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Abstract

This paper extendes the results by E.M. Kasenally[7] on a Generalized Mini-
mum Backward Error Algorithm for nonsymmetric linear systems Ax = b to the
problem in which pertubations are simultaneously permitted on A and b. The
approach adopted by Kasenally has been to view the approximate solution as the
exact solution to a perturbed linear system in which changes are permitted to
the matrix A only. The new method introduced in this paper is a Krylov sub-
space iterative method which minimizes the norm of the perturbations to both the
observation vector b and the data matrix A and has better performance than the
Kasenally’s method and the restarted GMRES method[12]. The minimization prob-
lem amounts to computing the smallest singular value and the corresponding right
singular vector of a low-order upper-Hessenberg matrix. Theoratical properties of
the algorithm are discussed and practical implementation issues are considered.
The numerical examples are also given.
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1. Introduction

An important aspect of any iterative method for approximating the solution of a

linear system

Ax = b, (1.1)

where A is an n×n real nonsymmetric matrix and b is an n-vector, is to decide at what

point to stop the iteration. We customarily use the residual error as a stopping condi-

tion. The residual error rm = b−Axm can be viewed as a perturbation to the vector b

such that the approximate solution is an exact solution of the perturbed linear system

Ax = b + δ, in which changes are permitted to the vector b only. The GMRES algo-

rithm is based on classical Krylov subspace techniques and computes an approximate

solution restricted to an affine space while minimising the backward perturbation norm

of the vector b. From this backward error analysis of view E.M. Kasenally has viewed

the approximate solution as an exact one of the perturbed linear system (A−∆)x = b,
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in which changes are permitted to the matrix A only. The Krylov subspace algorithm

GMBACK proposed by Kasenally[7] computes an approximate solution restricted to an

affine space while minimizing the backward perturbation norm of the matrix A. In this

paper we view the approximate solution as an exact solution of the perturbed linear

system (A − ∆)x = b + δ, in which changes are simultaneously permitted on matrix

A and b[1,9,10]. A new Krylov subspace algorithm TGMBACK, which computes an

approximate solution restricted to an affine space and minimizing the backward per-

turbation norm of the matrix A and vector b is presented. This minimization problem

amounts to computing the smallest singular value and the corresponding right singu-

lar vector of a low-order upper Hessenberg matrix. The advantage for considering the

algorithms which minimize the backward error is that there is often some uncertainty

in the data A and b of the original linear systems and we can compare the backward

error with the size of the uncertainty. Moreover, we found from numerical examples

that the new method has better performance than Kasenally’s method and restarted

GMRES method.

The outline of this paper is as follows. Section 2 gives a backward error analysis for

any iterative method for solving linear systems. The TGMBACK algorithm is intro-

duced in Section 3. Some practical implementation issues and the numerical examples

are presented in Section 4 and Section 5, respectively.

2. Backward Error Analysis for Iterative Methods

Consider the linear system in (1.1), where A is a large nonsymmetric matrix. Let

{xm} be a sequence of approximate solutions produced by any iterative method. We

first compare the residual error rm ≡ b−Axm with the minimum backward error ∆min

in matrix A which satisfies ‖∆min‖F = min{‖∆‖F : (A − ∆)xm = b}.
Theorem 2.1. Let xm be an approximate solution of the linear system (1.1) and

∆min be the minimum backward error ∆ in the matrix A such that (A − ∆)xm = b.

Then

‖∆min‖F = ‖rm‖2/‖xm‖2, (2.1)

where ‖.‖F is the Frobenious norm.

Proof. The residual equation

rm = b − Axm

can be rewritten as follows
(
A +

rmxT
m

‖xm‖2
2

)
xm = b

which implies that

‖∆min‖F ≤ ‖rmxT
m/‖xm‖2

2‖F = ‖rm‖2/‖xm‖2. (2.2)

On the other hand, we have

(A − ∆min)xm = b
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which implies that

rm = −∆minxm,

therefore, we have

‖rm‖2 ≤ ‖∆min‖F ‖xm‖2. (2.3)

Combining (2.2) and (2.3) we deduce (2.1), thus completing the proof.

Remark 2.1. From the proof of Theorem 2.1 we have the following result:

‖∆min‖2 = ‖∆min‖F = ‖rm‖2/‖xm‖2. (2.4)

Remark 2.2. From (2.1) and (2.4) we can see that if ‖rm‖2 is small then the

‖∆min‖F ≡ ‖∆min‖2 is not necessarily small.

In order to derive the minimum perturbation both on matrix A and vector b, we

need the notations of the Kroneker product A ⊗ B of matrice A and B, and the vec-

function vec(A) of matrix A[8], and the following proposition (cf.[8] ch.12,sec.1)

Proposition 2.1. If the orders of the matrices involved are such that all the oper-

ations bellow are defined, then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

(A ⊗ B)T = AT ⊗ BT .

vec(AXB) = (BT ⊗ A)vec(X).

We also need the following result (cf. [2] for proof).

Lemma 2.1. Let A ∈ Rm×n, B ∈ Rp×q, D ∈ Rm×q. Then the matrix equation

AXB = D

is consistent if and only if for some A(1), B(1)

AA(1)DB(1)B = D,

in which case the general solution of the matrix equation is

X = A(1)DB(1) + Y − A(1)AY BB(1)

for arbitrary Y ∈ Rn×p. Here A(1) denotes the {1}-inverse of a matrix A.

Theorem 2.2. Let xm be an approximate solution of the linear system (1.1) and

[∆, δ]min be the minimum backward error [∆, δ] in [A, b] such that

(A − ∆)xm = b + δ. (2.5)

Then

[∆, δ]min = −rmwT
m/(1 + ‖xm‖2

2)
1/2, (2.6)

where rm = b − Axm and wm = [xT
m, 1]T /(1 + ‖xm‖2

2)
1/2. Therefore

‖[∆, δ]min‖F = ‖[∆, δ]min‖2 = ‖rm‖2/
√

1 + ‖xm‖2
2. (2.7)
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Proof. We rewrite (2.5) as follows

∆xm + δ1 = −rm

which can be read as

( ∆ δ )

(
xm

1

)
= −rm. (2.8)

We now use Lemma 2.1 to solve the matrix equation (2.8) for [∆, δ]. Obviously, it

holds (
xm

1

)(1)

=
[xT

m, 1]

1 + ‖xm‖2
2

=
wT

m

(1 + ‖xm‖2
2)

1/2
.

Therefore

−rm

(
xm

1

)(1) (
xm

1

)
= −rm

[xT
m, 1]

1 + ‖xm‖2
2

(
xm

1

)
= −rm.

Thus, from Lemma 2.1 the matrix equation is consistent and the general solution is

[∆, δ] = −rm
wT

m

(1 + ‖xm‖2
2)

1/2
+ Y (I − wmwT

m). (2.9)

Using Proposition 2.1 we deduce that

‖[∆, δ]min‖2
F = min

Y

∥∥∥[(I − wmwT
m) ⊗ I]vec(Y ) − vec

(
rm

wT
m

(1 + ‖xm‖2
2)

1/2

)∥∥∥
2

2
. (2.10)

The right-hand side of (2.10) is a least squares problem. Using proposition 2.1 again

we can deduce its normal equation as follows

[(I − wmwT
m) ⊗ I]vec(Y ) = [(I − wmwT

m) ⊗ I]vec
(
rm

wT
m

(1 + ‖xm‖2
2)

1/2

)
, (2.11)

which can be written back to the following form

Y (I − wmwT
m) − rm

1 + ‖xm‖2
2

wT
m(I − wmwT

m) = 0.

Therefore, we have

Y (I − wmwT
m) = 0. (2.12)

Instituting (2.12) into (2.9) we deduce (2.6), thus completing the proof.

Remark 2.3. From Theorem 2.2 (cf.(2.7)) we can see that the norm of the total

minimum perturbation ‖[∆, δ]min‖F = ‖[∆, δ]min‖2 is always smaller than the norm of

the residual ‖rm‖2. Thus, from the view of the backward error analysis[13] we can say

that if both the matrix A and the vector b in the system include data errors, then using

the size of the residual norm ‖rm‖2 as a stopping criteria of an iterative method for

solving the linear system (1.1) is reasonable.

Remark 2.4. If we use ‖D[∆, δ]‖F = min, where D = diag (d1, · · · , dn) is a

nonsingular diagonal matrix[5], then we have

(D[∆, δ])min = −DrmwT
m/‖wm‖2

2
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and

‖(D[∆, δ])min‖F = ‖(D[∆, δ])min‖2 = ‖Drm‖2/
√

1 + ‖xm‖2
2.

3. The TGMBACK Algorithm

Let us briefly review the krylov subspace iterative methods for solving linear system

(1.1). If x0 is the initial solution estimate, then the initial residual is r0 = b−Ax0. De-

fine the m-dimensional Krylov subspace Km(A, r0), select, for example by the Arnoldi

process, the columns of the matrix Vm to form an orthogonal basis of Km(A, r0). Ac-

cording to Krylov subspace methods the approximate solution have the form

xm = x0 + Vmym for some ym ∈ Rm. (3.1)

Different Krylov subspace methods seek zm = Vmym to satisfy different conditions.

The Arnoldi process produces an m×m upper Hessenberg matrix Hm. Key properties

of this process are that βVme1 = r0 and that the matrix Hm satisfies the relation

AVm = Vm+1H̃m = VmHm + vm+1hm+1,meT
m, (3.2)

where ei denotes the i-th column of the identity matrix.

We now derive the TGMBACK algorithm. Suppose that x0 is an initial solution

estimate and that the approximate xTGB
m has the form xTGB

m = x0 + Vmym, where the

columns of Vm form an orthogonal basis for the Krylov subspace Km(A, r0) and ym is a

vector in Rm determined later. Using Theorem 2.2 we can write all peturbations [∆, δ]

which satisfy

(A − ∆)(x0 + Vmym) = b + δ (3.3)

as follows (cf.(2.9))

[∆, δ] = −rm
wT

m

(1 + ‖x0 + Vmym‖2
2)

1/2
+ Y (I − wmwT

m), (3.4)

where

wm =

(
x0 + Vmym

1

)
/(1 + ‖x0 + Vmym‖2

2)
1/2,

rm =b − A(x0 + Vmym).

(3.5)

Using (3.2) we deduce that

rm = βv1 − Vm+1H̃mym = Vm+1(βe1 − H̃mym).

Instituting it into (3.4) we have

[∆, δ] = Vm+1(H̃mym − βe1)
wT

m

(1 + ‖x0 + Vmym‖2
2)

1/2
+ Y (I − wmwT

m). (3.6)
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The TGMBACK algorithm seeks xm = x0+Vmym such that xm minimizes the normwise

backward perturbation on both the matrix A and vector b in (3.3). Namely, solve the

following minimization problem (cf.(3.6))

‖[∆, δ]TGB
min ‖2

F = min
ym∈Rm

Y ∈Rn×n

‖Vm+1(H̃mym−βe1)
wT

m

(1 + ‖x0 + Vmym‖2
2)

1/2
+Y (I−wmwT

m)‖2
F .

(3.7)

Denote

f(ym, Y ) = ‖Vm+1(H̃mym − βe1)
wT

m

(1 + ‖x0 + Vmym‖2
2)

1/2
+ Y (I − wmwT

m)‖2
F . (3.8)

The following theorem gives the solution to the minimization problem in (3.7).

Theorem 3.1. Suppose that m steps of the Arnoldi process has been taken, then

min{f(ym, Y ) : ym ∈ Rm, Y ∈ Rn×n} = λmin(P,Q), (3.9)

where P and Q are symmetric positive semidefinite and symmetric positive definite

matrices, respectively:

P = [−βe1, H̃m]T [−βe1, H̃m], Q =

(
xT

0 1

V T
m 0

) (
x0 Vm

1 0

)
. (3.10)

The smallest perturbation is given by

[∆, δ]TGB
min = Vm+1(H̃myTGB

m − βe1)

(
x0 + VmyTGB

m

1

)T

1 + ‖x0 + VmyTGB
m ‖2

2

,

‖[∆, δ]TGB
min ‖F = ‖[∆, δ]TGB

min ‖2 =
√

λmin(P,Q), (3.11)

with the associated eigenvector ṽ = [ṽ1, · · · , ṽm+1]
T . If ṽ1 6= 0, then

yTGB
m = [ṽ2/ṽ1, · · · , ṽm+1/ṽ1]

T .

Proof. Using proposition 2.1 we rewrite (3.8) as follows:

f(ym, Y ) =
∥∥∥vec

(
Vm+1(H̃mym − βe1)

wT
m

(1 + ‖x0 + Vmym‖2
2)

1/2
)

+ [(I − wmwT
m) ⊗ I]vec(Y )

∥∥∥
2

2
.

It is easy to see

▽vec(Y )f(ym, Y ) =2[(I − wmwT
m) ⊗ I]vec

(
Vm+1(H̃mym − βe1)

wT
m

(1 + ‖x0 + Vmym‖2
2)

1/2

)
+ 2[(I − wmwT

m) ⊗ I]vec(Y )
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=2Vm+1(H̃mym − βe1)
wT

m(I − wmwT
m)

(1 + ‖x0 + Vmym‖2
2)

1/2
+ 2Y (I − wmwT

m).

The ▽vec(Y )f(ym, Y ) = 0 leads to

Y (I − wmwT
m) = 0.

Thus, the minimization of f(ym, Y ) may be modified to

min
ym

∥∥∥Vm+1(H̃mym − βe1)
[(x0 + Vmym)T , 1]T

1 + ‖x0 + Vmym‖2
2

∥∥∥
2

F

= min
ym

‖H̃mym − βe1‖2
2/(1 + ‖x0 + Vmym‖2

2)

= min
ym

∥∥∥∥(−βe1, H̃m)

(
1

ym

) ∥∥∥∥
2

2∥∥∥∥
(

x0 Vm

1 0

) (
1

ym

) ∥∥∥∥
2

2

= min
ym

(
1

ym

)T

P

(
1

ym

)

(
1

ym

)T

Q

(
1

ym

) . (3.12)

From Courant-Fischer’s theorem[13] and if in the eigenvalue problem Pv = λQv, the

eigenspace span(V ) associated with the smallest eigenvalues is not orthogonal to span(e1).

Then all condition of Theorem 3.1 follows, thus completing the proof.

Since P and Q are symmetric positive semi-definite and symmetric positive definite

matrices, respectively. The eigenvalue problem

Pv = λQv (3.13)

is a regular generalized symmetric eigenvalue problem[3] which never encounters degen-

erate eigenvectors.

From Theorem 3.1 we have the following consequences.

Corollary 3.1. Suppose that the eigenvalues of the generalized eigenvalue problem

(3.13) are arranged in increasing order: λ1 = λ2 = · · · = λk < λk+1 ≤ · · · ≤ λm+1,

then

[∆, δ]min = Vm+1(−βe1, H̃m)

(
η

ỹm

)
(

η

ỹm

)T (
xT

0 1

V T
m 0

)

η2 + ‖ηx0 + Vmỹm‖2
2

, (3.14)

where

(
η

ỹm

)
∈ span(v1, · · · , vk), while vi is the eigenvector associated with λi, i =

1, 2, . . . ,m+1. Thus, if span(v1, · · · , vk) is not orthogonal to span(e1), then the TGM-

BACK solution exists: we can get

(
η

ỹm

)
∈ span(v1, · · · , vk) such that η 6= 0, then

yTGB
m = ỹm/η. Furthermore, if k > 1, then the solution may not be unique. If

span(v1, · · · , vk) is orthogonal to span(e1), then the TGMBACK solution does not exist.

Corollary 3.2. If P is singular, i.e. hm+1,m = 0, then yTGB
m = βH−1

m e1 and

xm = x0 + VmyTGB
m is the exact solution.

Suppose P is nonsingular, Let

Ĥm = [−βe1, H̃m], (3.15)
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then Ĥm ∈ R(m+1)×(m+1) is a nonsingular upper triangular matrix. The symmetric

positive definite matrix Q can be factorized as follows:

Q =

( ‖x0‖2
2 + 1 xT

0 Vm

V T
mx0 Im

)
=

(
1

V T
m x0/(‖x0‖2

2 + 1) Im

)




‖x0‖2

2 + 1

V T
m

(
Im − x0x

T
0

1 + ‖x0‖2
2

)
Vm




(

1 xT
0 Vm/(‖x0‖2

2 + 1)

Im

)
.

(3.16)

Obviously, the generalized eigenvalue problem (3.13) can be reduced to the following

standard eigenvalue problem:

Ĥ−T
m

(
1

V T
m x0/(‖x0‖2

2 + 1) Im

) 


‖x0‖2

2 + 1

V T
m

(
Im − x0x

T
0

1 + ‖x0‖2
2

)
Vm





(
1 xT

0 Vm/(‖x0‖2
2 + 1)

Im

)
Ĥ−1

m z = ξz, (3.17)

where z = Ĥmv and ξ = 1/λ. From (3.17) it is easy to see that the eigenvalue ξ and

eigenvector z of (3.17) can be computed from the singular value
√

ξ and the associated

right singular vector z by the singular value decomposition of the following matrix:



(‖x0‖2

2 + 1)1/2 xT
0 Vm/(x0‖2

2 + 1)1/2

0
[
V T

m

(
Im − x0x

T
0

1 + ‖x0‖2
2

)
Vm

]1/2



 Ĥ−1
m . (3.18)

4. Implementation

In order to simplify the eigenvalue problem, we change the express for the mini-

mization of f(ym, Y ) (cf.(3.12)) as follows

min
ym

‖H̃mym − βe1‖2
2/(1 + ‖x0 + Vmym‖2

2) = min
ym

‖(H̃m,−βe1)

(
ym

1

)
‖2
2

‖
(

Vm x0

0 1

) (
ym

1

)
‖2
2

= min
ym

(
ym

1

)T

P̃

(
ym

1

)

(
ym

1

)T

Q̃

(
ym

1

) , (4.1)

where

P̃ =

(
H̃T

mH̃m −βH̃T
me1

−βeT
1 H̃m β2

)
, Q̃ =

(
Im V T

mx0

xT
0 Vm 1 + ‖x0‖2

2

)
. (4.2)

If we make the Cholesky factorization Q̃ = LLT , then the lower triangular matrix L is

as follows

L =

(
Im 0

xT
0 Vm

√
1 + ‖x0‖2

2 − ‖V T
m x0‖2

2

)
. (4.3)
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The generalized eigenvalue problem P̃ v = λQ̃v can be reduced to the following standard

symmetric eigenvalue problem

L−1P̃L−Tu = λu, (4.4)

where u = LT v.

Since

P̃ = [H̃m,−βe1]
T [H̃m,−βe1],

it is difficult to compute the smallest eigenvalue λmin and the corresponding eigenvector

of matrix L−1P̃L−T in (4.4) accurately, when
√

λ is small. Thus, we compute instead

the smallest singular value and the corresponding right singular vector of the following

upper Hessenberg matrix:

[H̃m,−βe1]L
−T = (H̃m,−βe1)

(
Im −(V T

m x0)tl

tl

)
= [H̃m, xt], (4.5)

where xt = −tl(H̃mV T
mx0 + βe1) and tl = 1/

√
1 + ‖x0‖2

2 − ‖V T
m x0‖2

2.

Finally, we give the proposed algorithm as follows.

Restarted TGMBACK Algorithm: TGMBACK(m)

1. Initialize: Choose x0, compute r0 = b − Ax0 and set β = ‖r0‖2, v1 = r0/β.

2. The Arnoldi process

for j = 1, 2, . . . ,m

w := Avj

for i = 1, 2, . . . , j

hi,j = (w, vi)

w := w − hi,jvi

hj+1,j = ‖w‖2

vj+1 = w/hj+1,j

3. Compute the smallest singular value σ and the associated right singular vector

u of the upper Hessenberg matrix [H̃m, xt] (cf.(4.5)).

Compute v = L−Tu ≡
(

ỹm

η

)

Normarize the vector v to get ym: ym = ỹm/η

Form the approximate solution xTGB
m = x0 + Vmym

4. Set ‖[∆, δ]TGB
min ‖F = σ. If satisfied, stop; else set x0 := xTGB

m , Compute r0 =

b − Ax0, set β = ‖r0‖2, v1 = r0/β and go to step 2.

Remark 4.1. From the proof of Theorem 3.1 or from Theorem 2.1 we have

‖[∆m, δm]TGB
min ‖F ≡ σm =

‖rm‖2√
1 + ‖xm‖2

2

, (4.6)

which can be used for checking on the correctness of the computation.

In order to retain the simple form of the matrix in (4.5), we use the left precondi-

tioner to construct the preconditioned TGMBACK algorithm (cf. section 5).
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5. Numerical Examples

A main example comes from the discretization of the convection-diffusion equation[4,11].

−∂2u

∂x2
− ∂2u

∂y2
+ γ

(
x

∂u

∂x
+ y

∂u

∂y

)
+ βu = f, on (0, 1) × (0, 1) (5.1)

with zero Dirichlet boundary condition, where γ = 1000, β = 10. We discretize (5.1)

using centred differences on a uniform 32 × 32 grid. The right-hand side was chosen

such that the vector of all ones is the exact solution of the linear system. Initial guess

x0 = 0. As stopping criterion, we used

‖[∆, δ]TGB
min ‖F ≤ 10−10. (5.2)

Remark 5.1. If the parameters in (5.1) are chosen to be β = −200 and γ = 100[4]

or, generally, two parameters β and γ are chosen to satisfy β = −2γ with γ ≥ 100,

then the resulting linear system is so ill conditioned that even if

‖[∆m, δm]TGB
min ‖F ≤ 10−12,

the solution xm is far from the exact solution.

We compare the following algorithms:

(1) TGMBACK(m);

(2) GMRES(m);

(3) PTGMBACK(m, l): A preconditioned TGMBACK(m), the preconditioner ∆̃(l)

is an approximation of the disceate Laplancian difference operator ∆̃ with zero bound-

ary condition. i.e., for a vector v given, ∆̃(l)−1v is the l-th Gauss-Seidel iterative vector

x(l) of the following difference equation:

∆̃x = v,

with initial iterative vecor x(0) = 0.

Fig.5.1. m = 25, l = 1, compare minimum backward pertubation.

(i) TGMBACK(m), (ii) GMRES(m), (iii) PTGMBACK(m, l), (iv) PGMRES(m, l).
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(4) PGMRES(m, l): A preconditioned GMRES(m) with the same preconditioner

as PTGMBACK(m, l).

We compare the norms of the residual vectors and the norms of the minimum back-

ward perturbations. The norm of the minimum backward perturbation for GMRES(m)

and PGMRES(m) can be computed by using the residual norm ‖rm‖2 and the norm

of the iterative vctor ‖xm‖2 (cf.(2.7))

‖[∆, δ]TGB
min ‖F = ‖[∆, δ]TGB

min ‖2 = ‖rm‖2/
√

1 + ‖xm‖2
2.

The results of the computation are shown in Fig.5.1–Fig.5.4.

Fig.5.2. m = 25, l = 1, compare residual.

(i) TGMBACK(m), (ii) GMRES(m), (iii) PTGMBACK(m, l), (iv) PGMRES(m, l).

Fig.5.3. m = 15, l = 1 compare minimum backward perturbation.

(i) TGMBACK(m), (ii) GMRES(m), (iii) PTGMBACK(m, l), (iv) PGMRES(m, l).
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Fig.5.4. m = 15, l = 1 compare residual.

(i) TGMBACK(m), (ii) GMRES(m), (iii) PTGMBACK(m, l), (iv) PGMRES(m, l).
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