.7. Let u ∈ Z and let (4.5) hold. Then there exists a unique function
u which minimizes the functional J over the set U . The function u is a variational
solution of the problem (1.1).

Proof. Due to the coercivity of J (see Lemma 4.6), the minimization of J over the
unbounded set U can be transformed to the minimization of J over the bounded subset
Ũ = {v ∈ U | ‖v‖Z ≤ r} like in Theorem 2.3. The existence of a unique minimizer
u now follows from Theorem 2.4 and Lemmas 4.2–4.5.

By (2.12), we again derive the associated variational inequality of the form (2.4).

5. Remarks on Approximation on Polyhedra

Let Ω be a bounded polyhedral domain with a Lipschitz-continuous boundary (an
example of a polyhedron whose boundary is not Lipschitz-continuous is given in [11,
p. 48]). Let the one-dimensional boundary of the two-dimensional set Γ1 ⊂ ∂Ω consist
of a finite number of straight line segments. Denote by Th a decomposition of Ω into
closed tetrahedra K in the usual sense, i.e., the union of all K ∈ Th is Ω, the interiors of
all tetrahedra are mutually disjoint, and any face of any tetrahedron K ∈ Th is either a
subset of Γ1 or Γ2 or a face of another K ′ ∈ Th. A constructive proof of the existence of
such a decomposition is given in [11, p. 61]. The space Wh is defined in the same way
as for d = 2. Let us assume that u ∈ Wh for all h sufficiently small (cf. (3.1)). Then
from Theorem 2.4 we again see that for any Th (h small) there exists one and only one
solution of the minimization problem: Find uh ∈ Uh such that J(uh) = min

vh∈Uh

J(vh),

where Uh = U ∩Wh.

A family of decompositions F = {Th} into tetrahedra is said to satisfy the maximum
angle condition if there exists a constant γ0 < π such that for any Th ∈ F and any
K ∈ Th we have γK ≤ γ0 and ϕK ≤ γ0, where γK is the maximum angle of all triangular
faces of the tetrahedron K, and ϕK is the maximum angle between faces of K.

Recall that (see [13, p. 516]) if F satisfies the maximum angle condition then

‖v − πhv‖1,∞ ≤ Ch|v|2,∞ (5.1)

for sufficiently smooth v. Here πh is the standard linear interpolation operator. From
property (5.1) we can prove the convergence of uh to u in the ‖.‖Z-norm as in Chapter
3 using the inequality ‖v‖Z ≤ C‖v‖1,∞ for any v from the Sobolev space W 1∞(Ω).

All results of this paper can be modified to the case Γ1 = ∅ if α > 0 or β > 0 on
some set of a positive measure. Various approaches to the solution of the radiation
heat transfer problem can be further find, e.g., in [8, 18, 21, 22]. A condition, which is
similar to the Stefan-Boltzmann boundary condition arises in mathematical modelling
of electrolysis processes, see [5].
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tions, RAIRO Modèl. Math. Anal. Numér., 20 (1986), 461–477.
[10] K. Ishihara, Successive overrelaxation method with projection for finite element solutions

of nonlinear radiation cooling problems, Computing, 38 (1987), 117–132.
[11] M. Kř́ıžek, An equilibrium finite element method in three-dimensional elasticity, Apl. Mat.,

27 (1982), 46–75.
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