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Abstract

The purpose of this paper is to propose and study a class of quasi-interpolating
operators in multivariate spline space S1

2(∆2∗
mn) on non-uniform type-2 triangula-

tion. Based on the operators, we construct cubature formula for two-dimensional
hypersingular integrals. Some computing work have been done and the results are
quite satisfactory.
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1. Introduction

Since P. Zwart obtained an expression of bivariate B-spline[2], R.-H Wang and C.K.
Chui have developed a series of results, especially, the quasi-interpolating operators
of S1

2(∆2
mn) on uniform type-2 triangulation and its approximation properties[1] which

have widespread applications in Mechanics and Engineering. Furthermore, R-H Wang
and C.K. Chui also obtained the function with minimum support in S1

2(∆2∗
mn) on non-

uniform type-2 triangulation and the basis of S1
2(∆2∗

mn)[4]. In this paper we introduce
some quasi-interpolating operators of S1

2(∆2∗
mn) on non-uniform type-2 triangulation

and show their approximation properties. By using the operators we construct cuba-
ture formulas.which can be used to evaluate hypersingular integrals arisen from many
mechanics and engineering problems.

2. Quasi-Interpolating Operators of S(∆2∗
mn)

Let ∆2∗
mn be a non-uniform type-2 triangulation on the domain Ω[a, b]⊗ [c, d], and

x−2 < x−1 < a = x0 < · · · < xm = b < xm+1 < xm+2,

y−2 < y−1 < c = y0 < · · · < yn = d < yn+1 < yn+2.

First we consider the linear operators

Vmn : C(Ω) → S1
2(∆2∗

mn); (2.1)
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Vmn(f) =
∑

ij

f
(xi + xi+1

2
,

yj + yj+1

2

)
Bij(x, y); (2.2)

It is similar to the result in [1], we have the following results.
Theorem 2.1. For f ∈ P1 and f = xy, we have

Vmn(f) = f. (2.3)

Because of the theorem 2.7[4], we only need to verify the theorem for and f(x, y) =
x, y and xy. Since Vmn(f) is a linear operator, we can only examine them in the domain
Dij :

Dij = (xi, xi+1)⊗ (yj , yj+1); (i = 0, · · ·m + 1; j = 0, · · ·n + 1).

By the computation of the values of Vmn(f) at eight points

(xi, yj), (xi, yj+1),
(xi + xi+1

2
, yj

)
,
(xi + xi+1

2
, yj+1

)
,

(xi+1, yj), (xi+1, yj+1),
(
xi,

yj + yj+1

2

)
,
(
xi+1,

yj + yj+1

2

)
; (2.4)

we have Vmn(f), at all of the eight points. Since the eight point are the adapt in-
terpolating knot group in Dij , we have Vmn(f) = f in Dij . Therefore, the theorem
holds.

It is easy to prove that Vmn(f) 6= f , as f = x2 or y2, In order to make the theorem
holds for all polynomials in P2, we have to introduce another linear operator

Wmn : C(Ω) → S1
2(∆2∗

mn), (2.5)

Wmn(f) =
∑

ij

λij(f)Bij(x, y), (2.6)

where

λij(f) =2f
(xi + xi+1

2
,
yj + yj+1

2

)

− 1
4
(f(xi, yj) + f(xi, yj+1) + f(xi+1, yj) + f(xi+1, yj+1)). (2.7)

It is similar to result in [4], we have the following theorem:
Theorem 2.2. Wmn(f) = f for any f ∈ P2.
By the theorem 2.1, we have Wmn(f) = f for f ∈ P1 and f = xy. Now we need to

verify Wmn(f) = f for f(x, y) = x2 and y2. Just the same as the proof of theorem 2.1,
we only need to compute the values of Wmn(f) in Dij at the points

(xi, yj), (xi, yj+1),
(xi + xi+1

2
, yj

)
,
(xi + xi+1

2
, yj+1

)

(xi+1, yj), (xi+1, yj+1),
(
xi,

yj + yj+1

2

)
,
(
xi+1,

yj + yj+1

2

)
. (2.8)

By means of computation of the value of Wmn(f), we have Wmn(f) = f in Dij for
f(x, y) = x2 and y2. Therefore the theorem 2.2 holds.
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3. Approximation Properties of S(∆2∗
mn)

In this part we discuss how well the linear operators stated as above to approximate
the function f ∈ Cp(Ω), p = 0, 1, 2, 3. Let

ωk(f, δ) = sup{f(x, y)− f(u, v)| : (x, y), (y, v) ∈ K, |(x, y)− (u, v)| < δ}.
(3.1)

δmn = max
ij

[hi, kj ],

δ∗mn = max(
√

9h2 + k2,
√

9k2 + h2),

h = max
i

(hi), k = max
j

(kj); (3.2)

and K be a compact set, K ⊂ Ω.
Theorem 3.1. Let f ∈ C(K) and m,n ≥ N0 we have

‖f − Vmn(f)‖Ω ≤ ωk(f, δ∗mn), (3.3)

if f ∈ C1(K) then

‖f − Vmn(f)‖Ω ≤ δmn max(ωΩ(f1, δmn/2), ωΩ(f2, δmn/2)), (3.4)

if f ∈ C2(K) then
‖f − Vmn(f)‖Ω ≤ δ2

mn‖D2f‖. (3.5)

Since δ∗mn is more then “radius” of the support of Bij , it is obvious that (3.3) holds.
Let f ∈ C1(K), F is the closure of triangle cell of Bij , and make

‖f − Vmn(f)‖Ω = ‖f − Vmn(f)‖F , (3.6)

and let (x0, y0) be
(
xi,

yj + yj+1

2

)
or

(xi + xi+1

2
, yj

)
, by means of Mean Theorem, we

have

f(x, y) = p1(x, y)+(f1(u, v)−f1(x0, y0))(x−x0)+(f2(u, v)−f2(x0, y0))(y−y0), (3.7)

where

p1(x, y) = f(x0, y0) + f1(x0, y0)(x− x0) + f1(x0, y0)(y − y0),

(u, v) = t(x, y) + (1− t)(x0, y0), 0 ≤ t ≤ 1. (3.8)

By the theorem 3.1[4] and ‖Vmn‖ = 1, we have

‖f − Vmn(f)‖F ≤ ‖f − p1‖F + ‖Vmn(f − p1)‖F ≤ 2‖f − p1‖F . (3.9)

Therefore formula (3.4) holds.
If f ∈ C2(Ω), by means of Taylor expansion, it is easy to obtain the (3.5).
We also have the following results for bivariate linear operator Wmn.
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Theorem 3.2. Let f ∈ C2(Ω) and m,n ≥ N0. If f ∈ C2(K), then

‖f−Wmn(f)‖Ω ≤ 1
2
δ2
mn max[ωΩ(f11, δmn/2), 2ωΩ(f12, δmn/2), ωΩ(f22, δmn/2)], (3.10)

if f ∈ C3(K) then

‖f −Wmn(f)‖Ω ≤ 1
12

δ3
mn‖D3f‖. (3.11)

Taking note of ‖Wmn‖ = 3. It is easy to prove the theorem in term of Taylor
expansion.

4. Cubature Formulas

We consider integrals of the form
∫

Ω
Kp(v0; v)Φ(v)dv, v0 ∈ Ω ⊂ R2, (4.1)

where the kernel Kp admit the expansion

Kp(v0; v) =
p+1∑

l=0

fp−1(v0; θ)
rp+2−l

+ K∗
p(v0, v). (4.2)

(ρ, θ) denote the polar coordinate of v with respect to v0. K∗
p(v0; v) may still become

infinite at v0, but with order less than 2. For simplicity we assume the functions fp−l,Φ
and K∗

p smooth in domain Ω. Therefore we can only consider integrals of the form

I =
∫

Ω

fp(v0, θ)
rp

Φ(v)dv, p = 2, 3. (4.3)

Based on the definition of finite part integrals and the quasi interpolating operators
mentioned as above, we obtain the following cubature formula for (4.3)

I =
∫

Ω

fp(v0, θ)
rp

Φ(v)dv =
n−1∑

i=0

m−1∑

j=0

i+1∑

k=i−1

j+1∑

q=j−1

λkq(Φ)bijkq + Rnm(KΦ);
(4.4)

bijkq =
∫ xi+1

xi

∫ yj+1

yj

fp(v0;ϑ)Bkq(v)
rp

dv. (4.5)

Obviously, according to the definition of finite-part integrals[3], bijkq can be com-
puted by the Gauss-Legendre or Gauss-Lobatto rule.

By the theorem 3.2, we can obtained some convergence results about the cubature
formula (4.4).

Theorem 4.1. If in (4.4), we assume Φ ∈ Cp+2(Ω) and fp ∈ C[0, ω], for the
remainder term we have

Rmn(KΦ) ≤ CωΩ(g, δmn/2), (4.6)

where C is a constant.
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Theorem 4.2. If we assume Φ ∈ Cp+3(Ω) and fp ∈ C2[0, ω], the remainder in
(4.4)

Rnm(KΦ) ≤ Cδ2
mn max[ωΩ(g11, δmn/2), 2ωΩ(g12, δmn/2), ωΩ(g22, δmn/2)], (4.7)

where C is a constant.
Theorem 4.3. If we assume Φ ∈ Cp+4(Ω) and fp ∈ C3[0, ω], the remainder in

(4.4)
Rnm(KΦ) ≤ Cδ3

mn‖D3(g)‖, (4.8)

where C is a constant.
In the boundary element methods, we often need to evaluate the CPV or hypersin-

gular surface integrals of type

I =
∫

S
Kp(v0, v − v0)Φ(v)dSv, p int eger, (4.9)

where S ⊂ R3 has an analytic parametric representation S : (x(u,w), y(u,w), z(u,w)),
the kernel Kp is homogeneous of degree −p− 2 in the second argument and has a pole
of order p + 2 at v = v0 and Φ(v) is a smooth function.

We introduce a polar coordinate system (ρ, θ) centered at η, image of singular point
v0.

u = η1 + ρ cos θ

w = η2 + ρ sin θ (4.10)

Since KΦ is singular of order ρ−(p+2), we have (Laurent) series expansion with
respect to ρ in the form

KΦ =
( p+2∑

i=1

F−i(θ)/ρi
)

+ O(1). (4.12)

Because of the integral

∫

S

(
KΦ−

( p+2∑

i=1

F−p(θ)/ρi
))

dS (4.13)

is a regular integral, Replacing
(
KΦ−

( p+2∑

i=1

F−p(θ)/ρi
))

in (4.13) by its quasi-interpolation

operator (2.6) and employing Gauss-Legendre rule, we can construct the following cu-
batrue formula of the hypersingular integrals (4.9)

I =
∫

S
Kp(v0, v − v0)Φ(v)dSV

=
∫

S

(
KΦ−

( p+2∑

i=1

F−p(θ)/ρi
))

dS −
∫

S

( p+2∑

i=1

F−p(θ)/ρi
))

dS
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=
n−1∑

i=0

m−1∑

j=0

i+1∑

k=i−1

j+1∑

q=j−1

λkq(g)bijkq −
∑

|i|≤p

∫ ω

0
F−i(θ)hi(θ)dθ + Rnm(KΦ);

(4.14)

where h|i|(θ) is given in [3] and

bijkq =
∫ xi+1

xi

∫ yj+1

yj

Bkq(v)dv.

g(v) = KΦ(v)−
∑

0≤i≤p

Fp(θ)/ρi. (4.15)

The estimate of the remainder Rnm(KΦ) in (4.14) is the same as the plane region’s,
here we do not repeat it.

5. Spline Scheme of Singular Fredholm Integral Equation of Second
Kind

Without loss generality, we consider the two-dimensional second kind Fredholm
integral equations of the form

u(x, y) =
∫

Ω
K(x, y, s, t)u(s, t)dtds + g(x, y), (x, y) ∈ Ω, (5.1)

where

k(x, y, s, t) =
f(x, y, s, t)

rd
, d = 2, 3, r = ‖(x, y)− (s, t)‖2,

f ∈ E, g(x, y) ∈ C(Ω), E{(x, y, s, t) : a ≤ x, t ≤ b, c ≤ y, t ≤ d}. (5.2)

We use the quasi-interpolating function Wmn(u)(s, t) as substitute for the integrat-
ing factor u(s, t), then the integral equation (5.1) turn into following (2nm+5m+5n+
13)× (2nm + 5m + 5n + 13) linear algebraic system of equations:

uhk(xp, yq) =
n−1∑

i=0

m−1∑

j=0

i+1∑

k=i−1

j+1∑

q=j−1

λkq(uhk)bijkq(xp, yq) + g(xp, yq) (5.3)

uhk(xp, yq) =
n−1∑

i=0

m−1∑

j=0

i=1∑

k=i−1

j+1∑

q=j−1

λkq(uhk)bijkq(xp, yq) + g(xp, yq); (5.4)

where

bijkq(∗, ∗) =
∫ xi+1

xi

∫ yj+1

yj

Bkq(v)
f(∗, ∗, s, t)

rp
dsdt. (5.5)

(p = −1, 0, 1, · · ·m + 1; q = −1, 0, 1, · · ·n + 1, p′ = 0, 1, · · ·m + 1; q′ = 0, 1, · · · , n + 1, ).

where (xp, yq), (xp′ , yq′) are the knots of non-uniform type-2 triangulation ∆2∗
mn, (Fig.1).
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Once the system is solved, the solution u(x, y)
of the equation (5.1) can be evaluated by the values
of uhk(xi, yj), uhk(xi′ , yj′). Where

(i = −1, 0, 1, · · · ,m + 1; j = −1, 0, 1, · · · , n + 1,

i′ = 0, 1, · · · ,m + 1; j′ = 0, 1, · · · , n + 1).
Fig. 1

6. Numerical Examples

Without loss of generality, the following CPV integral is considered

Iv =
∫

v

x1 − y1

r3
dx1dx2 (6.1)

where
v = [−1, 1]× [−1, 1], r = ‖x− y‖2.

The CPV integral equation (6.1) was chosen to be compared with the closed form
shown in Theocaris et al.(1980).

Notice, however, that the integrand function in equation (6.1) shows all the rel-
evant features of any CPV integral arising in the BEM. Therefore, notwithstanding
the apparent simplicity, this example provides a significant test for the methods under
investigation.

The coordinates of the singular point y in equation (6.1) was chosen in the three
cases (Fig.2)

Case (a): y = (0.6, 0);
Case (b): y = (0.6, 0.5);
Case (c): y = (−0.3, 0.2);
Formula (4.4) was employed for the computation. Table1

gives the numerical results for the three cases of Fig.2 together
with the exact value. At least three significant digits are
exact.

Table 1 Numerical results for the CPV integral of

equation (6.1) for the three cases as mentioned above

step length case(a) case(b) case(c)

h y = (0.6, 0) y = (0.6, 0.5) y = (−0.3, 0.2)

0.1 −2.113623 −1.935197 0.878973

0.05 −2.114145 −1.935682 0.8790

Exact −2.114175 −1.935711 0.879017

Fig.2 Plane Region (two-
dimensional internal
cells) singular points:
(a) y = (0.6, 0), (b)
y = (0.6, 0.5), (c) y =
(−0.3, 0.2)

As a more general example, let us consider the following hypersingular integral

IS =
∫

S

−1
4πr3

[
3r3

∂r

∂n
− n3(x)

]
dS, (6.2)

where S represents a 90-deg cylindrical panel (Fig.3 radius = 1, length = 2), r =

‖x− y‖2, n(x) is the outward unit normal vector at s, and ni =
xi − yi

r
.



344 R.H. WANG AND Y. LU

We also choose the singular points in the three cases as follows
Case (1): y = (π/4, 1, π/4);
Case (2): y = (π/4, 1.66, π/4);
Case (3): y = (1.64π, 1.64, 1.64π/4);
The computation was performed according to formula (4,14). Since the evaluation

is performed in the parameter plane, there is no difference in the numerical implemen-
tation between a flat and a curved one.

The results are reported in Table 2 for the three cases of Fig.3 together with the
reference values obtained by M. Guiggiani[5].

Table 2 Numerical results for the hypersingular integral of

equation (6.2) for the three cases mentioned as above

step length case(1) case(2) case(3)

h ya yb yc

0.2 −0.344076 −0.498002 −0.877447

0.1 −0.344022 −0.498009 −0.877437

0.05 −0.344015 −0.498016 −0.877460

Reference value −0.343807 −0.497099 −0.877214

(M. Guiggiani[5])

Fig.3 Curved boundary element and collocation points
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