Journal of Computational Mathematics, Vol.16, No.6, 1998, 481-498.

THE CALCULUS OF GENERATING FUNCTIONS AND THE
FORMAL ENERGY FOR HAMILTONIAN ALGORITHMS*Y

(ICMSEC, Chinese Academy of Sciences)

Abstract

In [2-4], symplectic schemes of arbitrary order are constructed by generating
functions. However the construction of generating functions is dependent on the
chosen coordinates. One would like to know that under what circumstance the
construction of generating functions will be independent of the coordinates. The
generating functions are deeply associated with the conservation laws, so it is im-
portant to study their properties and computations. This paper will begin with the
study of Darboux transformation, then in section 2, a normalization Darboux trans-
formation will be defined naturally. Every symplectic scheme which is constructed
from Darboux transformation and compatible with the Hamiltonian equation will
satisfy this normalization condition. In section 3, we will study transformation
properties of generator maps and generating functions. Section 4 will be devoted
to the study of the relationship between the invariance of generating functions and
the generator maps. In section 5, formal symplectic erengy of symplectic schemes
are presented.

Key words: Generating function, calculus of generating functions, Darboux trans-
formation cotangent bundles, Lagrangian submanifold, invariance of generating
function, formal energy.

1. Darboux Transformation

Consider cotangent bundle T*R™ ~ R?" with natural symplectic structure

0 In]

o (1.1)

JQn = |:
and the product of cotangent bundles (T*R") x (T*R") ~ R*" with natural product
symplectic structure

(1.2)

For = [—Jzn 0 ]

0 J2n

Correspondingly, we consider the product space R" x R" ~ R?". Its cotangent bundle,
T*(R™ x R") = T*R?" ~ R*" has natural symplectic structure

0 IQn:|

i {_bn 0 (1.3)

* Received December 15, 1995.
1)Prepared by Qin Mengzhao



482 K. FENG

Choose symplectic coordinates z = (p, ¢) on the symplectic manifold, then for symplec-
tic transformation g : T*R™ — T*R", we have

gra(g) = {{g;} , zE€ T*R"}, (1.4)

it is a Lagrangian submanifold of T*R™ x T*R™ in R*" = (R*", Jy,). Note that on R*"
there is a standard symplectic structure (R*", Jy,). A generating map

a:T*R"xT*R" — T*(R" x R")

maps the symplectic structure (1.2) to the standard one (1.3). In particular, a maps
Lagrangian submanifolds in (R", Jy,) to Lagrangian submanifolds L, in (R, Jy,).
Suppose that « satisfies the transversality condition of g, then

L,= {[d%w)] wE RQ"} . (1.5)

¢g is called generating function of g. We call this generating map « (linear case) or
o, (nonlinear case) Darboux transformation, in other words, we have the following
definition.

Definition 1.1. A linear map

which acts as the followings

) An 20| _ [Aazo+Baz1| _ [wo An
[21] €T [2’1} B {CQZO‘FDaZl] B [wl] € R
is called a Darboux transformation, if
o e = Jap,. (1.7)
Denote
E,=Cy,+D,, F,=A,+ B,. (1.8)
We have

Definition 1.2.

Sp(Jan, Jan) = {o € GL(4n) |/ Jynor = Jun} = Sp(J, J);
Sp(Jun) = {B € GL(4n)|3' JunB = Jun} = Sp(4n);
Sp(Jin) = {7 € GLMAN)Y Jany = Jin} = Sp(4n).

. . . . ']27'], _J2n .
Definition 1.3. A special case of Darboux transformation g = | 1 7 1 I is
Si2n S12n
called Poincare transformation. 2 2
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Proposition 1.4. If a € Sp(Jan, Jan), B € Sp(4n), ~ € 5’;9(471), then Bary €
Sp(J4n7J4n)- N

Proposition 1.5. Sp(j4n,J4n) = Sp(dn)ay = apSp(4n) and Sp(j4n,J4n) =
Sp(4n)a = aSp(4n), Ya € Sp(Jun, Jun).

Proposition 1.6. If a = [Aa B,

Ca Doz:| € Sp(j4n7‘]4n)) then

1 [=JonCl JAL ] [Aa-r Ba
@ JaD!,  —JB.| T |Cor Doyr |

We have the following well known theorem.

Theorem 1.727%, [fa e Sp(j4n,J4n) satisfies transversality condition |Cy +
D,| # 0, then for all symplectic diffeomorphisms, z — g(z) in R?*", g ~ I3, (near
identity), g. € Sp(2n) there exists a generating function ¢a,g: R*™ — R such that
Ang(2) + Baz = Vdag(Cag(2) + Daz), i.e., (Aa0g+Ba)(Caog+ Do) 12 = Vay,(2)
identically in z.

2. Normalization of Darboux Transformation

Denote M = Sp(Jyn, Jan) a submanifold in GL(4n), dim M = %4n(4n+ 1) =8n2+
2n. Denote M* = {a € M | |E,| # 0} an open submanifold of M, dimM* =dimM.
Denote M' ={a e M | E,=1,,F, =0} C M* C M.

Definition 2.1. Darboux transformation is called normalization Darboux trans-
formation if (1) Ey = I2, and (2) F, = Oay,.

The following theorem answers the question about how to construct a normalization
Darboux transformation from a given one.

Theorem 2.2. Yo € M*, there exists

=" Dlesam, mzro m=[T" 9] e spam,

such that B2 € M.
Proof. We only need take P = —F,E ! = —(Aa+ Ba)(Co+ Do)~ L, T = E; 1, then

Ba-B1-a= {E& 0 } [I _FO‘EO_‘T {Aa Ba] — {Aﬂzﬁla Bﬁﬁla}
0 Ef;l 0 I Ca Do 0525104 Dﬁzﬂux
oy = (E;<Aa — FaEg'Ca)  Ei(Ba - FaEalDa)) _

21
Ea_lca E;lDoé ( )

It’s easy to calculate that Ag,3,0 + Bgygia = O2ns Csyp1a + Dgapia = Ion.

Later, we will assume « to be a normalization Darboux transformation if we do not
point out specifically.

Theorem 2.3. A Darboux transformation can be written in the standard form as

Jon —Jon
o= V € sp(2n).

SaHv) S-m)
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It’s not difficult to show

Vo, € M = 33 € Sp(4n), ﬁ:[Aﬁ Bﬁ},
Cs Dg

such that oy = Bag, where g is Poincare transformation. By computation, we get
1 1
Aﬁj + 535 —Aﬁj + 535

a1 = 1 1
CgJ—i— §D5 —CgJ+ §D5

Because oy € M', we have Dg = I»,,, Bg = 0, i.e., f = [gﬁ IO } Since € Sp(4n),
Jé] 2n
we have 3 = {IQ" 0 ], Q € Sm(2n). Thus
Q IQn
I 0 J —=J J —J J —J
a= [ Qn I } o krrgr troqi| T 1(I+V) Y-
adlat 2 2 2 2 2

where Q' = Q,V = 2QJ. We shall write

1
Jon, —Jan ] . —5(1 —V)J Iy
ay = R ——

STHV) I

3 STV Dy
Aa Ba
CO( DO{
V = (Ca + Do) (Ca — Da) € sp(2n).
This result can be derived from (2.1).
From the following theorem, we can show that the normalization condition is nat-
ural.
Theorem 2.5. G7 is a consistent difference scheme for 3 = J"'H,, VH, i.e.,
(1) G"(2)|r=0 = 2, Vz,H;

Corollary 2.4. Fvery a = [ } € M* has a normalized form ay € M’ with

(2) ‘9%;2)\ = JTUH(2) Ve H;
iff generating Darbouzx transformation is normalized with A = —J.

Proof. We take symplectic difference scheme of first order via generating function

A B
oftypea—[o D . We have

AG"(z) + Bz = —7H,(CG"(2) + Dz). (2.2)
At first, we prove the only if part of the theorem. When take 7 = 0, we have

AG°(2) + Bz =(A+B)2=0, Yz=—= A+ B =0,
0G7(2)

A
or

= —H((C+D)2).
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Since we know (8% (z)) 0= J7'H.(2), then AJ"'H.(z) = —H.((C+ D)z), VH, z.
T =

We have H(z) = 2/b = AJ b = —b, Vb = A = —J. On the other hand since

H.(z) = H,((C+ D)z), YH, z, we have

1

Hziz’z:>z:(C+D)z, Ve=C+D=1.

Now we show the if part, take
A+B=0, A=—-J, C+D=1 (2.3)

then A(G"(2) —2) = —TH,(CG"(2) + Dz), A= —J,7=0= G"(2)|r=0 = 2. On the
other hand

0G" (2) B 0G"(2) _ -1
A( = )T:o = —H.((C + D)2) = ( 5 )T:o = J'H.(2), V=, H.
Theorem 2.6. A normalized Darbouzx transformation with A = —J iff can be
written in the standard form
I V Ve sp(2
“Tl3u-v) su+wn)) € sp(2n)

with p = 1.

3. Transform Properties of Generator Maps and Generating
Functions

Let a = [él,a ga} € Sp(Jan, Jan). Define E, = Co+ Dy, Fo = Aq+ B,. Suppose
o o

g € Sp-Diff, g ~ Iy,. In the future, we assume that transversality condition |E,| # 0
is satisfied.

7—1
Theorem 3.2. V T € GL(2n), define Br = [T 0

0 T] € Sp(4n)7 /BTa

€ Sp(j4n, Jun), we have
¢,6’Tocwg = Qba,g oT 1. (31)

Proof. Since

Bra = T/_IAO‘ T/_IBO‘}:[AﬁTa BBTa]
TC, TD, Csra Dgral’

we have
Aag(2) + Baz = Va,q 0 (Cag(z) + Doz) (3.2)

identically in 2, and

T Aag(2) + T ' Baz = Vg0, 0 (TCag(z) + TDyz)
<

Aag(z)+BaZ = T/(v¢ﬁTa,g)OT(Cag(Z)+Daz) = v(¢ﬂTaagoT)(Cag(Z)+Daz) (33)
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identically in z.
Compare (3.2) with (3.3), we find

V¢a,9(ca9(z) + Daz) = V(éﬁtm,g 0 T)(Cag(2) + Daz)

identically in z. Thus we obtain ¢q g = ¢gra,g 01, OF ¢g 40 T = OBra,g-

Theorem 3.2. VS € Sp(2n), define v, = [‘(S)’ g} € Sp(4n), then we have

QSO”YSyQ = ¢a,SogoS—1- (34)

Proof. Since

 [AaS BaST _ [Aays BMS}
s = [Cas Das} - [Oms Dang

and
408509057 (2) + Baz = Vo s0gos1(CaS 0 g0 §74(2) + Daz)

identically in z, because S nonsingular, we may replace z by S(z), so we get
AaS0g(2) + BaSz = Vy s0g05-1(CaS9(2) + DaSz), Vz. (3.5)
On the other hand
(AaS)g(2) + (BaS)z = Vs, 91(CaS)g(2) + DoS)z],  Vz. (3.6)

Compare (3.5) with (3.6) and note that |Cy + Do| # 0 <= |CoS + Do S| # 0 <=
‘Casgz(z) + DaS‘ 7é 0, we obtain v¢avs,g = V¢o¢,SogoS*1a Le., (bcw_g,g = ¢a,SogoS*1'

Theorem 3.3. Take 3 = {—7271 P ] € Sp(4n), P € Sm(2n), a € Sp(Jin, Jan),

0 I2n
then
¢ﬁa,g = ¢a,g + 'QZ}P (37)

1
where Yp = iw’Pw(function independent of g).
Proof.

8 _[Izn PHAa Ba}_{AaJrPOa B, + PD,
“Tlo L,llc, D, C, D,

Obviously, Eg, = Ey, Fgo = Fy + PE,, so

Apag(2) + Baaz = Vopa,g(Cpag(2) + Dpaz), (3.8)
Aag(z> + Byz + (PCag(z) + PDaz) = v¢ﬂa,g(cag(z) + Dozz)- (3-9)

On the other hand
Vip(Cag(z) + Doz) = P(Cog(z) + Dypz). (3.10)
Inserting (3.10) into (3.9), we obtain

Aag(z) + Boaz = véﬁa,g(cag(z) + Daz) - va(Cag(Z) + Daz)
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= (V(¢pa,g — ¥P))(Cag(2) + Daz). (3.11)

Compare (3.11) and A4g(2)+Baz = Vda,g(Cag(2)+Daz), we obtain ¢ga.g—1p = da.q-

Analogically, if we take 8 = {Ién IO ] € Sp(4n), @ € Sm(2n), we have the following
2n
result.
Theorem 3.4.
1
ba,g + 5(vw¢a,g(w)),Q(vw¢a,g(w)) = Pfa,g (W + QVPa 4(w)). (3.12)
Theorem 3.5.

@b{A B},g,l =-

A}. (3.13)
C D

v
D C
Proof. Since Aqg™(2) + Baz = V¢, 4-1(Cag™'(2) + Daz), replace z by g(2), we
have

Aoz + Bag(2) = Vg g-1(Caz + Dag(2)). (3.14)

Comparing
—Bag(2) — Aaz=Vor_p, —a,1 (Dag(2) + Caz)
LL @}ﬂ
with (3.14) concludes our proof.
Theorem 3.5'. If ¢ 4 3}7971 = _¢[A B}’ , Vg, then A+ B=0,C=D.

g
C D
Proof. Since by Theorem 3.5 and uniqueness theorem 4.2, we have

A B]__[-B -4
c p|-"|bp c|

We only consider the case “+7, in this case we have A+ B =0, C = D.

J —=J
Remark. For Poincare map ap = 11. 11.], we have ¢, -1 = —@ag g,
L2 2

Vg € Sp-diff.
Theorem 3.6. Let gi; be the phase flow of Hamiltonian system H(z), then the

generating function of gk, under Poincare map «q is an odd in t, i.e., ¢aoyg§{ (w,t) =

—gﬁao’g;{(w, —t), Yw € Rt € R.
Proof.
g;{t = (gftl)_lv ¢C‘10,g;1t (w,t) = d)ao,gfq (wv *t) = qbao,(gfq)*l (wvt) = *qbao,gtH (wvt)'
~ S 0
Theorem 3.7. If S € Sp(2n), a € Sp(Jan, Jan), 11 = 0 1l then

A,S B,
N=1cs D,

Assume |E,,| = [CoS + Dy | # 0, we have

(ba,S-g = ¢oc”/1,ga (315)
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ie.,

Theorem 3.8. If

I 0 = Ao
722{0 S:|7 a € Sp(Jan, Jan), 06722{

assume |Bq, + Do S| # 0, we have

¢a,goS*1 = Cba'yz,ga (3.16)
i.e.,
WEFIE FF R

Proof. Since
Ag(S™'2)+ Bz = Vcba’goSfl(C’g(Sflz) + Dz), Vz,
replace z by Sz, we get

Ag(z) + BSz = Vo, 405-1(Cg(2) + DSz) = ng[A BS} g(Cg(z) + DS2),
c DSJ’

C DS C D

¢[A BS}’ = ¢[A B

:| ,goS—1 '

Proof of (3.7) is similar.
Theorem 3.9. If

2n
M AB .
Bo = { c D ] € CSp(Jan, Jan), p(fa) = A,
then we have
¢{/\A ,\B} %AQS[A B] (3.17)
¢ D cpl|”?

Theorem 3.10. Suppose

8= Ion 0 € CSp(Jan), A#0, ac€ Sp(jw, Jan),
0 )\IQn

A B ~

then we have

¢[ A B }’g = M’[A B:|,g oAy (3.18)
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Proof of (3.9): Since

= Sp(j4n, Jin) = Ag(2) + Bz = quﬁ[A B} g(Cg(z) + Dz),

C D
B € CSp(Jan, Jan) = MAg(z) + \Bz = w[ ‘A AB} g(C’g(z) + D2)
Cc D)
L.H.S = Mg(2) + ABz = A\Vér 4 g1 (Cy(z) + Dz),
[C D}’g
R.H.S = VQﬁPA )\B} g(Cg(z) + Dz),
Cc D/

then we have

Vo] (Co(2)+ D2) = AVéra a1 (Cole) + D).

cC D cpl|?
Pae]e T A8

Proof of (3.10): From
A B -
L ap] € CSpUn )

it follows that

Ag(z) + Bz = ng){ A B } g(/\Cg(z) + ADz).
AC AD ]|’
L.HS = V¢[A B} (Cg(z) + Dz),
cD)J
R.H.S = (qﬁ{ A B } ) o M2, (Cy(z) + Dz)
AC AD]’
=A"'V(ér 4 g1 oMan)(Cg(2) + Dz).
[,\c /\D]’g
Hence

qﬁ[ég]g =~ Al(ﬁ{/\é )\BD:|,Q o Aloy,.

489

At the end of this section, we give out two conclusive theorems which can include
the contents of the seven theorems given before. They are easy to prove and the proofs

are omitted here.
Let

i b
a € OSp(Jan, Jan), B € CSp(Jan), B = [CCL d} ’

obviously, Bac € CSp(Jan, Jan), u(Ba) = A(B)u(a). We have the following theorem.

Theorem 3.11.

D0, (CVwag(w) + dw) = A(B)Pa,g(w)

{0 (@B + (Vg (0)) ()02 (Vb () () (Vo g () .
2 2 (3.19)
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We now formulate the other one. Let o € CSp(j4n7J4n), v E CSp(j4n) <—

7 7 7 a b
Y Jany = v(Y)Jan = ay € CSp(Jan, Jan), play) = p(a)v(y), v = {c d}
Theorem 3.12.
¢06%9 = Qsa,(a-g—i-b)o(og—i-d)*l' (320)

4. Invariance of Generating Functions and Commutativity of
Generator Maps

First we give out the uniqueness theorem of linear fractional transformation.
Theorem 4.1. Suppose

Aa Ba — AE BE T
oz:[ } a:[ }ESp(J4n,J4n), Bol 40, |Esl £0.

Co D, Cz Dy
If
(AaM + Bo)(CoM + Do) ™' = (AgM + Bz)(CaM + Dg)™Y, VM ~ Ir,, M € Sp(2n),
then @ = ta.
Proof. Let

No = (AT 4 Bo)(Col + Do) ™t = (Agl + Bg)(Cxl + Dg) ™t
Suppose (3 € Sp(4n), first we prove that
(AgN + Bg)(CsN + Dg) ' =N, VYN~ Ny, N € Sm(2n),

then 8 = +14,.

1°: (AﬁNo + Bﬁ)(CgN() + Dﬁ)_l = Ny = ABNO + Bg = NoCgNoy + NoDg.

2°: Take N = No+el = Ag(No+el)+Bg = (No+¢el)Cg(No+el)+(No+el)Dg.
From 1°, 2° = €Ag = eNoCj + eCgNo +€eDg + 520[3, Ve = Ag — Dg — NoCg —

C@No = ECg — Cﬁ = 0, then Aﬁ = Dg.

From 1°, we have B = 4p Bp
0 Ag

}, Bg = B’ﬁ. Therefore, from 1° we have
AgNAG" = N — BgAg".
Subtract this formula by ABNOAB]L = No — BgAgl, we get
Ap(N = No) = (N = No)Ag.

Take N — Ny =¢€S5,5 € Sm(2n) = AgS = SAp, VS € Sm(2n) = Ag = Alz,. (This
can be proved by mathematical induction).
Then from 1°, AgNg + Bg = NgAg = Bg = 0, and

8= [Aﬁ 0 ] — My € Sp(dn) —> A = +1.
0 Ay
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Let 8 = @a ™!, then the fractional transformation of 3 leaves all symmetric N ~ Nj.
Because a € Sp(j, J), at e Sp(J,J), aa~t € Sp(J,J) = Sp(4n).

We now give the uniqueness theorem for Darboux transformations.

Theorem 4.2. Suppose o, @ € Sp(J,J), then

qba,g = (ﬁa’g, Vg S Sp — Dlﬁ, g~ IQn — o = ta.
Proof. From hypothesis, we have

(¢a.g)ww = (Azg(2) + Bz)(Czg(z) + Dz) ™', Vg, € Sp(2n) ~ I.

Then by uniqueness theorem of linear fractional transformation o« = +a@. From the
proof we know, Hessian of ¢, 4 =Hessian of ¢_, 4,Vg € I, c.

The generating function ¢, 4 depends on Darboux transformation «, symplectic
diffeomorphism ¢ and coordinates. If we make a symplectic change of coordinates w —
S(z), then ¢(S) = ¢(S5(z)) while the symplectic diffeomorphism g is represented in z
coordinates as S~ ogo S.

For the invariance of generating function ¢4(.S) under S, one would like to expect

(z)a,S*logoS = ¢O¢,g o 57 v.g ~I.

This is in general not true. We shall study under what condition this is true for the
normalized Darboux transformation ay . The following theorem answers this question.
Theorem 4.3. Let

J2n _J2n

_ _ !
a—av—l;(1+v) Q(I—V)]’ Vesp(2n), ayeM

st o S 0 .
SeSpn), Bs=1|"y | €5Um), =1, g|€P(Jan).

Then the following conditions are equivalent:

(1) ¢av,SogoS*1 = ¢o¢,g © S_l: Vg~ 1.

(2) Pavys,g = PBsav,gr 9~ 1.

(3) ayys = Bsay.

(4) SV=VS.

Proof. (1) <= (2) from theorems 3.1 and 3.2. (2) = (3) using the uniqueness
theorem on Darboux transformation 4.2. For

ayys = £fBsay,

since JS = §"1J, (=) case is excluded. The rest of the proof is trivial.

There is a deep connection between the symmetry of a symplectic difference scheme
and the preservation of first integrals.

Let F be the set of smooth functions defined on R™.

Theorem 4.4. Let H, F € F,

Fogh=F<+= {F,H} =0+ Hoglk=H < giy = g5° o gly 0 g5
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Theorem 4.5. Let F' € F, g € Sp-Diff,

1

g=gr ogogr(or gr =g 'ogrog) <= Fog=F+C.

The “if” part of the proof is obvious. Since
Fog=F+C=VF=VFog= gh=ghy,=9 'oghog
=9 '9p(9(2)) = g =gl ogogp.

On the other hand, take the derivative of both sides of the following equation by t at
t =0,
d

o
and notice that g.(z) € Sp,g;'J 1 = J g, we get

JTIVE(2) = g, (2)J 7'V F(9(2)) = dh(2) VF (g(2)).
Then we have VF =V (Fog) = Fog=F+C.

95 (2) = 97 g1 (9(2))

5. Formal Energy for Hamiltonian Algorithm

Let F® be an analytic canonical transformation in s, i.e.,

(1) F* € Sy-Diff.

(2) F° =1d.

(3) F* analytic in s for |s| small.

Then there exists a “formal” energy, i.e., a formal power series in s,

h(z) = h(s,z) = > _h'(2)

with the following property:
When h*(z) converges, the phase flow g., where h%(z) is considered as a time-
independent Hamiltonian with s as a parameter which satisfies “equivalence condition”

ghs = Fs. (5.1)
=s

So that h®(z) = h¥(F*z), Vz € R?", thus h®(z) is invariant under F'* (or for those s, z
in the domain of convergence of h*(z)).
Let F** be generated by (s, w) according to normal Darboux transformation «

breaw) =t (s, w) = 3 48 (w), (5.2)

k=1

Introduce formal power series

h?(z) = h(s,w) = Zsihi(w)

Assuming convergence, then we associate the phase flow with generating function

h?(z) —>¢Zs7a( ) == x(t, s,w) Ztk ®) (s, w)
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Y (s,w) = —h(s,w). (5.3)
For k> 1,
k 2n
k+1
Y 0T ) ' > > gy, (s,w)
o ( Iy lm=1 1+ +km=k
X (Ax (s,w))i, -+ (Arx ™ (s, w)s,,
- 1 (1)
= Z Z le 3 W, (S w)
= (k+1)m! e A A
X (Ax G (s, ), -+ (ArdE™) (s,w),, - (5.4)
Let x(®) ZSX]“ ), then x(¢,s,w) = ZZtks’X]’” . Then
k=11i=0
* 0o k 1 2n (Lio)
Zsz +1Z ) :Zsi Z Z Z Xwﬂomw (w)
= o R Lmb T T e
k14 thm=k
X (A (w)y - (A (w)),, (5.5)
Thus
- (Lyio)
lc+1 i) k; 1 Z Z lel?- ,wlm( )
m:l m! igtirtetim=i [q . [, =1
ky++hkm=k
X (A )y, - (A (), (5.6)
So the coefficient x*1t1%) can be obtained by recursion, if
x (s, w) = st“ = s,w):—ZSihi(w)
i=0
ie.,
Y =@ i=0,1,2,--. (5.7)
Note that y*t19 is determined only by the derivatives of x*) k' < k,i' < i
x(1:0) D ) cee x99 X(l ji+1)
WEO D) (k i+1) (5.8)
YEHL0) (411 (k+12) L) (k—l—l i+1)

The condition (5.1) can be now reexpressed as

X(t7 S,'U))’t:s = X(S7 S, U}) = 7,/}(8,’11}),
i.e.,
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k3 B ) = 3 ) w),
k=1 i=0 k=1
S S EID () = 3 s B (w),
i=0 j=0 i=1
k—1 B
xF D () =™ k=1,2,---, (5.9)
§=0
X(LO) — ¢(1),
k
Z X(k+1_i7i) = ¢(k+1)a k= 07 17 27 )
1=0
SO
—10 —_p0) _p@ .. _pk-1) _p(k)
'(Z)(l) X(lvo) X(lvl) X(172) e X(lvk_l) X(lvk)
(2) (270) (271) (272) PPN (27’971)
X X X (5.10)
k) x (£:0) x(k:1)
w(kJrl) X(k+1,0)
and
X(LO) — 1/,(1)’
X(Q’O) + X(l’l) — ¢(2)7
X(370) + X(Zl) + X(L ) — 1/,(3)7 (5.11)
EFL0) L (R L k1) (R (D)
Now consider M), @) ... k) (E+1D) ... a5 known, then
h(o) — _X(LO)? h(l) — —X(171)7 S h(kil) — X(Lk*l)’ h(k) — X(Lk‘)’
have to be determined. We get
L0 — _1/,(1)7
B — _¢(2) + X(2,0)’
B2 — _1/,(3) + (X(3’O) + X(Zl))7
...... (5.12)

BB = _p+D) 4 ((BHL0) (1) L (2= )y
So RO hM h2) ... can be recursively determined by ¥ 2 .... So we get the
= Fs.

o
formal power series h® = Z szh(z)(z), and in case of convergence, satisfies g} . .
i=0 B
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Now we give out a special example to show how to calculate the formal energy. Take

normal Darboux transformation with
_ [0 -1 1 [Ar B
ve-e=[5 ] =14 o)

where ) 0 0
AI:Q(JVJ—J):{_l O]

Suppose we just take the first term of the generating function of the generating map

ay, i.e., we just consider the first order scheme
F? ~(s,w) = —sH(w ZS@Z)

- = 0. Obviously 0 =y = -

(1,00 _ Hp (1,0) _ 0 0 —Hp i 0
W= (i) = (4 0) (T) = ()

H,
X(LO) _ _ Hpp Hpq
. Hyp Hyq)'

Calculate by formula (5.6), we get

X Z > ZXZ“O (Arx )y,

! 20+l1 =0k1=1101=1

__1/HN (0N 1o
__2<Hq) (Hp)_—2Hqu.

From formula (5.10), we get

= SOy A

6 n
O ZquHp]
YD = 1 o J=1 _1 (Hqup + HppHy
: 2| 9 ¢ 2 \ HygHp + HypH,
aiq Z HqJ'HpJ
j=1
0 O 1 0
A (11):< ) (1) _ _ < )
™ -1 0)% 2 \HpgHp + HppHy )~

0
A = ) = 1 ( ).
e s 2 \ HpgHp + HppH,

For k =2, i =0, we have

R TET 30 3P R T NI

'zo+z1 0k1=211=1
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i Z Z Z levzlz 1ng1, ))ll(AlX(k27 )) )

l1lo=1140+i1+i2=0 k1 +ko=2
1 1
=3 O AP 4 2 (ARG A
- 6(Iar;Hpqlarp + H HypHy + H,HygHp).

For k =1,i=1, we have

2D Z ZZX(MO Axlzl))

ZO‘Hl 1 ki=141=1
= SOV A + () 4 (10)
— i(H;prHq + H'pHyoH,) + % H Hy H,,
From (5.11), we have
30 41 4 X(1,2) =B = 0 = 1D = —(y3O 4 \(21)

12) — (H’prH + H HyoH,) — 6H’Hqup

—

X "6

+ 2 (H!HypHy + H) HogHy) + H’Hqu}

,_..-lkr—t

= — o5 (HyHypHy + HyHygH, + AH, Hyo H,).

Finally we get formal power series of erengy

h(s,z) = = (XM + sx + 52 12)) + O(s?)

2
= H(z) - gHéHp + %(H;prﬂq + Hl Hyg Hy + AH! Hyg Hy) + O(5%).

Now let H(z) be a time-independent Hamiltonian, its phase flow is gt;, its generating

By () = 9l w) = 3 6V )
k=1

function is
We have

k 2n
For k>1 ¢(k+1 Z i+ )m' Z Z ¢1(1}l)1---wzm (w)

m= U1, lm=1ki1++km=k
- (Al‘bgﬁ)(w))h Al (w)),)- (5.13)

Theorem 5.1. Suppose F° is the Sp-Diff operator of order m for Hamiltonian H,
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i.e., d(s,w) —P(s,w) = O(|s|™*1), ie.,

YW (w) = ¢W(w) = —H(w),
V@ (w) = ¢ (w),

Then hO) (w) = H(w), A (w) = k& (w) = --- = ™ D(w) = 0, i.e., h(s,w)—H(w) =
o(Js|™) and (™ (w) = H0m 1) (1) — G+ (w).

First we show that x*+1%) dependent only on derivatives of %) k' < k, i’ < i.
The recursion for ¢ = 0 is the same for the recursion of phase flow generating function
with Hamiltonian x(0 (w). For i > 1, x(#*+1) = 0 if x(*') = 0 for all ¢/, k¥’ such that
1 <4 <i,1 <k <Ek. We have
S
Pp@ =D 4 20 — (1D recursion, D NGB @)

¢(1) — X(LO) — X(I»O) ﬂ&ﬂ) X(2’O)’ X(3»O)

1/}(3) — X(172) + X(271) + X(370) — X(lvz) ﬂmﬂ) X(2’2)7X(3’2)7 X(472)’ e (514)

)

¢(4) — X(173) _|_ X(2)2) + X(371) _|_ X(470) E X(1,3) ﬂ&ﬂ) X(273)’ X(3’3)’ X(4’3)7 o e

)

w(k") :X(Lk_l)_‘_ X(27k_2) _|_ . _|_ X(k70) :>X(17k_1) ECLI‘SIE} X(27k_1)’ X(31k_1)’ X(4’k_1)7 e,

So x¥%) can be generated successively through (5.9), (5.6). Then
h(s,w) = Z s ) (w).
i=0

Using equation H = o) = () = x(1.0) and (5.9),(5.14), we get

20 = @ B0 _ 4) NCONWIOY

Using equation (5.14), we get
W@ = @ = (LD 4 42 — (D)

Applying equation (5.9), (5.14), we get

(2,1) 4,1)

Applying equation
¢(3) — ¢(3) — X(L?) + X(2’1) + X(3’1) — X(112) +0+ ¢(3) — X(L?) =0,

then
X(2’2) — X(3’2) — X(4’2) B X(kﬂ) =...=0.
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Finally
P = (M) = (Lm=1) 4\ @m=2) L . 4\ (m=L1) 4 glm) —  (Lm=1) — o

then
X(23m72) — X(37m72) — X(47m72) —_— e .. = X(k7m72) — .. =— 0

Sox®) =0fori=1,2,---,m—1and k =1,2,3---. Then equation

so we get finally
h(s,2) = sixM) = H(z) + s™ (™) — g+ 4 O(|s|m ),
1=0

ie.,

h(s,2) — H(z) = s™ (0" (2) = ¢ (2)) + O(|s|" ).

So in particular, if F® ~ (s, w) is given by the truncation of phase flow generating
function, i.e.,

w(l) _ ¢(1) = H, 1/,(2) _ (]5(2)7 e w(m) — ¢(M)’ ¢(m+1) _ ¢(M+2) =0,

then
h(s,z) = H(z) — s"¢™ V) (2) + O(|s|" ).
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