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Abstract

In this paper, we discuss the quadrilateral finite element approximation to the
two-dimensional linear elasticity problem associated with a homogeneous isotropic
elastic material. The optimal convergence of the finite element method is proved for
both the L2-norm and energy-norm, and in particular, the convergence is uniform
with respect to the Lamé constant λ. Also the performance of the scheme does not
deteriorate as the material becomes nearly incompressible. Numerical experiments
are given which are consistent with our theory.
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locking phenomenon

1. Planar linear elasticity problem

The two-dimensional linear elasticity problem associated with a homogeneous
isotropic elastic material with pure displacements can be modelled by the following
elliptic boundary value problem:

−µ∆~u− (µ + λ)∇(div ~u) = ~f, in Ω, (1.1)

~u = ~0, on ∂Ω, (1.2)

where Ω ⊂ <2 is an open and bounded domain, ~u = (u1, u2) the displacement, ~f(x) the
body force, and λ, µ the Lamé constants. Different equivalent formulations of (1.1)–
(1.2) can be found in [3, 4, 11].

It is well known that the convergence rate for the standard displacement method
using continuous linear finite elements deteriorates as the Lamé constant λ becomes
large, i.e., the elastic material is nearly incompressible. Many finite element methods
of higher order have been proposed which work uniformly well for all λ, see [2, 3, 1, 14].
However, all these elements are required to satisfy the Babuska-Brezzi-Ladyzenskaja
condition for saddle point problems.
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In this paper, we use the simplest finite elements, i.e. the bilinear elements, which
do not satisfy the Babuska-Brezzi-Ladyzenskaja condition, for the above elasticity prob-
lem. The key technique here is to use the reduced integration to deal with the second
term in the equation (1.1). We apply the finite element method studied in [5] and [8]
and use a variant of the stability condition for some subspaces of the global finite ele-
ment space. We are able to prove the optimal error estimates in both the energy-norm
and L2-norm uniformly with respect to the Lamé constant λ, thus the convergence rate
does not deteriorate even for nearly incompressible material.

Before ending this section, we introduce some notation used in the paper. For any
positive integer m, Hm(Ω) denotes the usual Sobolev space of all square integrable
functions over Ω with square integrable derivatives of order up to m, and its norm and
semi-norm are denoted by ‖ · ‖m and | · |m. H1

0 (Ω) is the subspace of H1(Ω) with its
functions vanishing on the boundary ∂Ω (in the sense of trace). L2

0(Ω) is the space of
all square integrable functions over Ω with their mean values in Ω vanishing.

2. The Bilinear Element Method

We first consider a very simple and regular domain in this section, i.e. the domain
Ω is a rectangle. But we shall show in Section 4 that the method addressed in this
section can be naturally extended to more general domains which may be triangulated
using quadrilateral elements. As usual, we assume the Lamé constants µ, λ are in the
following ranges 0 < µ0 ≤ µ ≤ µ1, 0 < λ < ∞.

By Green’s formula, it is easy to derive the weak formulation of the system (1.1)–
(1.2):

Problem (P). Find ~u ∈ [H1
0 (Ω)]2 such that

µ(∇~u,∇~v) + (µ + λ)(div ~u, div ~v) = (~f,~v), ∀~v ∈ [H1
0 (Ω)]2, (2.1)

where (·, ·) denotes the inner product in L2(Ω) or [L2(Ω)]2.
Let T h be a triangulation of the domain Ω into rectangular elements of mesh size

h, which is obtained by refining a coarse rectangular mesh by dividing each coarse
element into four subelements by linking the mid-points of the opposite edges of the
coarse element. We then define the bilinear finite element space Vh by

Vh = {~vh ∈ [H1
0 (Ω)]2 : ~vh|K ∈ [Q1(K)]2, ∀K ∈ T h }, (2.2)

where Ql(K) (l positive integer) is the space of polynomials of degree less than or equal
to l in each variable on K.

Then the finite element problem to Problem (P) is formulated as follows:
Problem (Ph). Find ~uh ∈ Vh such that

µ(∇~uh,∇~vh) + (µ + λ)I1(div ~uh,div ~vh) = (~f,~vh), ∀~vh ∈ Vh, (2.3)

where I1(·, ·) denotes the one-point Gaussian quadrature in each element, i.e.,

I1(div~uh,div~vh) =
∑

K∈T h

|K|div ~uh(qK) div ~vh(qK)
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=
∑

K∈T h

1
|K|

∫

K
div ~uh dx

∫

K
div ~vh dx, (2.4)

where qK is the central point of the element K and |K| the area of K.
Remark 1. Recently, [3] analyzed the conforming and nonconforming linear tri-

angular finite element methods for the system (1.1)-(1.2). In the nonconforming case,
they used the mid-point values on each edge of elements as degrees of freedom, thus
compared with the finite elements here, the degrees of freedom needed in [3] are about
three times of ours. In the conforming case, they used a projection mapping finite ele-
ment functions into functions defined on larger coarse elements to deal with the second
term in the equation (2.1), thus compared with the finite elements here, their stiffness
matrix has a double bandwidth as ours.

We remark that if one uses the exact integration for the second term in (2.1), we
have the following scheme:

Problem (Pe
h). Find ~ue

h ∈ Vh such that

µ(∇~ue
h,∇~vh) + (µ + λ)(div ~ue

h, div ~vh) = (~f,~vh), ∀~vh ∈ Vh. (2.5)

By the standard finite element theory[9], we immediately come to the following error
estimates

µ‖∇(~u− ~ue
h)‖0 + (µ + λ)‖div (~u− ~ue

h)‖0

≤ inf
~vh∈Vh

(
µ‖∇(~u− ~vh)‖0 + (µ + λ)‖div (~u− ~vh)‖0

)
≤ Cµ,λ h |~u|2,

and ‖~u − ~ue
h‖0 ≤ Cµ,λh2|~u|2, where Cµ,λ will be very large when λ tends to infinity.

We will show numerically in Section 5 that the locking phenomenon occurs with this
scheme when the Lamé constant λ becomes large.

3. Error Estimates of the Finite Element Schemes

To analyzed the error estimates of the finite element problem (Ph), we first intro-
duce an equivalent formulation of (2.1). Let

p = (µ + λ) div ~u, (3.1)

then (2.1) can be written in the following mixed formulation:
Problem (P∗). Find (~u, p) ∈ [H1

0 (Ω)]2 × L2
0(Ω) such that

µ(∇~u,∇~v) + (p, div ~v) = (~f, ~v), ∀~v ∈ [H1
0 (Ω)]2, (3.2)

(µ + λ)(div ~u, q)− (p, q) = 0, ∀q ∈ L2
0(Ω). (3.3)

Now we introduce a piecewise constant finite element space:

Qh = {qh ∈ L2
0(Ω) : qh|K ∈ Q0(K), ∀K ∈ T h }, (3.4)

and a local averaged function ph:

ph|K =
µ + λ

|K|
∫

K
div ~uh dx ∀K ∈ T h. (3.5)
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Using the above notation, one can prove immediately that the finite element problem
(Ph) is equivalent to the following

Problem (P∗
h). Find (~uh, ph) ∈ Vh ×Qh such that

µ(∇~uh,∇~vh) + (ph, div ~vh) = (~f, ~vh), ∀~vh ∈ Vh, (3.6)

(µ + λ)(div ~uh, qh)− (ph, qh) = 0, ∀qh ∈ Qh. (3.7)

It is well known that the pair of finite element spaces (Vh, Qh) does not satisfy the
inf-sup condition[13,12,1,5]. Thus we can not apply the classical saddle point approx-
imation theory here for the error estimates. Instead we are going to use the “local
checkerboard pattern” technique to derive the error estimates.

Using notations in [8], we can construct a subspace V̂h of Vh and a subspace Q̂h of
Qh such that Qh = Q̂h ⊕ Q̃h and

β0‖q̂h‖0 ≤ sup
v̂h∈V̂h

(divv̂h, q̂h)
|v̂h|1 , ∀q̂h ∈ Q̂h, (3.8)

(div v̂h, q̃h) = 0, ∀q̃h ∈ Q̃h, v̂h ∈ V̂h (3.9)

where β0 is a constant independent of h. The subspace Q̃h is called the “local checker-
board pattern”. Let T 2h be the coarse triangulation with rectangular elements of size
2h, from which T h is obtained by dividing each element in T 2h into four elements of
size h. Then Q̃h = span {φ1

M : M ∈ T 2h} with φ1
M defined by

–1 +1

+1 –1

φ1
M

and the subspace Q̂h = span {φ2
M , φ3

M , φ4
M : M ∈ T 2h} with φ2

M , φ3
M , φ4

M defined by

+1 +1

+1 +1

φ2
M

+1 +1

–1 –1

φ3
M

–1 +1

–1 +1

φ4
M

It is easy to see that Q̂h and Q̃h are orthogonal in L2(Ω). The choice of V̂h is discussed
in detail in [8]. We now only state some approximation properties of the two subspaces
Q̂h and V̂h. For any ~u ∈ [H2(Ω) ∩ H1

0 (Ω)]2 and p ∈ H1(Ω) ∩ L2
0(Ω), we define their

projections ûI ∈ V̂h and p̂I ∈ Q̂h by (∇ûI , ∇vh) = (∇~u, ∇vh), ∀ vh ∈ V̂h and (p̂I , qh) =
(p, qh), ∀ qh ∈ Q̂h. Then we have (cf. [8])

|~u− ûI |1 ≤ C h|~u|2, ‖p− p̂I‖0 ≤ C h|p|1. (3.10)

Our main results are stated in the following theorem.
Theorem 1. Let ~u and ~uh be the solutions of Problem (P ) and Problem (Ph),

respectively, then |~u − ~uh|1 ≤ Ch‖~f‖0, where C is independent of h and the Lamé
constant λ.
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Proof. We analyze the approximation (Ph) to (P) from their equivalent forms, i.e.
(P∗h) and (P∗). From these equivalent formulations, we have

µ(∇(~u− ~uh),∇~vh) + (p− ph, div ~vh) = 0, ∀~vh ∈ Vh,

(µ + λ)(div (~u− ~uh), qh)− (p− ph, qh) = 0, ∀qh ∈ Qh. (3.11)

Then for the projections ûI ∈ V̂h and p̂I ∈ Q̂h of ~u and p, we have

µ‖∇(~u− ~uh)‖2
0 = µ(∇(~u− ~uh),∇(~u− ûI)) + µ(∇(~u− ~uh),∇(ûI − ~uh)

≤ C h |~u|2 ‖∇(~u− ~uh)‖0 − (p− ph, div(ûI − ~uh)),

and

−(p− ph, div(ûI − ~uh)) = −(p− p̂I , div(ûI − ~uh))− (p̂I − ph, div (ûI − ~uh)),

whose first term can be estimated directly from (3.10), namely

−(p− p̂I , div (ûI − ~uh)) ≤ 2‖p− p̂I‖0‖∇(ûI − ~uh)‖0

≤ Ch|p|1 (‖∇(ûI − ~u)‖0 + ‖∇(~u− ~uh)‖0)

≤ Ch |p|1 (h |~u|2 + ‖∇(~u− ~uh)‖0),

and whose second term can be analysed as follows: using (3.8), (3.3) and (3.7), we
denote

ph = p̂h ⊕ p̃h, p̂h ∈ Q̂h, p̃h ∈ Q̃h,

then we get

−(p̂I − ph,div(ûI − ~uh)) =− (p̂I − p̂h,divûI) + (p̂I − ph,div~uh)

=− (p̂I − p̂h,div(ûI − ~u))− (p̂I − p̂h,div~u) + (p̂I − ph,div~uh)

≤‖p̂I − p̂h‖0 ‖div(ûI − ~u)‖0 − 1
µ + λ

((p, p̂I − p̂h)− (ph, p̂I − ph))

≤C h ‖p̂I − p̂h‖0 |~u|2 − 1
µ + λ

(p̂I − ph, p̂I − ph).

Using the last two estimates, we derive that

µ‖∇(~u− ~uh)‖2
0 +

1
µ + λ

‖p̂I − ph‖2
0 ≤Ch(‖∇(~u− ~uh)‖0 + ‖p̂I − p̂h‖0)(|~u|2 + |p|1)

+ Ch2 |p|1 |~u|2.

But from (3.8) and (3.9), we know that

‖p̂I − p̂h‖0 ≤ 1
β0

sup
v̂∈V̂h

(div v̂, p̂I − p̂h)
|v̂|1 ≤ C h |p|1 +

1
β0

sup
v̂∈V̂h

µ(∇(~u− ~uh),∇v̂)
|v̂|1

≤ C h |p|1 + C ‖∇(~u− ~uh)‖0. (3.12)
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Thus we have

µ‖∇(~u− ~uh)‖2
0 +

1
µ + λ

‖p̂I − ph‖2
0 ≤ C h2 (|~u|2 + |p|1)2. (3.13)

Using the estimate of the solution to the system (1.1)-(1.2) (cf. [3], p.325):

‖~u‖2 + ‖p‖1 ≤ C‖~f‖0 (3.14)

where C is a constant independent of the Lamé constant λ, Theorem 1 follows from
(3.13). 2

Theorem 2. Let ~u and ~uh be the solutions of Problem (P ) and Problem (Ph),
respectively, then

‖~u− ~uh‖0 ≤ Ch2‖~f‖0, (3.15)

where C is independent of h and the Lamé constant λ.
Proof. Introduce the following dual problem: find ~φ ∈ [H1

0 (Ω)]2 such that

µ(∇~φ,∇~ψ) + (µ + λ)(div ~φ,div ~ψ) = (~g, ~ψ), ∀~ψ ∈ [H1
0 (Ω)]2,

where ~g ∈ [L2(Ω)]2 is given. It is equivalent to the mixed formulation:
Find (~φ, m) ∈ [H1

0 (Ω)]2 × L2
0(Ω) such that

µ(∇~φ,∇~ψ) + (m, div~ψ) = (~g, ~ψ), ∀~ψ ∈ [H1
0 (Ω)]2, (3.16)

(µ + λ)(div ~φ, n)− (m, n) = 0, ∀n ∈ L2
0(Ω). (3.17)

The following a priori estimates are known (see [3], p.325): ‖~φ‖2 + ‖m‖1 ≤ C ‖~g‖0,
where C is a constant independent of the Lamé constant λ.

Note that
‖~u− ~uh‖0 = sup

~g∈[L2(Ω)]2

(~g, ~u− ~uh)
‖~g‖0

, (3.18)

and
(~g, ~u− ~uh) = µ(∇~φ,∇(~u− ~uh)) + (m, div(~u− ~uh)). (3.19)

Let φ̂I and m̂I be the projections of ~φ and m similarly defined as the previous ûI and
p̂I , then

µ(∇~φ,∇(~u− ~uh)) =µ(∇(~φ− φ̂I),∇(~u− ~uh)) + µ(∇φ̂I ,∇(~u− ~uh))

=µ(∇(~φ− φ̂I),∇(~u− ~uh))− (p− ph, div φ̂I)

=µ(∇(~φ− φ̂I),∇(~u− ~uh))− (p̂I − p̂h, div φ̂I)

=µ(∇(~φ− φ̂I),∇(~u− ~uh)) + (p̂I − p̂h, div (~φ− φ̂I))

− (p̂I − p̂h, div ~φ), (3.20)

and from (3.11),

(m, div(~u− ~uh)) = (m− m̂I , div(~u− ~uh)) + (m̂I , div(~u− ~uh))

= (m− m̂I , div(~u− ~uh)) +
1

µ + λ
(p− ph, m̂I)
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= (m− m̂I , div(~u− ~uh)) +
1

µ + λ
(p̂I − p̂h, m̂I), (3.21)

(p̂I − p̂h,div~φ) =
1

µ + λ
(p̂I − p̂h,m). (3.22)

Then from (3.19)–(3.22) and (3.12), we have

(~g, ~u− ~uh) =µ(∇(~φ− φ̂I),∇(~u− ~uh)) + (p̂I − p̂h, div(~φ− φ̂I)) + (m− m̂I , div(~u− ~uh))

≤C h2 ‖~f‖0(‖~φ‖2 + ‖m‖1) + C h ‖~φ‖2 ‖p̂I − p̂h‖0 ≤ C h2 ‖~f‖0 ‖~g‖0,

where the term ‖p̂I − p̂h‖0 is bounded by using (3.12) and Theorem 1. Now Theorem
2 follows from this and (3.18). 2

4. Some Extensions

We have proved in the last section that the finite element scheme (Ph) is effective
and able to overcome the locking phenomenon when the Lamé constant λ is large. But
for small Lamé constant λ, the reduced integration used in (Ph) may affect the accuracy
of the finite element solution. To find a finite element scheme which is effective both for
large and small Lamé constant λ, we propose the following combined scheme of (Ph)
and (Pe

h):
Problem (Pc

h). Find ~uc
h ∈ Vh such that

µ(∇~uc
h,∇~vh) + α(div ~uc

h,div ~vh) + (µ + λ−α)I1(div ~uc
h,div ~vh) = (~f,~vh), ∀~vh ∈ Vh,

(4.1)
where 0 ≤ α ≤ µ + λ is a constant.

The choice of α is interesting. The practical rules may be set up on the basis of
numerical experiments. In general, we choose small α if λ is large to avoid the locking.
It seems that a suitable choice of α may increase the accuracy slightly in the numerical
tests. The scheme (Pc

h) is more suitable for all λ ∈ (0,∞) than the schemes (Ph) or
(Pe

h). By the method of [6, 10, 15], the h−version shows the locking of order h−2. So
we should let

µ + λ− α

α
≥ O(h−2). (4.2)

Using the bilinear form µ(∇~uc
h, ∇~vh)+α(div~uc

h, div ~vh) instead of the bilinear form
µ(∇~uh, ∇~vh) and pc = (µ + λ− α)div~u instead of p = (µ + λ)div~u and

pc
h|K =

µ + λ− α

|K|
∫

K
div ~uc

h dx

instead of ph defined in (3.5), we can establish the following optimal error estimates in
the same way as for Theorems 1 & 2:

Theorem 3. Let ~u and ~uc
h be the solutions of Problem (P ) and Problem (P c

h),
respectively, then

|~u− ~uc
h|1 ≤ Ch‖~f‖0, ‖~u− ~uc

h‖0 ≤ Ch2‖~f‖0, (4.3)
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where C is independent of h and λ but only depending on α.
If the domain Ω is a general two dimensional convex polygon instead of the rectan-

gular domain discussed so far, we can extend the considered methods, e.g. the scheme
(Ph), as follows. We assume the quadrilateral triangulation T h is achieved from a
quadrilateral coarse mesh by dividing each coarse element into four quadrilaterals by
linking the midpoints of the opposite edges of the coarse element. Each element of T h

is assumed to be a convex quadrilateral of mesh size h.
Let K ∈ T h be a quadrilateral with four nodes Aj(x

j
1, x

j
2), j = 1, 2, 3, 4, then there

exists a bilinear mapping FK : K̂ → K, with K̂ = [−1, 1]× [−1, 1] the reference element
in ξη-coordinate, defined by

xK
1 (ξ, η) =

1
4
(1 + ξ)(1 + η)x1

1 +
1
4
(1− ξ)(1 + η)x2

1

+
1
4
(1− ξ)(1− η)x3

1 +
1
4
(1 + ξ)(1− η)x4

1,

xK
2 (ξ, η) =

1
4
(1 + ξ)(1 + η)x1

2 +
1
4
(1− ξ)(1 + η)x2

2

+
1
4
(1− ξ)(1− η)x3

2 +
1
4
(1 + ξ)(1− η)x4

2.

Then we can define the quadrilateral finite element space

Vh =
{
(v1, v2) ∈ [H1

0 (Ω)]2 : vj |K = v̂j ◦F−1
K , v̂j ∈ Q1(K̂), j = 1, 2, ∀K ∈ T h

}
. (4.4)

Then the finite element problem to the variational problem (P) is formulated as:
Problem (Ih). Find ~uh ∈ Vh such that µ(∇~uh,∇~vh) + (µ + λ)I1(div ~uh, div ~vh) =

(~f,~vh), ∀~vh ∈ Vh. Here I1(·, ·) denotes the one-point numerical quadrature in each
element, i.e.,

I1(div ~uh,div ~vh) =
∑

K∈T h

|K|div ~uh(qK) div ~vh(qK)

=
∑

K∈T h

1
|K|

∫

K
div ~uh dx

∫

K
div ~vh dx, (4.5)

where qK is the centroid point of the element K. The second equality is valid for
general quadrilaterals. In fact, by the definition of the space Vh in (4.4), for any
~w = (w1, w2) ∈ Vh|K , we have

∫

K
div ~wdx1dx2 =

∫

K̂

(
∂ŵ1

∂ξ

∂ξ

∂xK
1

+
∂ŵ1

∂η

∂η

∂xK
1

+
∂ŵ2

∂ξ

∂ξ

∂xK
2

+
∂ŵ2

∂η

∂η

∂xK
2

)
|JK |dξdη,

where ŵj = wj ◦ FK , j = 1, 2 and JK is the Jacobian matrix

JK =
(

∂xK
1 /∂ξ ∂xK

1 /∂η

∂xK
2 /∂ξ ∂xK

2 /∂η

)
(4.6)

We know that (for one term as an example)

∂ŵ1

∂ξ

∂ξ

∂xK
1

|JK | = ∂ŵ1

∂ξ

∂xK
2

∂η
∈ Q1(K̂). (4.7)
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Since the one–point numerical quadrature is exact for all functions in Q1(K̂) and
FK(0, 0) = qK , the second equation in (4.5) is true.

From [5], there still exist spaces V̂h, Q̂h and Q̃h such that (3.8) and (3.9) are
satisfied. So we can establish the same optimal error estimates as those stated in §3.

5. A Numerical Experiment

In this section, we show some numerical experiments for the finite element schemes
considered in Section 2. We borrow the example used in [2]: the domain Ω is a unit
square, and µ = 1, ~f = (f1, f2) is taken to be

f1 = π2
[
4 sin 2πy(−1 + 2 cos 2πx)− cos π(x + y) +

2
1 + λ

sinπxsinπy
]
,

f2 = π2
[
4 sin 2πx(−1 + 2cos2πy)− cos π(x + y) +

2
1 + λ

sinπxsinπy
]
.

The exact solution ~u = (u1, u2) is

u1 = sin 2πy(−1 + cos 2πx) +
1

1 + λ
sinπxsinπy,

u2 = sin2πx(−1 + cos2πy) +
1

1 + λ
sinπxsinπy.

We divide Ω into (N + 1)2 squares and h =
1

N + 1
, then (2.3) can be written as

[µA + (λ + µ)B]Uh = Fh,

and (2.5) as
[µA + (λ + µ)C]U e

h = Fh.

Table 1 shows the numerical results for the finite element scheme (Ph), we can see
the optimal convergence in L2−norm clearly. Table 2 shows the numerical results of
the scheme (Pe

h) with exact integration. We see the locking phenomenon occurs when
the Lamé constant λ becomes large. In fact, by calculation, for h = 1/10 we have
rank(B) = 98 and rank(C) = 162. The matrix C is full rank and thus nonsingular, so
the locking occurs for the scheme (Pe

h) when λ is large. Finally for the combined scheme
(Pc

h), we can expect a slightly more accurate solution with an appropriately chosen α.
For example, when h = 1/20 and λ = 999, ‖~u− ~uh‖0 = 0.0285 and ‖~u− ~uc

h‖0 = 0.0068
for α = 10, so the combined scheme gives a better result.

Table 1 The error ‖~u− ~uh‖0 and the relative error
‖~u− ~uh‖0
‖~u‖0

h λ = 9 λ = 99 λ = 999 λ = 9999
1

8
0.1839 (10.62%) 0.1848 (10.67%) 0.1849 (10.68%) 0.1849 (10.68%)

1

16
0.0445 ( 2.57%) 0.0447 ( 2.58%) 0.0448 ( 2.59%) 0.0448 ( 2.59%)

1

32
0.0111 ( 0.64%) 0.0111 ( 0.64%) 0.0111 ( 0.64%) 0.0111 ( 0.64%)

1

64
0.0027 ( 0.16%) 0.0027 ( 0.16%) 0.0027 ( 0.16%) 0.0027 ( 0.16%)
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Table 2 The error ‖~u− ~ue
h‖0 and the relative error

‖~u− ~ue
h‖0

‖~u‖0
h λ = 9 λ = 99 λ = 999 λ = 9999
1

8
0.0319 (1.84%) 0.8829 (50.98%) 1.5914 (91.88%) 1.7169 (99.13%)

1

16
0.0101 (0.58%) 0.3825 (22.08%) 1.3037 (75.27%) 1.6772 (96.84%)

1

32
0.0027 (0.16%) 0.1171 ( 0.67%) 0.7586 (43.80%) 1.5354 (88.65%)

1

64
0.0007 (0.01%) 0.0301 ( 1.74%) 0.2773 (16.01%) 1.1362 (65.60%)
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