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Francisco Pérez Acosta
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Abstract

In this paper, some results about approximation in a norm S induced by the
minimax series are studied. Then a Bernstein-type theorem for the norm S is
established. Finally the Bernstein theorem is applied to prove the existence of
certain equalities with minimax series and weighted minimax series.
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1. Introduction

Let f be a continuous function on [a, b]. Πn will designate the set of all polynomials

of degree less or equal than n and Π the set of all polynomials. As is well known, for

each n the minimax of f is given by:

En(f) = ‖f − pn‖∞ = inf
p∈Πn

‖f − p‖∞,

where pn is the best uniform approximation of f in Πn.

Let us also consider the minimax series given by the expression

S(f) ≡
∞
∑

k=0

Ek(f) (1.1)

The set of functions for which S∗(f) =
∞
∑

k=0

E∗
k(f) < ∞, where E∗

k(f) denotes the

error of best approximation of f ∈ C[0, 2π] with trigonometric polynomials was already

studied by S.N. Bernstein. He proved that such functions are of class C1[a, b].

The series (1.1) can be seen as a measuare of “how good” the funtion f can be

approximated by polynomials, in the next sense. If f and g ∈ C[a, b] and ‖f‖∞ = ‖g‖∞
we will say that f is better approximated by polynomials than g on [a, b] if and only if

S(f) < S(g).

On the other hand let x0 ∈ [a, b] be fixed. We set:

M0 = {f ∈ C[a, b] : f(x0) = 0},
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Π0 = {polynomials p : p(x0) = 0},

Π0
n = {polynomials p ∈ Πn : p(x0) = 0},

and

C0 = {f ∈ M0 : S(f) < ∞}.

By introducing,

S : C0[a, b] → R

f → S(f),

it can be proved that (C0, S) is a normed space. Furthermore, ∀f ∈ C[a, b] such that

S(f) < ∞ there exists g = f − f(x0) such that g ∈ C0[a, b] and S(f) = S(g). The

approximation of a function f ∈ (C0, S) by polynomials in Πn, is studied in [5].

(i) For a given f ∈ C0, let pn ∈ Πn be a best approximation of f in the norm S.

Who is pn?.

(ii) Is the space of all polynomials Π dense in (C0, S)?.

The answer to these questions is contained in [5]. We recall in the next section some

results proved in [5] in order to make this paper selfcontained. Also the convergence in

the space (C0, S) is analized in [5] and it is proved that it is a Banach space.

2. Approximation by Polynomials in the Space (C0, S)

Let f be a function in (C0, S). We consider the best approximation of f in Πn

n = 0, 1, · · · with respect to the norm S. That is, find qn ∈ Πn, such that:

S(f − qn) = inf
p∈Πn

S(f − p)

Let p ∈ Πn. Then

Ek(f − p) = En(f), (k ≥ n)

and

Ek(f − p) ≥ En(f), (k < n).

Then,

inf
p∈Πn

S(f − p) = inf
p∈Πn

n−1
∑

k=0

Ek(f − p) + C(f),

where C(f) =
∑

k≥n

Ek(f).

The existence of qn can be deduced from the fact that (Π0
n, S) is a normed space of

finite dimension. Let us solve the following question, who is the approximant qn?.

Proposition 1. Let f ∈ C[a, b]. Then S(f − qn) = inf
p∈Πn

S(f − p) iff there exists a

constant C such that

qn = pn + C where ‖f − pn‖∞ = inf
q∈Πn

‖f − q‖∞ (2.1)
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(i.e. the best approximations of f in Πn in the uniform norm and in the norm S

coincide module an additive constant).

Proof. If pn is the best uniform approximation of f in Πn, then:

Ek(f − pn) = En(f) (k < n),

hence
n−1
∑

k=0

Ek(f − pn) = nEn(f),

and
n−1
∑

k=0

Ek(f − p) ≥ nEn(f) ∀p ∈ Πn.

(i.e. pn is a best approximation of f on Πn in the norm S).

Let qn be another best approximation of f in Πn in the norm S, then

n−1
∑

k=0

Ek(f − qn) = nEn(f)

hence

Ek(f − qn) = En(f) (k < n)

(i.e. there exists rk ∈ Πk such that:

‖f − (qn + rk)‖∞ = En(f)).

Note that qn + rk ∈ Πn and, by the uniqueness of the best approximation Pn, we have

Pn = qn + rk, 0 ≤ k < n,

for k = 0, r0 = C and qn = pn + r0.

Remark 1. Since S(f + λ) = S(f) for any continuous function f on [a, b], and

λ ∈ R, then from (2.1) it follows qn = pn + C ′, C ′ being any arbitrary real constant.

Therefore in the space C0 both approximations coincide and the uniqueness of best

approximation in Π0
n with the norm S holds.

We now prove that the polynomials Π0 are dense in (C0, S).

Proposition 2. For n = 0, 1, 2, · · ·; let {pn} be the sequence of best polynomial

approximation of degree n for a function f ∈ C0 in the uniform norm. Then pn

converges to f in the norm S.

Proof. Let f ∈ C0 be. With the previous notations:

S(f − pn) = S(f) −
(

∑

k<n

Ek(f) − En(f)
)

= S(f) −
∑

k<n

Ek(f) + nEn(f),

then:

0 ≤ S(f − pn) ≤ S(f), ∀n,



512 FRANCISCO PÉREZ ACOSTA

and S(f − pn) is a decreasing sequence. Then there exists lim S(f − pn) and:

lim S(f − pn) = λ, 0 ≤ λ ≤ S(f).

Taking into account that
∑

k<n

Ek(f) is a partial sum of S(f), we have

lim S(f − pn) = lim nEn = λ.

If λ 6= 0, then the series S(f) and the harmonic series
∞
∑

n=1

1

n
have the same convergence

character, the harmonic series diverges and f ∈ C0 implies S(f) < ∞. Hence λ = 0

and the lim S(f − pn) = 0 2

We have immediately the following

Corollary 1. The set of polynomials Π0 is dense in (C0, S).

Corollary 2. If S(f) < ∞ then lim nEn(f) = 0.

Now we will prove a Walsh’s type theorem for (C0, S). (i.e. it is possible the

simultaneus interpolation and approximation in the norm S).

Theorem 1. Let f ∈ C0[a, b] and let x1, x2, · · · , xn be n distinct nodes on [a, b].

Let ε > 0. Then there exists a polynomial p such that:

p(xi) = f(xi), (1 ≤ i ≤ n)

and

S(f − p) < ε

Proof. Let f ∈ C0 and ε > 0. By Proposition 1, there exists a polynomial p ∈ Πm

such that:

S(f − p) < ε,

and p being the best approximation to f in the norm S and in the uniform norm as in

the proof of Proposition 1.

Then

Em(f − p) = Em(f) = ‖f − p‖∞

and

‖f − p‖∞ ≤ S(f − p) < ε

Let q be the interpolation polynomial of f − p at the nodes {xi},

q(x) =
n

∑

k=1

(f(xk) − p(xk))Lk(x),

Lk(x) =
Π(x)

(x − xk)Π′(xk)
, Π(x) =

n
∏

j=1

(x − xj).

Taking p1 = p + q, results:

p1(xi) = p(xi) + q(xi) = f(xi) (1 ≤ i ≤ n),
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and

S(f − p1) ≤ S(f − p) + S(q) < ε + S(q),

in addition

S(q) ≤
n

∑

k=1

|f(xk) − p(xk)|S(Lk) ≤ ‖f − p‖∞

n
∑

k=1

S(Lk) < εM

where

M =
n

∑

k=1

S(Lk).

Then

S(f − p1) < ε(1 + M),

ans the proof follows since ε > 0 is arbitary. 2

3. The Minimax En(f) and Fn(f)

We have two type of minimax En(f) and Fn(f), both corresponding to the same

best approximant. Clearly, the minimax En(f) does not give us information about how

the function f could be approximated by polynomials of degree lesser than n. However,

the number Fn = S(f − pn) contains certain information about this, because it can be

expressed in terms of S(f) and the minimaxs Ek(f) (0 ≤ k ≤ n). Indeed, one has the

following

Proposition 3.

Fn(f) = S(f) −
∑

k<n

(Ek(f) − En(f))

for all f ∈ C[a, b].

Proof.

S(f − pn) =
n−1
∑

k=0

Ek(f − pn) +
∞
∑

k=n

Ek(f) =
n−1
∑

k=0

(Ek(f − pn) − Ek(f)) + S(f)

=
n−1
∑

k=0

(En(f) − Ek(f)) + S(f) = S(f) −
(

∑

k<n

Ek(f) − En(f)
)

2

Proposition 4. The next recurrence relation holds:

Fn+1 − Fn

n + 1
= En+1 − En, n = 0, 1, 2, · · ·

for all f ∈ C[a, b].

Proof. We have that:

Fn = S(f − pn) = nEn(f) +
∑

k≥n

Ek(f) = (n + 1)En(f) +
∑

k≥n+1

Ek(f),

Fn+1 = S(f − pn+1) = (n + 1)En+1(f) +
∑

k≥n+1

Ek(f).
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Hence

Fn+1(f) − Fn(f) = (n + 1)[En+1(f) − En(f)] 2

4. A Bernstein’s Type Theorem for the Norm Induced by the

Minimax Series

The next result is known as the Bernstein’s theorem:

If a sequence

A0 ≥ A1 ≥ A2 ≥ · · · , lim An = 0,

and an interval [a, b] are given, then there exists a function f(x) ∈ C[a, b] with the

minimax

En(f) = An, (n = 0, 1, 2, · · ·)

See e.g. [4, pp.137].

We proof the next similar result for the minimax Fn(f).

Theorem 2. If a sequence

B0 ≥ B1 ≥ B2 ≥ · · · , lim Bn = 0,

and an interval [a, b] are given, then there exists a function f(x) ∈ C[a, b] such that

S(f) < ∞ and

Fn(f) = Bn, (n = 0, 1, 2, · · ·).

Proof. Let us consider

Hn =
Bn+1 − Bn

n + 1
, n = 0, 1, 2, · · · ,

A0 =
∞
∑

n=0

Bn − Bn+1

n + 1
,

An+1 = An + Hn, n = 0, 1, 2, · · · .

Note that
∞
∑

n=0

Bn − Bn+1

n + 1
≤

∞
∑

n=0

(Bn − Bn+1) = B0.

So Hn ≤ 0 and An+1 ≤ An, An+1 = Hn + Hn−1 + Hn−2 + · · · + H0 + A0.

Then

lim An+1 =
(

∞
∑

n=0

Hn

)

+ A0 = −A0 + A0 = 0,

and, from Bernstein’s theorem there exists a function f ∈ C[a, b] such that:

En(f) = An, n = 0, 1, 2, · · · .

Let us now prove by induction that the following holds:

Fn(f) = Bn, n = 0, 1, 2, · · · .
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For n = 0,

B0 =
∞
∑

n=0

(Bn − Bn+1) =
∞
∑

n=0

(n + 1)(An − An+1)

= −
∞
∑

n=0

(n + 1)An+1 +
∞
∑

n=0

nAn +
∞
∑

n=0

An =
∞
∑

n=0

En(f) = S(f) = F0(f),

Suppose that Fn(f) = Bn holds. For n + 1 we have:

Fn+1(f) =Fn(f) + (n + 1)(En+1 − En) = Bn + (n + 1)(An+1 − An)

=Bn + Hn(n + 1) = Bn+12

5. A Theorem of Bernstein’s Type for the Norm Induced by the

Weighted Minimax Series

The so called weighted minimax series are considered in [6]. If α = (nk)
∞
k=0 is a

sequence of real numbers n > 0 and nk ≥ 0, for all k ≥ 1, then the weighted minimax

series of f ∈ C[a, b] relative to α, is the expression:

Sα(f) ≡
∞
∑

k=0

nkEk(f).

We can also consider the space

Cα,0 = {f ∈ C[a, b] : f(x0) = 0, and Sα(f) < ∞},

where x is a fixed point of [a, b], and

Sα : Cα,0[a, , b] → R

f → Sα(f).

Then (Cα,0, Sα) is a Banach space. The convergence in these spaces is studied in [6].

Also the approximation by polynomials with the norm Sα is studied in [6]. Similar

results for the case α ≡ 1, exposed in the second paragraph of this paper are obtained.

If p is the best uniform approximation of f on Πn then pn is a best approximation of f

on Πn with the norm Sα, and all best approximations of f on Πn with the norm Sα are

of the form pn+C being C a constant. We can consider the minimaxs Fα,n = Sα(f−pn),

En(f) = ‖f − pn‖∞.

A recurrence relation between these minimax is established in the next result (which

is a generalization of proposition 4).

Proposition 5.

Fα,n+1(f) − Fα,n(f) = Sn+1(En+1(f) − En(f))

where

Sn =
∑

k<n

nk.
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Proof. We have that

Fα,n(f) = Sα(f − pn) = SnEn(f) +
∑

k≥n

nkEk(f) = Sn+1En(f) +
∑

k≥n+1

nkEk(f),

and

Fα,n+1 = S(f − pn+1) = Sn+1En+1(f) +
∑

k≥n+1

nkEk(f).

Hence

Fα,n+1(f) − Fα,n(f) = Sn+1(En+1(f) − En(f))2

We establish now a Bernstein’s type theorem in the norm Sα.

Theorem 3. If a sequence

C0 ≥ C1 ≥ C2 ≥ · · · lim Cn = 0,

and

lim
Cn

Sn
= 0,

and an interval [a, b] are given, then there exists a function f(x) ∈ C[a, b] such that

Sα(f) < ∞ and

Fα,n(f) = Cn, (n = 0, 1, 2, · · ·)

Proof. Set

Hn =
Cn+1 − Cn

Sn+1
n = 0, 1, 2, · · · ,

A0 =
∞
∑

n=0

Cn − Cn+1

Sn+1
,

An+1 = An + Hn, n = 0, 1, 2, · · · ,

Note that
∞
∑

n=0

Cn − Cn+1

Sn+1
< ∞ since

∞
∑

n=1

Cn − Cn+1

Sn+1
≤

∞
∑

n=1

(Cn

Sn
−

Cn+1

Sn+1

)

=
C0

S0
. Hence

Hn ≤ 0 and An+1 ≤ An, An+1 = Hn + Hn−1 + Hn−2 + · · · + H0 + A0. Then

lim An+1 =
(

∞
∑

n=0

Hn

)

+ A0 = −A0 + A0 = 0,

and from Bernstein’s Theorem, there exists a function f ∈ C[a, b] such that:

En(f) = An, n = 0, 1, 2, · · · .

Then

Fα,n(f) = Cn, n = 0, 1, 2, · · · .

will be verified by induction.
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For n = 0,

C0 =
∞
∑

n=0

(Cn − Cn+1) =
∞
∑

n=0

Sn+1(An − An+1) = −
∞
∑

n=0

Sn+1An+1 +
∞
∑

n=0

Sn+1An

= −
∞
∑

n=0

Sn+1An+1 +
∞
∑

n=1

SnAn +
∞
∑

n=0

nnAn =
∞
∑

n=0

nnEn(f) = Sα(f) = Fα,0(f),

Suppose that Fα,n(f) = Cn holds. For n + 1 we have:

Fα,n+1(f) =Fα,n(f) + Sn+1(En+1(f) − En(f)) = Cn + Sn+1(An+1 − An)

= + Cn + HnSn+1 = Cn+1 2

6. Application of the Bernstein Theorem to the Existence of Certain

Weighted Minimax Series and Certain Series with Minimax

Proposition 6. If α = (nk)
∞
k=0 is a decreasing sequence and converges to zero,

then for each m = 1, 2, 3, · · ·, there exists f and g ∈ C[a, b] such that:

Sα(g) =
∞
∑

k=0

(Ek(f))m

Proof. From Bernstein’s theorem, there exists a fonction f such that:

Ek(f) = nk, k = 0, 1, 2, · · ·

and there exists a g such that:

Ek(g) = (Ek(f))m−1, k = 0, 1, 2, · · · .

Thus,

Sα(g) =
∞
∑

k=0

nk(Ek(f))m−1 =
∞
∑

k=0

Ek(f)(Ek(f))m−1 =
∞
∑

k=0

(Ek(f))m 2

Proposition 7. If α = (nk)
∞
k=0 is an increasing sequence which tends to infinity,

then for each m = 1, 2, 3, · · · and for each f ∈ C[a, b] there exists g ∈ C[a, b] such that:

Sα(g) =
∞
∑

k=0

(Ek(f))m

Proof.
(Ek(f))m

nk
is a decreasing sequence which converges to zero. From Bernstein’s

theorem there exists g:

Ek(g) =
(Ek(f))m

nk
, k = 0, 1, 2, · · · .
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then

Sα(g) =
∞
∑

k=0

(Ek(f))m 2

Proposition 8. If (nk)
∞
k=0 is a decreasing sequence which converges to zero, then

for each m = 1, 2, 3, · · · and for each f ∈ C[a, b] there exists g ∈ C[a, b] such that:

S(g) =
∞
∑

k=0

nk(Ek(f))m

Proof. nk(Ek(f))m is a decreasing sequence which converges to zero. Thus there

exists g such that:

Ek(g) = nk(Ek(f))m, k = 0, 1, 2, · · ·

so,

S(g) =
∞
∑

k=0

nk(Ek(f))m 2

Proposition 9. If (nk)
∞
k=0 is an increasing sequence and diverges, then for each

m = 2, 3, · · · there exists f and g ∈ C[a, b] such that:

S(g) =
∞
∑

k=0

nk(Ek(f))m

Proof.
1

nk
is a decreasing sequence which converges to zero. Then there exists

f ∈ C[a, b] such that:

Ek(f) =
1

nk
, k = 0, 1, 2, · · ·

Also there exists g such that:

Ek(g) = Em−1
k (f), k = 0, 1, 2, · · · .

Therefore,

S(g) =
∞
∑

k=0

Ek(g) =
∞
∑

k=0

Em−1
k (f) =

∞
∑

k=0

1

nk
nkE

m−1
k (f)

=
∞
∑

k=0

nkEk(f)Em−1
k (f) =

∞
∑

k=0

nk(Ek(f))m2

Proposition 10. (a) If α = (nk)
∞
k=0 decreases to zero as n tends to infinity, then

there exists f ∈ C[a, b] such that:

Sα(f) =
∞
∑

k=0

E2
k(f).
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(b) If α = (nk)
∞
k=0 decreases to zero, then for each m > 1 there exists f ∈ C[a, b]

such that:

Sα(f) =
∞
∑

k=0

(Ek(f))m.

Proof. To prove (a) we can use Bernstein’s theorem to get a function f such that:

Ek(f) = nk, k = 0, 1, 2, · · · .

Then,

Sα(f) =
∞
∑

k=0

nkEk(f) =
∞
∑

k=0

E2
k(f) 2

As for (b) we have just:

(nr
k) (r > 0) is a decreasing sequence which converges to zero. Then there exists f

such that

Ek(f) = nr
k, k = 0, 1, 2, · · · .

Then

nk = E
1
r
k (f), k = 0, 1, 2, · · ·

and

Sα(f) =
∞
∑

k=0

nkEk(f) =
∞
∑

k=0

E
1
r
k (f)Ek(f) =

∞
∑

k=0

E
r+1

r
k (f).

Thus, taking r =
1

m − 1
,

r + 1

r
= m we obtain

Sα(f) =
∞
∑

k=0

(Ek(f))m 2

Proposition 11. (a) If α = (nk)
∞
k=0 is an increasing sequence which diverges to

infinity, then there exists f ∈ C[a, b] such that:

Sα(f) =
∞
∑

k=0

E−1
k (f).

(b) If α = (nk)
∞
k=0 is an increasing sequence which diverges to infinity, and m > −1,

then there exists f ∈ C[a, b] such that:

Sα(f) =
∞
∑

k=0

E−m
k (f).

Proof. (a)
{ 1

n
1/2
k

}

is a decreasing which converges to zero. Then there exists f such

that:

Ek(f) =
1

n
1/2
k

, k = 0, 1, 2, · · · .
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Then

Sα(f) =
∞
∑

k=0

nk
1

n
1/2
k

=
∞
∑

k=0

n
1/2
k =

∞
∑

k=0

1

Ek(f)
2

(b)
{ 1

nr
k

}

(r > 0) is a decreasing sequence which converges to zero. Then there

exists f such that:

Ek(f) =
1

nr
k

, k = 0, 1, 2, · · · .

Then

nk =
1

E
1/r
k (f)

, k = 0, 1, 2, · · ·

and

Sα(f) =
∞
∑

k=0

nkEk(f) =
∞
∑

k=0

1

E
1/r
k (f)

Ek(f) =
∞
∑

k=0

E
(r−1)/r
k (f).

Hence, by choosing, r =
1

1 + m
> 0, then

r − 1

r
= −m,

Sα(f) =
∞
∑

k=0

E−m
k (f) 2
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