
Journal of Computational Mathematics, Vol.15, No.2, 1997, 179–192.

AN SQP ALGORITHM WITH NONMONOTONE LINE SEARCH

FOR GENERAL NONLINEAR CONSTRAINED

OPTIMIZATION PROBLEM∗1)

G.P. He2)

(Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing China)
B.Q. Diao

(Shandong Institute of Mining and Technology, Taian, Shandong, China)
Z.Y. Gao

(Northern Jiaotong University, Beijing, China)

Abstract

In this paper, an SQP type algorithm with a new nonmonotone line search
technique for general constrained optimization problems is presented. The new
algorithm does not have to solve the second order correction subproblems for each
iterations, but still can circumvent the so-called Maratos effect. The algorithm’s
global convergence and superlinear convergent rate have been proved. In addition,
we can prove that, after a few iterations, correction subproblems need not be solved,
so computation amount of the algorithm will be decreased much more. Numerical
experiments show that the new algorithm is effective.

1. Introduction

In this paper, we consider the following optimization problem (P):

(P)

min f(x)

s.t. gj(x) = 0 (j = 1, · · · ,m′),

gj(x) ≤ 0 (j = m′ + 1, · · · ,m),

where x = (x1, · · · , xn)T ∈ En, f(x), gj(x) (j = 1, · · · ,m) are all real-valued smooth

functions.

In recent years, Sequential Quadratic Programming (SQP) algorithms have been ex-

tensively used for the solution of such problems, and they have been widely investigated

by many authors (see, e.g. [1-5]).

An attractive feature of the SQP method is that, under some suitable conditions,

a superlinear convergence can be obtained, provided that the unit stepsize is even-

tually accepted along the direction computed by solving the quadratic programming

subproblem. In order to enforce global convergence towards Kuhn-Tucker points of

∗ Received April 20, 1995.
1) The Project was supported by the National Natural Science Foundation.
2) New address: Shandong Institute of Mining and Technology, Taian, Shandong 271019, China.

180 G.P. HE, B.Q. DIAO AND Z.Y. GAO

the original problem, a general approach is to define a merit function that measures

progress towards the solution, and to choose a stepsize that yields a sufficient decrease

in the merit function.

A standard merit function is following nondifferentiable penalty function:

Φ(x) = f(x) + r

m′

∑

j=1

|gj(x)| + r

m
∑

j=m′+1

max(0, gj(x)), (1.1)

where r is a positive penalty parameter.

The main difficulty encountered in SQP methods with this merit function is that the

line search can truncate the steplength near a solution, thus destroying the superlinear

convergence. This is so-called Maratos effect. Two types of techniques have been

proposed to overcome this undesirable problem. One method is the so called watchdog

technique [6] in which the step of one is tentatively accepted if sufficient decrease was

achieved at the previous iteration, compared to the lowest value of the merit function

obtained so far. If this lowest value is not improved upon within a given finite number

of iterations, the algorithm restarts from the iterate at which this value was achieved.

Under some conditions it is shown that a step of one is always accepted in the vicinity

of a local solution of (P). However, in the early iterations, numerous function and

gradient evaluations may be wasted due to ”backtracking”. Another approach is that

of modifying the search direction when near to a solution to avoid the Maratos effect.

In this type approach, a correction subproblem must be solved at each iteration and an

arc search is performed. Many additional function or gradient evaluations of constraints

at auxiliary points are also needed to be performed per iteration (see, e.g., Ref. [7-8]).

In Ref.[9], by combining the arc search technique with nonmonotone line search

scheme [10], Panier and Tits presented an algorithm for avoiding the Maratos effect.

Their algorithm has an advantage that, after a few iterations, function evaluations

are no longer performed at any auxiliary point. For early iterations, however, this

algorithm still has to solve two quadratic programming subproblems to determine a

search direction per step. This is not necessary for most of optimization problems.

The aim of this paper is to propose a new algorithm for improving the work of

Ref.[9]. This algorithm uses a linear search scheme which is different from that of

Ref.[9], and only needs to solve a quadratic programming subproblem and, if sometimes

necessary, a system of linear equations at each iteration. The advantage mentioned

above for the algorithm of Ref.[9] still can be preserved by the new algorithm, but the

total computation amounts of new algorithm is less than that of the algorithm of Ref.[9]

per iteration. Numerical experiments show that the new algorithm is very effective.

This paper is organized as follows. Algorithm A is stated in Section 2. In Section 3,

under some mild assumptions, we prove that Algorithm A is global convergent. Rate of

convergence is analyzed in Section 4. In Section 5, some numerical results are reported.

2. Algorithm

In the following, we let L = {1, · · · ,m′}, M = {m′ + 1, · · · ,m}. For any iteration

point xk, in order to compute a search direction, we will make use of a quadratic

An SQP Algorithm with Nonmonotone Line Search for General Nonlinear Constrained... 181

programming QP0(xk,Hk) defined for a symmetric positive definite matrix Hk ∈ En×n

by

(QP0)

min
1

2
dT Hkd + ∇f(xk)

T d

s.t. gj(xk) + ∇gj(xk)
T d = 0, (j ∈ L),

gj(xk) + ∇gj(xk)
T d ≤ 0, (j ∈ M).

Denote its solution by dk and associated multiplier vector by λk. Then dk and λk satisfy

the following K-T conditions:

∇f(xk) + Hkdk +
m

∑

j=1

λk
j∇gj(xk) = 0, (2.1a)

gj(xk) + ∇gj(xk)
T dk = 0, (j ∈ L), (2.1b)

gj(xk) + ∇gj(xk)
T dk ≤ 0, (j ∈ M), (2.1c)

λk
j [gj(xk) + ∇gj(xk)

T dk] = 0, (j ∈ M), (2.1d)

λk
j ≥ 0, (j ∈ M). (2.1e)

In the early iterations, for xk, a correction direction d̂k may be computed by solving

following system of linear equations LS(xk, dk) defined by

(LS)











Hkd + ∇f(xk) +
m

∑

i=1

λi∇gi(xk) = 0,

∇gj(xk)
T d + gj(xk) = βkj, (j ∈ M = {j ∈ M |λk

j > 0} ∪ L),

where βkj = −gj(xk + dk) + ‖dk‖
τ , (j ∈ M), τ > 2 is a constant.

Now, we define a function Ψ(xk + d) for xk and d ∈ En by

Ψ(xk + d) =f(xk) + ∇f(xk)
T d +

1

2
dT Hkd + r

m′

∑

i=1

|gj(xk) + ∇gj(xk)
T d|

+ r

m
∑

i=m′+1

max(0, gj(xk) + ∇gj(xk)
T d) (2.2)

The line search test involves a maximum past value Φk defined over the last four

iteration points by Φk = max
l=0,···,3

Φ(xk−l), where negative indices that may appear in the

early iterations are discarded.

Algorithm A.

Parameters. r > 0, µ1, µ2 ∈ (0, 1) and µ2 < µ1, α0 = 1, τ > 2.

Data. x0 ∈ En, H0 ∈ En×n is a symmetric positive definite matrix.

Step 0. Initialization. Set k = 0.

Step 1. Compute dk solution of the quadratic programming QP0(xk,Hk). Asso-

ciated multiplier vector is λk. If dk=0, stop.

182 G.P. HE, B.Q. DIAO AND Z.Y. GAO

Step 2. Let xk+1 = xk + αkdk, and compute

ρ
(1)
k =

Φk − Φ(xk+1)

Ψ(xk) − Ψ(xk+1)
.

Step 3. If ρ
(1)
k < µ1, then go to Step 4; Otherwise, set αk = αk, xk+1 = xk +αkdk,

αk+1 =

{

2αk, if 2αk ≤ 1,

αk, if 2αk > 1,

then go to Step 6.

Step 4. Compute d̂k and λ̂k, solution of LS(xk, dk). If there is no solution or

‖d̂k − dk‖ > ‖dk‖, set d̂k = dk. Let x(αk) = xk + αkdk + α2
k(d̂k − dk), and compute

ρ
(2)
k =

Φk − Φ(x(αk))

Ψ(xk) − Ψ(xk+1)
.

Step 5. If ρ
(2)
k ≥ µ2, then set αk = αk, xk+1 = x(αk), and let

αk+1 =

{

2αk, if 2αk ≤ 1 and ρ
(2)
k ≥ µ1,

αk, otherwise,

go to Step 6; If ρ
(2)
k < µ2, then set αk :=

1

2
αk, return back to Step 2.

Step 6. Updates. Compute a new symmetric positive definite approximation

Hk+1 to the Hessian of the Lagrangian. Set k = k + 1, go back to Step 1.

In next part of this paper, we make the following assumptions:

A1. The functions f , gj (j = 1, · · · ,m) are all continuously differentiable.

A2. The feasible sets of quadratic programming subproblems QP0(x,H) are always

nonempty.

Now we can easily prove following two lemmas:

Lemma 2.1. If dk is a K-T point of (QP0) and dk 6= 0, λk is associated mul-

tiplier vector satisfying r > |λk
j |, (1 ≤ j ≤ m), then functions Φ(x) and Ψ(x) all

have directional derivatives along dk at point xk, and they are equal to each other, i.e.,

Ddk
Φ(xk) = Ddk

Ψ(xk) < 0, where

Ddk
Φ(xk) = lim

α→0

Φ(xk + αdk) − Φ(xk)

α
,

Ddk
Ψ(xk) = lim

α→0

Ψ(xk + αdk) − Ψ(xk)

α
.

Lemma 2.2. If dk is a K-T point of (QP0) and dk 6= 0, λk is associated

multiplier vector satisfying r > |λk
j |, (1 ≤ j ≤ m), then, for ∀α ∈ (0, 1), we have

Ψ(xk) − Ψ(xk + dk) ≥
1

2
dT

k Hkdk and Ψ(xk) − Ψ(xk + αdk) ≥
α

2
dT

k Hkdk.

An SQP Algorithm with Nonmonotone Line Search for General Nonlinear Constrained... 183

With these lemmas, we know that

lim
α→0

Φ(xk) − Φ(xk + αdk)

Ψ(xk) − Ψ(xk + αdk)
= 1.

In addition, we have Φk − Φ(xk + αdk) ≥ Φ(xk) − Φ(xk + αdk). Hence, if αk is small

enough, we always have ρ
(1)
k > µ1. This means that the algorithm does not cycle

between Step 2 and Step 5, and it is well defined.

3. Global Convergence

In order to establish the global convergence of Algorithm A, in addition to A1 and

A2, we need the following three assumptions furthermore.

A3. There exists a positive constant κ > 0 such that, for all k and for all y ∈ En,

1

κ
‖y‖2 ≤ yT Hky ≤ κ‖y‖2.

A4. The penalty parameter r satisfies the following condition:

r > sup
k

max
1≤j≤m

|λk
j |.

A5. The sequences {dk}, {d̂k}, {xk} are all bounded.

Lemma 3.1. (i) limk→∞[Ψ(xk) − Ψ(xk + dk)] = 0; (ii) limk→∞ Hkdk = 0.

Proof. (i) Suppose by contradiction the assertion is false. Then, without loss of

any generality, we can suppose that there exists a small enough constant ǫ > 0 and an

integer constant K0 such that, for all k ≥ K0, we have

Ψ(xk) − Ψ(xk + dk) > ǫ. (3.1)

By the definition of ρ
(2)
k and the convex property of Ψ(xk + d) for d, we always have

Φk − Φ(xk+1) ≥ µ2[Ψ(xk) − Ψ(xk+1)] ≥ µ2αk[Ψ(xk) − Ψ(xk + dk)] (3.2)

So, for all k ≥ K0, we obtain

Φk − Φ(xk+1) ≥ µ2αkǫ. (3.3)

Now, without loss of generality, we assume that k > 3 and define a positive integer

constant by l(k) such that

k − 3 ≤ l(k) ≤ k, (3.4)

and

Φ(xl(k)) = max
0≤j≤3

[Φ(xk−j)]. (3.5)

Since Φ(xk+1) ≤ Φ(xl(k)), we have following relation

Φ(xl(k+1)) = max
0≤j≤3

[Φ(xk+1−j)] ≤ max [max
0≤j≤3

[Φ(xk−j)], Φ(xk+1)]

184 G.P. HE, B.Q. DIAO AND Z.Y. GAO

= max[Φ(xl(k)), Φ(xk+1)] = Φ(xl(k)), (3.6)

and we know that

Φ(xl(k)) ≤ Φl(k)−1 + µ2[Ψ(xl(k)−1+1) − Ψ(xl(k)−1)]

≤ Φ(xl(l(k)−1)) + µ2αl(k)−1[Ψ(xl(k)−1 + dl(k)−1) − Ψ(xl(k)−1)]. (3.7)

Since the sequence {Φ(xl(k)) is monotone decrease and bounded, it must have limit, so

lim
k→∞

αl(k)−1[Ψ(xl(k)−1 + dl(k)−1) − Ψ(xl(k)−1)] = 0, (3.8)

that is

lim
k→∞

αl(k)−1H
1
2
l(k)−1dl(k)−1 = 0. (3.9)

By assumption A3, we have lim
k→∞

αl(k)−1‖dl(k)−1‖
2 = 0. Hence

lim
k→∞

αl(k)−1‖dl(k)−1‖ = 0. (3.10)

Now, we prove that

lim
k→∞

αk‖dk‖ = 0. (3.11)

Let l̂(k) = l(k + 4). Then, using a induction scheme, we can prove that, for ∀j ≥ 1,

if k ≥ j − 1, we always have

lim
k→∞

α
l̂(k)−j

‖d
l̂(k)−j

‖ = 0, (3.12)

and

lim
k→∞

Φ(x
l̂(k)−j

) = lim
k→∞

Φ(xl(k)). (3.13)

First assume j = 1. Since {l̂(k)} ⊂ {l(k)}, by (3.10), (3.12) is obviously correct.

In addition, notting that ‖d̂k − dk‖ ≤ ‖dk‖, we have ‖x
l̂(k) − x

l̂(k)−1‖ −→ 0. Hence we

have lim
k→∞

Φ(x
l̂(k)−1) = lim

k→∞
Φ(x

l̂(k)) = lim
k→∞

Φ(xl(k)). This means (3.13) holds.

Now suppose that (3.12) and (3.13) hold for some j > 1. Then, we prove that these

formulas are still correct for j + 1.

Obviously, we have

Φ(x
l̂(k)−j

) ≤ Φ(x
l(l̂(k)−j−1)) + µ2αl̂(k)−j−1[Ψ(x

l̂(k)−j−1 + d
l̂(k)−j−1) − Ψ(x

l̂(k)−j−1)].

Let k−→∞, by (3.13), we obtain

lim
k→∞

α
l̂(k)−j−1[Ψ(x

l̂(k)−j−1 + d
l̂(k)−j−1) − Ψ(x

l̂(k)−j−1)] = 0.

That is lim
k→∞

α
l̂(k)−j−1H

1
2
l̂(k)−j−1

d
l̂(k)−j−1 = 0, hence lim

k→∞
α

l̂(k)−j−1‖dl̂(k)−j−1‖ = 0. And

we have

‖x
l̂(k)−j

− x
l̂(k)−j−1‖ −→ 0,

An SQP Algorithm with Nonmonotone Line Search for General Nonlinear Constrained... 185

lim
k→∞

Φ(x
l̂(k)−j−1) = lim

k→∞
Φ(x

l̂(k)−j
) = lim

k→∞
Φ(xl(k)).

This shows that (3.12) and (3.13) are correct for j + 1.

For ∀k, we know

xk+1 = x
l̂(k) −

l̂(k)−k
∑

j=0

α
l̂(k)−j

d
l̂(k)−j

,

where d
l̂(k)−j

= d
l̂(k)−j

or d
l̂(k)−j

= d
l̂(k)−j

+ α
l̂(k)−j

(d̂
l̂(k)−j

− d
l̂(k)−j

), they are deter-

mined respectively by Step 1 and Step 4 of Algorithm A.

Since α
l̂(k)−j

‖d
l̂(k)−j

‖ −→ 0, and α
l̂(k)−j

‖d̂
l̂(k)−j

− d
l̂(k)−j

‖ −→ 0 so we have

lim
k→∞

‖xk+1 − x
l̂(k)‖ = 0.

and

lim
k→∞

Φ(xk+1) = lim
k→∞

Φ(x
l̂(k)).

But since

Φ(xk+1) ≤ Φ(xl(k)) + µ2[Ψ(xk+1) − Ψ(xk)],

we know lim
k→∞

[Ψ(xk+1)−Ψ(xk)] = 0. Therefore, for k large enough, Ψ(xk)−Ψ(xk+dk) ≤

1
2ǫ, which contradicts to (3.1).

(ii) The proof is obvious.

Theorem 3.2. Algorithm A either stops at a K-T point of (P) or generates a

sequence {xk} for which each limit point is a K-T point of (P).

Proof. Algorithm A can stop only at Step 1 and the conclusion is trivial in this

case. Now we suppose that {xk} is an infinite sequence and {xk}K −→ x∗. By the

boundedness of {λk}, without loss of any generality, we can suppose that the sequence

{λk}K has a limit, say λ∗. Considering (2.1a) and (2.1e), by Lemma 3.1 (ii), we have

∇f(x∗) +
m

∑

i=1

λ∗
i∇gi(x

∗) = 0, (3.14)

and

λ∗
j ≥ 0, (j ∈ M). (3.15)

In addition, from following relation

Ψ(xk) − Ψ(xk + dk) ≥ Ψ(xk) − Ψ(xk + dk) −
1

2
dT

k Hkdk

=r

m′

∑

j=1

|gj(xk)| + r

m
∑

j=m′+1

max(0, gj(xk)) −
m

∑

j=1

λk
j gj(xk)

≥
m′

∑

j=1

(r − |λk
j |)|gj(xk)| +

∑

j∈M, gj(xk)>0

(r − λk
j)|gj(xk)| −

∑

j∈M,gj(xk)<0

λk
j gj(xk) ≥ 0

186 G.P. HE, B.Q. DIAO AND Z.Y. GAO

and Lemma 3.1 (i), we have

m′

∑

j=1

(r − |λ∗
j |)|gj(x

∗)| +
∑

j∈M,gj(x∗)>0

(r − λ∗
j)|gj(x

∗)| −
∑

j∈M, gj(x∗)<0

λ∗
jgj(x

∗) = 0.

So, we obtain gj(x
∗) = 0, (j ∈ L), gj(x

∗) ≤ 0, (j ∈ M), and λ∗
jgj(x

∗) = 0. This shows

that x∗ is a K-T point of (P).

4. Superlinear Convergence

In this section, we will prove superlinear convergence of Algorithm A. First, we

assume some more conditions on the functions involved. Assumption (A1) is replaced

by the following.

A1’. The functions f , gj(j = 1, · · · ,m) are at least twice continuously differentiable.

We also make the following assumptions:

A6. The sequence {xk} generated by Algorithm A possesses a limit point x∗ (in view

of Theorem 3.2, a K-T point of (P)) at which the gradients of active constraints are

linearly independent, and second order sufficient conditions and strict complementary

slackness hold, i.e., the Lagrange multiplier vector λ∗ ∈ Em at x∗ satisfies λ∗
j > 0 (∀j ∈

J0(x
∗) = {j | gj(x

∗) = 0, j = m′+1, · · · ,m}), λ∗
j 6= 0 (∀j ∈ L) and the Hessian matrix

∇2
xxL(x∗, λ∗) of the Lagrangian function L(x, λ) = f(x) +

m
∑

j=1

λjgj(x) of (P) is positive

definite on the subspace {y | yT∇gj(x
∗) = 0, (∀j ∈ J0(x

∗) ∪ L)}.

By Lemma 3.1 (ii) and Assumption A3, we know that ‖dk‖ → 0. So with a similar

method as that of Ref.[9], we can easily show the following lemma.

Lemma 4.1. The entire sequence {xk} converges to x∗, ‖dk‖ → 0 and λk → λ∗.

Now suppose that the active set of constraints at x∗ is already determined, without

loss of generality, we denote it by I∗ = {1, 2, · · · ,m′,m′ + 1, · · · , l}. By assumption A6,

when we turn our attention to the convergence rate of the algorithm, we only need to

consider the following problem with equality constraints:

(EP)

{

min f(x)

s.t. gj(x) = 0 (j = 1, · · · , l).

Now let

gk = (g1(xk), · · · , gl(xk))
T , Nk = (∇g1(xk), · · · ,∇gl(xk)),

N∗ = (∇g1(x
∗), · · · ,∇gl(x

∗)), Pk = I − Nk[N
T
k Nk]

−1NT
k ,

where I ∈ En×n is a unit matrix. From assumptions A3 and A6, we know that, for k

large enough, the matrices Nk are of full rank, and we have

Lemma 4.2. The matrices
[

Hk Nk

NT
k 0

]

are uniformly nonsingular.

An SQP Algorithm with Nonmonotone Line Search for General Nonlinear Constrained... 187

Lemma 4.3. For k large enough, we have βkj = ©(‖dk‖
2), (j = 1, · · · , l).

Lemma 4.4. For k large enough, we have ‖d̂k − dk‖ = ©(‖dk‖
2) and ‖λ̂k − λk‖ =

©(‖dk‖
2).

Proof. Since λk → λ∗, by A6, we know M = {1, 2, · · · , l}. From (2.1) and the

definition of (LS), we have

(

Hk Nk

NT
k 0

) (

d̂k − dk

λ̂k − λk

)

=

(

0

βk

)

,

from Lemma 4.2 and 4.3, we can easily know the result is correct.

In order to obtain superlinear convergence, we furthermore assume

A7. The matrices Hk are positive definite and satisfy

lim
k→∞

‖Pk(Hk −∇2
xxL(x∗, λ∗)dk‖

‖dk‖
= 0. (4.1)

Theorem 4.5. For k large enough, the step size αk = 1.

Proof. We denote the first trial value of αk for every iteration by αk. In the

following proof, the iteration index k is generally dropped to simplify the notation.

Since x(α) = x + α(d + α(d̂ − d)) and the definition of Ψ(x + d), we have

|Ψ(x + αd) − Φ(x(α))| ≤ ω1 + ω2 + ω3, (4.2)

where

ω1 = |f(x) + α∇f(x)T d +
1

2
α2dT Hd − f(x + α(d + α(d̂ − d)))|,

ω2 = r
m′

∑

i=1

|gi(x) + α∇gi(x)T d − gi(x + α(d + α(d̂ − d)))|,

ω3 = r
l

∑

i=m′+1

|max(0, gi(x) + α∇gi(x)T d) − max(0, gi(x + α(d + α(d̂ − d))))|.

First, since

|gi(x) + α∇gi(x)T d − gi(x + α(d + α(d̂ − d)))|

=|gi(x) + α∇gi(x)T d − [gi(x) + α∇gi(x)T (d + α(d̂ − d))

+
1

2
α2(d + α(d̂ − d))T∇2gi(x)(d + α(d̂ − d))]| + ◦(‖d + α(d̂ − d)‖2)

=|α2∇gi(x)T (d̂ − d) +
1

2
α2(d + α(d̂ − d))T∇2gi(x)(d + α(d̂ − d))| + ◦(‖d‖2)

=α2|∇gi(x)T (d̂ − d) +
1

2
dT∇2gi(x)d| + ◦(‖d‖2),

we have

ω2 = r
m′

∑

i=1

(α2|∇gi(x)T (d̂ − d) +
1

2
dT∇2gi(x)d| + ◦(‖d‖2)).

188 G.P. HE, B.Q. DIAO AND Z.Y. GAO

Now from (LS) and K-T conditions of (EP), we can know that

∇gi(x)T (d̂ − d) = −gi(x + d) + ‖d‖τ , (4.3)

and since

gi(x + d̂) = gi(x + d + d̂ − d) = gi(x + d) + ∇gi(x + d)T (d̂ − d) + ©(‖d‖4)

= gi(x + d) + ∇gi(x)T (d̂ − d) + ©(‖d‖3), (4.4)

so we obtain

gi(x + d̂) = ©(‖d‖τ). (4.5)

In addition, it is obvious that

gi(x + d̂) = gi(x) + ∇gi(x)T d̂ +
1

2
d̂T∇2gi(x)d̂ + ◦(‖d̂‖2)

= gi(x) + ∇gi(x)T d + ∇gi(x)T (d̂ − d) +
1

2
dT∇2gi(x)d + ◦(‖d‖2), (4.6)

hence we have

∇gi(x)T (d̂ − d) +
1

2
dT∇2gi(x)d = ◦(‖d‖2). (4.7)

So it follows that

ω2 = α2 · ◦(‖d‖2). (4.8)

Similarly, notting that max(0, s) =
|s| + s

2
, we can easily prove that

ω3 = α2 · ◦(‖d‖2). (4.9)

Now we make an estimation of ω1. First we have

ω1 = |f(x) + α∇f(x)T d +
1

2
α2dT Hd − f(x) − α∇f(x)T (d + α(d̂ − d))

−
1

2
α2(d + α(d̂ − d))T∇2f(x)(d + α(d̂ − d))| + α2 · ◦(‖d + α(d̂ − d)‖2)

=
∣

∣

∣

1

2
α2dT Hd − α2∇f(x)T (d̂ − d) −

1

2
α2dT∇2f(x)d

∣

∣

∣ + α2 · ◦(‖d‖2)

From (2.1) and (4.7), we obtain

∇f(x)T (d̂ − d) = −dT H(d̂ − d) −
l

∑

i=1

λi∇gi(x)T (d̂ − d)

= ©(‖d‖3) −
l

∑

i=1

λi∇gi(x)T (d̂ − d) =
1

2

l
∑

i=1

λid
T∇2gi(x)d + ◦(‖d‖2),

(4.10)

so we have

ω1 =
1

2
α2|dT Hd − dT∇2f(x)d −

l
∑

i=1

λid
T∇2gi(x)d| + ◦(‖d‖2)

An SQP Algorithm with Nonmonotone Line Search for General Nonlinear Constrained... 189

=
1

2
α2|dT (H −∇2f(x) −

l
∑

i=1

λi∇
2gi(x))d| + ◦(‖d‖2)

=
1

2
α2|dT (H −∇2

xxL(x, λ))d| + ◦(‖d‖2).

If we let Γ = H −∇2
xxL(x∗, λ∗), then from the definition of P , we have

dT Γd = dT PΓd + dT (I − P)Γd = dT PΓd + dT N(NT N)−1NT Γd

= dT PΓd − g(x)T (NT N)−1NT Γd = ◦(‖d‖2) + ◦(‖g(x)‖),

where g(x) = (g1(x), · · · , gl(x))T . Hence it follows that

ω1 =
1

2
α2|dT (H −∇2

xxL(x∗, λ∗) + ∇2
xxL(x∗, λ∗) −∇2

xxL(x, λ))d| + ◦(‖d‖2),

= α2(◦(‖d‖2) + ◦(‖d‖‖g(x)‖)).

This implies

|Ψ(x + αd) − Φ(x(α))| ≤ α2[◦(‖d‖2) + ◦(‖g(x)‖)]. (4.11)

On the other hand, let

ξ = min{ inf
k

[min
m′+1≤i≤l

λk
i], r − sup

k

[max
1≤i≤l

|λk
i |] },

from Lemma 3 in [8], we know the following matrices are uniformly positive definite.

Hk = Hk + σNkN
T
k , where σ =

ξ

sup ‖g(xk)‖
. So we have

dT Hd ≥ σ‖d‖2 − σ‖g(x)‖2 ≥ σ‖d‖2 − ξ‖g(x)‖ (4.12)

for some σ > 0. Therefore, it follows that

Ψ(x) − Ψ(x + d) = r
m′

∑

j=1

|gj(x)| + r
l

∑

j=m′+1

max(0, gj(x)) −
l

∑

j=1

λjgj(x) +
1

2
dT Hd

≥
m′

∑

j=1

(r − |λk
j |)|gj(xk)| +

∑

j∈M,gj(xk)>0

(r − λk
j)|gj(xk)| −

∑

j∈M,gj(xk)<0

λk
j gj(xk) +

1

2
dT Hd

≥
m′

∑

j=1

(

r − sup
k

(max
1≤j≤l

|λk
j |)|gj(x

∗)| +
∑

j∈M,gj(xk)>0

(

r − sup
k

(max
1≤j≤l

|λk
j |)|gj(xk)|

− inf
k

(min
m′+1≤j≤l

λk
j)

∑

j∈M,gj(xk)<0

gj(xk) +
1

2
dT Hd

≥
1

2
dT Hd + ξ‖g(x)‖ ≥

1

2
σ‖d‖2 +

1

2
ξ‖g(x)‖.

From (3.2), we have

Ψ(x) − Ψ(x + αd) ≥ α[Ψ(x) − Ψ(x + d)] ≥
1

2
α(σ‖d‖2 + ξ‖g(x)‖). (4.13)

190 G.P. HE, B.Q. DIAO AND Z.Y. GAO

Therefore it holds that

∣

∣

∣

Ψ(x + αd) − Φ(x(α))

Ψ(x) − Ψ(x + αd)

∣

∣

∣ ≤
α2(◦(‖d‖2) + ◦(‖g(x)‖))

1
2α(σ‖d‖2 + ξ‖g(x)‖)

→ 0

and

ρ(2) =
Φ − Φ(x(α))

Ψ(x) − Ψ(x + αd)
≥

Φ(x) − Φ(x(α))

Ψ(x) − Ψ(x + αd)
= 1 +

Ψ(x + αd) − Φ(x(α))

Ψ(x) − Ψ(x + αd)
→ 1.

Thus, we know that there exists a large K0 such that, for any k ≥ K0, ρ
(2)
k > µ1 > µ2.

Since αk ≥ αk−1, for k ≥ K0, we always have αk = αk ≥ αk−1, and if 2αk ≤ 1, then

αk+1 = 2αk > αk−1. Hence αk is monotonously increased, it must be equal to one in

finite steps from some k1 ≥ K0.

With a similar method as that of Ref.[9], we can prove following conclusion:

Theorem 4.6. Under the stated assumptions, we have lim
k→∞

‖xk+2 − x∗‖

‖xk − x∗‖
= 0.

Moreover, ‖xk+1 − x∗‖ = ©(‖xk − x∗‖).

Finally, we show that Algorithm A can deal with Maratos effect well in such a way

that the constraints are evaluated at auxiliary points in the early iterations only.

Theorem 4.7. For k large enough, second order correction d̂k is not computed.

Proof. We only need to show that, for k large enough, we always have

Φ(xk + dk) − µ1(Ψ(xk + dk) − Ψ(xk)) ≤ Φ(xk−3). (4.14)

Since

gj(xk) + ∇gj(xk)
T dk = 0, (j = 1, · · · , l), (4.15)

from the definition of Φ and Ψ, we get

Φ(xk + dk) − µ1(Ψ(xk + dk) − Ψ(xk))

=f(xk + dk) + r

m′

∑

j=1

|gj(xk + dk)| + r

l
∑

j=m′+1

max(0, gj(xk + dk))

− µ1

(

∇f(xk)
T dk +

1

2
dT

k Hkdk − r
m′

∑

j=1

|gj(xk)| − r
l

∑

j=m′+1

max(0, gj(xk))

)

.

For given k, if xk = xk−1 + d̂k−1, then

gj(xk) = gj(xk−1 + d̂k−1) = gj(xk−1) + ∇gj(xk−1)
T d̂k−1 + ©(‖d̂k−1‖

2)

= gj(xk−1) + ∇gj(xk−1)
T dk−1 + ∇gj(xk−1)

T (d̂k−1 − dk−1) + ©(‖d̂k−1‖
2)

= ©(‖dk−1‖
2).

If xk = xk−1 + dk−1, it is obvious that

gj(xk−1 + dk−1) = ©(‖dk−1‖
2). (4.16)

An SQP Algorithm with Nonmonotone Line Search for General Nonlinear Constrained... 191

In addition, we have

gj(xk + dk) = ©(‖dk‖
2), (4.17)

therefore,

Φ(xk + dk) − µ1(Ψ(xk + dk) − Ψ(xk))

=f(xk + dk) − µ1∇f(xk)
T dk + ©(‖dk−1‖

2) + ©(‖dk‖
2).

(4.18)

With the same method as that of Ref.[9], we can easily obtain

Φ(xk + dk) − µ1(Ψ(xk + dk) − Ψ(xk)) = f(x∗) + ◦(‖xk−3 − x∗‖2) ≤ Φ(xk−3).

And the conclusion follows.

5. Numerical Experiments

In order to test the given algorithm, an efficient implementation of the algorithm

has been completed. In this implementation, we select µ1 = 0.8, µ2 = 0.3, τ = 2.99,

and H0 = I (an n × n unit matrix). Hk is updated by means of the BFGS formula

with Powell’s modifications as described in Ref.[3].

Table 1.

No n m1 m2 NIT NF NC FV EPS ACT

4 2 2 0 2 2 0 2.66666666 0.1D−8 0

6 2 0 1 10 14 11 0.00000000 0.1D−8 3

8 2 0 2 4 4 10 −1.0000000 0.1D−8 1

12 2 1 0 7 10 8 −30.000000 0.1D−8 1

24 2 5 0 7 9 21 −1.0000000 0.1D−8 0

26 3 0 1 20 26 22 0.00000000 0.1D−8 2

27 3 0 1 24 28 25 0.03999999 0.1D−8 4

32 3 4 1 3 5 6 1.00000000 0.1D−8 1

33 3 6 0 7 8 16 −4.5857864 0.1D−8 0

39 4 0 2 12 12 24 −1.0000000 0.1D−8 0

47 5 0 3 25 37 75 0.00000000 0.1D−6 14

49 5 0 2 16 20 32 0.00000000 0.1D−8 1

50 5 0 3 15 25 48 0.00000000 0.1D−8 1

60 3 6 1 9 10 10 0.03256820 0.1D−8 0

61 3 0 2 9 14 18 −143.64614 0.1D−8 1

78 5 0 3 8 10 24 −2.9197004 0.1D−8 1

79 5 0 3 10 11 33 0.07877682 0.1D−8 0

80 5 10 3 6 7 21 0.05394985 0.1D−8 0

81 5 10 3 10 11 33 0.05394985 0.1D−8 0

119 16 32 8 15 15 120 249.294724 0.1D−6 0

The stopping criterion in Step 1 is unsuitable for implementation. Instead, execution

is terminated if the norm of dk is less than a constant ǫ > 0. Generally, we take

ǫ = 1.0D − 8. In addition, if the norm of gradient of the Lagrange function at the

current point with the multipliers obtained in solving QP0 is less than ǫ , the execution

is also terminated.

Experiments were conducted on all test problems from Ref.[12], where an initial

point is provided for each problem. The results are summarized in Table 1. In that

192 G.P. HE, B.Q. DIAO AND Z.Y. GAO

table, for each test problem (No), n is the number of variables in the problem, m1

the number of inequality constrains, m2 the number of equality constrains, NIT the

number of iterations, NF the number of evaluations of the objective function, NC

the number of evaluations of scalar constraint functions, FV the final value of the

objective function, EPS the stopping criterion threshold and ACT the number of

computing second order correction steps. From Table 1 we can see that, using the

new nonmonotone line search, our algorithm do not almost compute the second order

correction steps for the most of problems, the behavior of this algorithm appears to be

competitive with that of the most effective techniques presently available.

References

[1] S.-P. Han, Superlinearly convergent variable metric algorithms for general nonlinear

programming problems, Math. Prog., 11(1976), 263–282.

[2] S.-P. Han, A globally convergent method for nonlinear programming, J.O.T.A.,

22:3 (1977), 297–309.

[3] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calcula-

tions, in Numerical Analysis, Proceedings, Biennial conference, Dundee 1977, Lec-

ture Notes In Math. 630, G. A. Waston, ed., Springer-Verlag, Berlin, New York,

1978, 144–157.

[4] M.J.D. Powell, Variable metric methods for constrained optimization, in A. Bachem,

M. Grotschel and B. Korte, eds., Math. Prog.: the State of Art, Bonn, 1982.

(Springer-Verlag, Berlin, 1983).

[5] P.T. Boggs, J.W. Tolle and P. Wang, On the local convergence of quasi-Newton

methods for constrained optimization, SIAM J., Control and Optimization, 20:1(1982),

161–171.

[6] R.M. Chamberlain, M.J.D. Powell, C. Lemarechal and H.C. Pedersen, The watch-

dog technique for forcing convergence in algorithms for constrained optimization,

Math. Prog. Study, 16(1982), 1–17.

[7] D.Q. Mayne and E. Polak, A superlinearly convergent algorithm for constrained

optimization problems, Math. Prog. Study, 16(1982), 45–61.

[8] M. Fukushima, A successive quadratic programming algorithm with global and

superlinear convergence properties, Math. Prog., 35(1986), 253–264.

[9] E.R. Panier and A.L. Tits, Avoiding the Maratos effect by means of a nonmonotone

line search, I. general constrained problems, SIAM J. Numer. Anal., 28(4) (1991),

1183–1195.

[10] L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for

Newton’s method, SIAM J. Numer. Anal., 23(1986), 707–716.

[11] Y.-L. Lai and G.-P. He, A variable metric method for constrained optimization with

second order correction, J. Sys. Sci. & Math. Scis., 10(3) (1990), (in Chinese),

216–227.

[12] W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, in

Lecture Notes in Econom. and Math. Systems, 187, Springer-Verlag, Berlin, New

York, 1981.

